blob: c040e246bc590bcd747f15ab506f3108fa0936c6 [file] [log] [blame]
Will Deacon48ec83b2015-05-27 17:25:59 +01001/*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23#include <linux/delay.h>
Robin Murphy9adb9592016-01-26 18:06:36 +000024#include <linux/dma-iommu.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010025#include <linux/err.h>
26#include <linux/interrupt.h>
27#include <linux/iommu.h>
28#include <linux/iopoll.h>
29#include <linux/module.h>
Marc Zyngier166bdbd2015-10-13 18:32:30 +010030#include <linux/msi.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010031#include <linux/of.h>
32#include <linux/of_address.h>
Will Deacon941a8022015-08-11 16:25:10 +010033#include <linux/of_platform.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010034#include <linux/pci.h>
35#include <linux/platform_device.h>
36
37#include "io-pgtable.h"
38
39/* MMIO registers */
40#define ARM_SMMU_IDR0 0x0
41#define IDR0_ST_LVL_SHIFT 27
42#define IDR0_ST_LVL_MASK 0x3
43#define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
Prem Mallappa6380be02015-12-14 22:01:23 +053044#define IDR0_STALL_MODEL_SHIFT 24
45#define IDR0_STALL_MODEL_MASK 0x3
46#define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
47#define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +010048#define IDR0_TTENDIAN_SHIFT 21
49#define IDR0_TTENDIAN_MASK 0x3
50#define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
51#define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
52#define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
53#define IDR0_CD2L (1 << 19)
54#define IDR0_VMID16 (1 << 18)
55#define IDR0_PRI (1 << 16)
56#define IDR0_SEV (1 << 14)
57#define IDR0_MSI (1 << 13)
58#define IDR0_ASID16 (1 << 12)
59#define IDR0_ATS (1 << 10)
60#define IDR0_HYP (1 << 9)
61#define IDR0_COHACC (1 << 4)
62#define IDR0_TTF_SHIFT 2
63#define IDR0_TTF_MASK 0x3
64#define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
Will Deaconf0c453d2015-08-20 12:12:32 +010065#define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +010066#define IDR0_S1P (1 << 1)
67#define IDR0_S2P (1 << 0)
68
69#define ARM_SMMU_IDR1 0x4
70#define IDR1_TABLES_PRESET (1 << 30)
71#define IDR1_QUEUES_PRESET (1 << 29)
72#define IDR1_REL (1 << 28)
73#define IDR1_CMDQ_SHIFT 21
74#define IDR1_CMDQ_MASK 0x1f
75#define IDR1_EVTQ_SHIFT 16
76#define IDR1_EVTQ_MASK 0x1f
77#define IDR1_PRIQ_SHIFT 11
78#define IDR1_PRIQ_MASK 0x1f
79#define IDR1_SSID_SHIFT 6
80#define IDR1_SSID_MASK 0x1f
81#define IDR1_SID_SHIFT 0
82#define IDR1_SID_MASK 0x3f
83
84#define ARM_SMMU_IDR5 0x14
85#define IDR5_STALL_MAX_SHIFT 16
86#define IDR5_STALL_MAX_MASK 0xffff
87#define IDR5_GRAN64K (1 << 6)
88#define IDR5_GRAN16K (1 << 5)
89#define IDR5_GRAN4K (1 << 4)
90#define IDR5_OAS_SHIFT 0
91#define IDR5_OAS_MASK 0x7
92#define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
93#define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
94#define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
95#define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
96#define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
97#define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
98
99#define ARM_SMMU_CR0 0x20
100#define CR0_CMDQEN (1 << 3)
101#define CR0_EVTQEN (1 << 2)
102#define CR0_PRIQEN (1 << 1)
103#define CR0_SMMUEN (1 << 0)
104
105#define ARM_SMMU_CR0ACK 0x24
106
107#define ARM_SMMU_CR1 0x28
108#define CR1_SH_NSH 0
109#define CR1_SH_OSH 2
110#define CR1_SH_ISH 3
111#define CR1_CACHE_NC 0
112#define CR1_CACHE_WB 1
113#define CR1_CACHE_WT 2
114#define CR1_TABLE_SH_SHIFT 10
115#define CR1_TABLE_OC_SHIFT 8
116#define CR1_TABLE_IC_SHIFT 6
117#define CR1_QUEUE_SH_SHIFT 4
118#define CR1_QUEUE_OC_SHIFT 2
119#define CR1_QUEUE_IC_SHIFT 0
120
121#define ARM_SMMU_CR2 0x2c
122#define CR2_PTM (1 << 2)
123#define CR2_RECINVSID (1 << 1)
124#define CR2_E2H (1 << 0)
125
126#define ARM_SMMU_IRQ_CTRL 0x50
127#define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
Marc Zyngierccd63852015-07-15 11:55:18 +0100128#define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
Will Deacon48ec83b2015-05-27 17:25:59 +0100129#define IRQ_CTRL_GERROR_IRQEN (1 << 0)
130
131#define ARM_SMMU_IRQ_CTRLACK 0x54
132
133#define ARM_SMMU_GERROR 0x60
134#define GERROR_SFM_ERR (1 << 8)
135#define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
136#define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
137#define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
138#define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
139#define GERROR_PRIQ_ABT_ERR (1 << 3)
140#define GERROR_EVTQ_ABT_ERR (1 << 2)
141#define GERROR_CMDQ_ERR (1 << 0)
142#define GERROR_ERR_MASK 0xfd
143
144#define ARM_SMMU_GERRORN 0x64
145
146#define ARM_SMMU_GERROR_IRQ_CFG0 0x68
147#define ARM_SMMU_GERROR_IRQ_CFG1 0x70
148#define ARM_SMMU_GERROR_IRQ_CFG2 0x74
149
150#define ARM_SMMU_STRTAB_BASE 0x80
151#define STRTAB_BASE_RA (1UL << 62)
152#define STRTAB_BASE_ADDR_SHIFT 6
153#define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
154
155#define ARM_SMMU_STRTAB_BASE_CFG 0x88
156#define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
157#define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
158#define STRTAB_BASE_CFG_SPLIT_SHIFT 6
159#define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
160#define STRTAB_BASE_CFG_FMT_SHIFT 16
161#define STRTAB_BASE_CFG_FMT_MASK 0x3
162#define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
163#define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
164
165#define ARM_SMMU_CMDQ_BASE 0x90
166#define ARM_SMMU_CMDQ_PROD 0x98
167#define ARM_SMMU_CMDQ_CONS 0x9c
168
169#define ARM_SMMU_EVTQ_BASE 0xa0
170#define ARM_SMMU_EVTQ_PROD 0x100a8
171#define ARM_SMMU_EVTQ_CONS 0x100ac
172#define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
173#define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
174#define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
175
176#define ARM_SMMU_PRIQ_BASE 0xc0
177#define ARM_SMMU_PRIQ_PROD 0x100c8
178#define ARM_SMMU_PRIQ_CONS 0x100cc
179#define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
180#define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
181#define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
182
183/* Common MSI config fields */
Will Deacon48ec83b2015-05-27 17:25:59 +0100184#define MSI_CFG0_ADDR_SHIFT 2
185#define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
Marc Zyngierec11d632015-07-15 11:55:19 +0100186#define MSI_CFG2_SH_SHIFT 4
187#define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
188#define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
189#define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
190#define MSI_CFG2_MEMATTR_SHIFT 0
191#define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +0100192
193#define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
194#define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
195#define Q_OVERFLOW_FLAG (1 << 31)
196#define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
197#define Q_ENT(q, p) ((q)->base + \
198 Q_IDX(q, p) * (q)->ent_dwords)
199
200#define Q_BASE_RWA (1UL << 62)
201#define Q_BASE_ADDR_SHIFT 5
202#define Q_BASE_ADDR_MASK 0xfffffffffffUL
203#define Q_BASE_LOG2SIZE_SHIFT 0
204#define Q_BASE_LOG2SIZE_MASK 0x1fUL
205
206/*
207 * Stream table.
208 *
209 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
Zhen Leie2f4c232015-07-07 04:30:17 +0100210 * 2lvl: 128k L1 entries,
211 * 256 lazy entries per table (each table covers a PCI bus)
Will Deacon48ec83b2015-05-27 17:25:59 +0100212 */
Zhen Leie2f4c232015-07-07 04:30:17 +0100213#define STRTAB_L1_SZ_SHIFT 20
Will Deacon48ec83b2015-05-27 17:25:59 +0100214#define STRTAB_SPLIT 8
215
216#define STRTAB_L1_DESC_DWORDS 1
217#define STRTAB_L1_DESC_SPAN_SHIFT 0
218#define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
219#define STRTAB_L1_DESC_L2PTR_SHIFT 6
220#define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
221
222#define STRTAB_STE_DWORDS 8
223#define STRTAB_STE_0_V (1UL << 0)
224#define STRTAB_STE_0_CFG_SHIFT 1
225#define STRTAB_STE_0_CFG_MASK 0x7UL
226#define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
227#define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
228#define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
229#define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
230
231#define STRTAB_STE_0_S1FMT_SHIFT 4
232#define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
233#define STRTAB_STE_0_S1CTXPTR_SHIFT 6
234#define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
235#define STRTAB_STE_0_S1CDMAX_SHIFT 59
236#define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
237
238#define STRTAB_STE_1_S1C_CACHE_NC 0UL
239#define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
240#define STRTAB_STE_1_S1C_CACHE_WT 2UL
241#define STRTAB_STE_1_S1C_CACHE_WB 3UL
242#define STRTAB_STE_1_S1C_SH_NSH 0UL
243#define STRTAB_STE_1_S1C_SH_OSH 2UL
244#define STRTAB_STE_1_S1C_SH_ISH 3UL
245#define STRTAB_STE_1_S1CIR_SHIFT 2
246#define STRTAB_STE_1_S1COR_SHIFT 4
247#define STRTAB_STE_1_S1CSH_SHIFT 6
248
249#define STRTAB_STE_1_S1STALLD (1UL << 27)
250
251#define STRTAB_STE_1_EATS_ABT 0UL
252#define STRTAB_STE_1_EATS_TRANS 1UL
253#define STRTAB_STE_1_EATS_S1CHK 2UL
254#define STRTAB_STE_1_EATS_SHIFT 28
255
256#define STRTAB_STE_1_STRW_NSEL1 0UL
257#define STRTAB_STE_1_STRW_EL2 2UL
258#define STRTAB_STE_1_STRW_SHIFT 30
259
Will Deacona0eacd82015-11-18 18:15:51 +0000260#define STRTAB_STE_1_SHCFG_INCOMING 1UL
261#define STRTAB_STE_1_SHCFG_SHIFT 44
262
Will Deacon48ec83b2015-05-27 17:25:59 +0100263#define STRTAB_STE_2_S2VMID_SHIFT 0
264#define STRTAB_STE_2_S2VMID_MASK 0xffffUL
265#define STRTAB_STE_2_VTCR_SHIFT 32
266#define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
267#define STRTAB_STE_2_S2AA64 (1UL << 51)
268#define STRTAB_STE_2_S2ENDI (1UL << 52)
269#define STRTAB_STE_2_S2PTW (1UL << 54)
270#define STRTAB_STE_2_S2R (1UL << 58)
271
272#define STRTAB_STE_3_S2TTB_SHIFT 4
273#define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
274
275/* Context descriptor (stage-1 only) */
276#define CTXDESC_CD_DWORDS 8
277#define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
278#define ARM64_TCR_T0SZ_SHIFT 0
279#define ARM64_TCR_T0SZ_MASK 0x1fUL
280#define CTXDESC_CD_0_TCR_TG0_SHIFT 6
281#define ARM64_TCR_TG0_SHIFT 14
282#define ARM64_TCR_TG0_MASK 0x3UL
283#define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
Zhen Lei5d58c622015-06-26 09:32:59 +0100284#define ARM64_TCR_IRGN0_SHIFT 8
Will Deacon48ec83b2015-05-27 17:25:59 +0100285#define ARM64_TCR_IRGN0_MASK 0x3UL
286#define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
Zhen Lei5d58c622015-06-26 09:32:59 +0100287#define ARM64_TCR_ORGN0_SHIFT 10
Will Deacon48ec83b2015-05-27 17:25:59 +0100288#define ARM64_TCR_ORGN0_MASK 0x3UL
289#define CTXDESC_CD_0_TCR_SH0_SHIFT 12
290#define ARM64_TCR_SH0_SHIFT 12
291#define ARM64_TCR_SH0_MASK 0x3UL
292#define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
293#define ARM64_TCR_EPD0_SHIFT 7
294#define ARM64_TCR_EPD0_MASK 0x1UL
295#define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
296#define ARM64_TCR_EPD1_SHIFT 23
297#define ARM64_TCR_EPD1_MASK 0x1UL
298
299#define CTXDESC_CD_0_ENDI (1UL << 15)
300#define CTXDESC_CD_0_V (1UL << 31)
301
302#define CTXDESC_CD_0_TCR_IPS_SHIFT 32
303#define ARM64_TCR_IPS_SHIFT 32
304#define ARM64_TCR_IPS_MASK 0x7UL
305#define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
306#define ARM64_TCR_TBI0_SHIFT 37
307#define ARM64_TCR_TBI0_MASK 0x1UL
308
309#define CTXDESC_CD_0_AA64 (1UL << 41)
310#define CTXDESC_CD_0_R (1UL << 45)
311#define CTXDESC_CD_0_A (1UL << 46)
312#define CTXDESC_CD_0_ASET_SHIFT 47
313#define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
314#define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
315#define CTXDESC_CD_0_ASID_SHIFT 48
316#define CTXDESC_CD_0_ASID_MASK 0xffffUL
317
318#define CTXDESC_CD_1_TTB0_SHIFT 4
319#define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
320
321#define CTXDESC_CD_3_MAIR_SHIFT 0
322
323/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
324#define ARM_SMMU_TCR2CD(tcr, fld) \
325 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
326 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
327
328/* Command queue */
329#define CMDQ_ENT_DWORDS 2
330#define CMDQ_MAX_SZ_SHIFT 8
331
332#define CMDQ_ERR_SHIFT 24
333#define CMDQ_ERR_MASK 0x7f
334#define CMDQ_ERR_CERROR_NONE_IDX 0
335#define CMDQ_ERR_CERROR_ILL_IDX 1
336#define CMDQ_ERR_CERROR_ABT_IDX 2
337
338#define CMDQ_0_OP_SHIFT 0
339#define CMDQ_0_OP_MASK 0xffUL
340#define CMDQ_0_SSV (1UL << 11)
341
342#define CMDQ_PREFETCH_0_SID_SHIFT 32
343#define CMDQ_PREFETCH_1_SIZE_SHIFT 0
344#define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
345
346#define CMDQ_CFGI_0_SID_SHIFT 32
347#define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
348#define CMDQ_CFGI_1_LEAF (1UL << 0)
349#define CMDQ_CFGI_1_RANGE_SHIFT 0
350#define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
351
352#define CMDQ_TLBI_0_VMID_SHIFT 32
353#define CMDQ_TLBI_0_ASID_SHIFT 48
354#define CMDQ_TLBI_1_LEAF (1UL << 0)
Will Deacon1c27df12015-09-18 16:12:56 +0100355#define CMDQ_TLBI_1_VA_MASK ~0xfffUL
356#define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
Will Deacon48ec83b2015-05-27 17:25:59 +0100357
358#define CMDQ_PRI_0_SSID_SHIFT 12
359#define CMDQ_PRI_0_SSID_MASK 0xfffffUL
360#define CMDQ_PRI_0_SID_SHIFT 32
361#define CMDQ_PRI_0_SID_MASK 0xffffffffUL
362#define CMDQ_PRI_1_GRPID_SHIFT 0
363#define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
364#define CMDQ_PRI_1_RESP_SHIFT 12
365#define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
366#define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
367#define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
368
369#define CMDQ_SYNC_0_CS_SHIFT 12
370#define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
371#define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
372
373/* Event queue */
374#define EVTQ_ENT_DWORDS 4
375#define EVTQ_MAX_SZ_SHIFT 7
376
377#define EVTQ_0_ID_SHIFT 0
378#define EVTQ_0_ID_MASK 0xffUL
379
380/* PRI queue */
381#define PRIQ_ENT_DWORDS 2
382#define PRIQ_MAX_SZ_SHIFT 8
383
384#define PRIQ_0_SID_SHIFT 0
385#define PRIQ_0_SID_MASK 0xffffffffUL
386#define PRIQ_0_SSID_SHIFT 32
387#define PRIQ_0_SSID_MASK 0xfffffUL
Will Deacon48ec83b2015-05-27 17:25:59 +0100388#define PRIQ_0_PERM_PRIV (1UL << 58)
389#define PRIQ_0_PERM_EXEC (1UL << 59)
390#define PRIQ_0_PERM_READ (1UL << 60)
391#define PRIQ_0_PERM_WRITE (1UL << 61)
392#define PRIQ_0_PRG_LAST (1UL << 62)
393#define PRIQ_0_SSID_V (1UL << 63)
394
395#define PRIQ_1_PRG_IDX_SHIFT 0
396#define PRIQ_1_PRG_IDX_MASK 0x1ffUL
397#define PRIQ_1_ADDR_SHIFT 12
398#define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
399
400/* High-level queue structures */
401#define ARM_SMMU_POLL_TIMEOUT_US 100
402
403static bool disable_bypass;
404module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
405MODULE_PARM_DESC(disable_bypass,
406 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
407
408enum pri_resp {
409 PRI_RESP_DENY,
410 PRI_RESP_FAIL,
411 PRI_RESP_SUCC,
412};
413
Marc Zyngier166bdbd2015-10-13 18:32:30 +0100414enum arm_smmu_msi_index {
415 EVTQ_MSI_INDEX,
416 GERROR_MSI_INDEX,
417 PRIQ_MSI_INDEX,
418 ARM_SMMU_MAX_MSIS,
419};
420
421static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
422 [EVTQ_MSI_INDEX] = {
423 ARM_SMMU_EVTQ_IRQ_CFG0,
424 ARM_SMMU_EVTQ_IRQ_CFG1,
425 ARM_SMMU_EVTQ_IRQ_CFG2,
426 },
427 [GERROR_MSI_INDEX] = {
428 ARM_SMMU_GERROR_IRQ_CFG0,
429 ARM_SMMU_GERROR_IRQ_CFG1,
430 ARM_SMMU_GERROR_IRQ_CFG2,
431 },
432 [PRIQ_MSI_INDEX] = {
433 ARM_SMMU_PRIQ_IRQ_CFG0,
434 ARM_SMMU_PRIQ_IRQ_CFG1,
435 ARM_SMMU_PRIQ_IRQ_CFG2,
436 },
437};
438
Will Deacon48ec83b2015-05-27 17:25:59 +0100439struct arm_smmu_cmdq_ent {
440 /* Common fields */
441 u8 opcode;
442 bool substream_valid;
443
444 /* Command-specific fields */
445 union {
446 #define CMDQ_OP_PREFETCH_CFG 0x1
447 struct {
448 u32 sid;
449 u8 size;
450 u64 addr;
451 } prefetch;
452
453 #define CMDQ_OP_CFGI_STE 0x3
454 #define CMDQ_OP_CFGI_ALL 0x4
455 struct {
456 u32 sid;
457 union {
458 bool leaf;
459 u8 span;
460 };
461 } cfgi;
462
463 #define CMDQ_OP_TLBI_NH_ASID 0x11
464 #define CMDQ_OP_TLBI_NH_VA 0x12
465 #define CMDQ_OP_TLBI_EL2_ALL 0x20
466 #define CMDQ_OP_TLBI_S12_VMALL 0x28
467 #define CMDQ_OP_TLBI_S2_IPA 0x2a
468 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
469 struct {
470 u16 asid;
471 u16 vmid;
472 bool leaf;
473 u64 addr;
474 } tlbi;
475
476 #define CMDQ_OP_PRI_RESP 0x41
477 struct {
478 u32 sid;
479 u32 ssid;
480 u16 grpid;
481 enum pri_resp resp;
482 } pri;
483
484 #define CMDQ_OP_CMD_SYNC 0x46
485 };
486};
487
488struct arm_smmu_queue {
489 int irq; /* Wired interrupt */
490
491 __le64 *base;
492 dma_addr_t base_dma;
493 u64 q_base;
494
495 size_t ent_dwords;
496 u32 max_n_shift;
497 u32 prod;
498 u32 cons;
499
500 u32 __iomem *prod_reg;
501 u32 __iomem *cons_reg;
502};
503
504struct arm_smmu_cmdq {
505 struct arm_smmu_queue q;
506 spinlock_t lock;
507};
508
509struct arm_smmu_evtq {
510 struct arm_smmu_queue q;
511 u32 max_stalls;
512};
513
514struct arm_smmu_priq {
515 struct arm_smmu_queue q;
516};
517
518/* High-level stream table and context descriptor structures */
519struct arm_smmu_strtab_l1_desc {
520 u8 span;
521
522 __le64 *l2ptr;
523 dma_addr_t l2ptr_dma;
524};
525
526struct arm_smmu_s1_cfg {
527 __le64 *cdptr;
528 dma_addr_t cdptr_dma;
529
530 struct arm_smmu_ctx_desc {
531 u16 asid;
532 u64 ttbr;
533 u64 tcr;
534 u64 mair;
535 } cd;
536};
537
538struct arm_smmu_s2_cfg {
539 u16 vmid;
540 u64 vttbr;
541 u64 vtcr;
542};
543
544struct arm_smmu_strtab_ent {
545 bool valid;
546
547 bool bypass; /* Overrides s1/s2 config */
548 struct arm_smmu_s1_cfg *s1_cfg;
549 struct arm_smmu_s2_cfg *s2_cfg;
550};
551
552struct arm_smmu_strtab_cfg {
553 __le64 *strtab;
554 dma_addr_t strtab_dma;
555 struct arm_smmu_strtab_l1_desc *l1_desc;
556 unsigned int num_l1_ents;
557
558 u64 strtab_base;
559 u32 strtab_base_cfg;
560};
561
562/* An SMMUv3 instance */
563struct arm_smmu_device {
564 struct device *dev;
565 void __iomem *base;
566
567#define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
568#define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
569#define ARM_SMMU_FEAT_TT_LE (1 << 2)
570#define ARM_SMMU_FEAT_TT_BE (1 << 3)
571#define ARM_SMMU_FEAT_PRI (1 << 4)
572#define ARM_SMMU_FEAT_ATS (1 << 5)
573#define ARM_SMMU_FEAT_SEV (1 << 6)
574#define ARM_SMMU_FEAT_MSI (1 << 7)
575#define ARM_SMMU_FEAT_COHERENCY (1 << 8)
576#define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
577#define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
578#define ARM_SMMU_FEAT_STALLS (1 << 11)
579#define ARM_SMMU_FEAT_HYP (1 << 12)
580 u32 features;
581
Zhen Lei5e929462015-07-07 04:30:18 +0100582#define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
583 u32 options;
584
Will Deacon48ec83b2015-05-27 17:25:59 +0100585 struct arm_smmu_cmdq cmdq;
586 struct arm_smmu_evtq evtq;
587 struct arm_smmu_priq priq;
588
589 int gerr_irq;
590
591 unsigned long ias; /* IPA */
592 unsigned long oas; /* PA */
Robin Murphyd5466352016-05-09 17:20:09 +0100593 unsigned long pgsize_bitmap;
Will Deacon48ec83b2015-05-27 17:25:59 +0100594
595#define ARM_SMMU_MAX_ASIDS (1 << 16)
596 unsigned int asid_bits;
597 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
598
599#define ARM_SMMU_MAX_VMIDS (1 << 16)
600 unsigned int vmid_bits;
601 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
602
603 unsigned int ssid_bits;
604 unsigned int sid_bits;
605
606 struct arm_smmu_strtab_cfg strtab_cfg;
Will Deacon48ec83b2015-05-27 17:25:59 +0100607};
608
609/* SMMU private data for an IOMMU group */
610struct arm_smmu_group {
611 struct arm_smmu_device *smmu;
612 struct arm_smmu_domain *domain;
613 int num_sids;
614 u32 *sids;
615 struct arm_smmu_strtab_ent ste;
616};
617
618/* SMMU private data for an IOMMU domain */
619enum arm_smmu_domain_stage {
620 ARM_SMMU_DOMAIN_S1 = 0,
621 ARM_SMMU_DOMAIN_S2,
622 ARM_SMMU_DOMAIN_NESTED,
623};
624
625struct arm_smmu_domain {
626 struct arm_smmu_device *smmu;
627 struct mutex init_mutex; /* Protects smmu pointer */
628
629 struct io_pgtable_ops *pgtbl_ops;
630 spinlock_t pgtbl_lock;
631
632 enum arm_smmu_domain_stage stage;
633 union {
634 struct arm_smmu_s1_cfg s1_cfg;
635 struct arm_smmu_s2_cfg s2_cfg;
636 };
637
638 struct iommu_domain domain;
639};
640
Zhen Lei5e929462015-07-07 04:30:18 +0100641struct arm_smmu_option_prop {
642 u32 opt;
643 const char *prop;
644};
645
646static struct arm_smmu_option_prop arm_smmu_options[] = {
647 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
648 { 0, NULL},
649};
650
Will Deacon48ec83b2015-05-27 17:25:59 +0100651static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
652{
653 return container_of(dom, struct arm_smmu_domain, domain);
654}
655
Zhen Lei5e929462015-07-07 04:30:18 +0100656static void parse_driver_options(struct arm_smmu_device *smmu)
657{
658 int i = 0;
659
660 do {
661 if (of_property_read_bool(smmu->dev->of_node,
662 arm_smmu_options[i].prop)) {
663 smmu->options |= arm_smmu_options[i].opt;
664 dev_notice(smmu->dev, "option %s\n",
665 arm_smmu_options[i].prop);
666 }
667 } while (arm_smmu_options[++i].opt);
668}
669
Will Deacon48ec83b2015-05-27 17:25:59 +0100670/* Low-level queue manipulation functions */
671static bool queue_full(struct arm_smmu_queue *q)
672{
673 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
674 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
675}
676
677static bool queue_empty(struct arm_smmu_queue *q)
678{
679 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
680 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
681}
682
683static void queue_sync_cons(struct arm_smmu_queue *q)
684{
685 q->cons = readl_relaxed(q->cons_reg);
686}
687
688static void queue_inc_cons(struct arm_smmu_queue *q)
689{
690 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
691
692 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
693 writel(q->cons, q->cons_reg);
694}
695
696static int queue_sync_prod(struct arm_smmu_queue *q)
697{
698 int ret = 0;
699 u32 prod = readl_relaxed(q->prod_reg);
700
701 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
702 ret = -EOVERFLOW;
703
704 q->prod = prod;
705 return ret;
706}
707
708static void queue_inc_prod(struct arm_smmu_queue *q)
709{
710 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
711
712 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
713 writel(q->prod, q->prod_reg);
714}
715
Jean-Philippe Bruckerbcfced12016-09-05 14:09:53 +0100716/*
717 * Wait for the SMMU to consume items. If drain is true, wait until the queue
718 * is empty. Otherwise, wait until there is at least one free slot.
719 */
720static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
Will Deacon48ec83b2015-05-27 17:25:59 +0100721{
722 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
723
Jean-Philippe Bruckerbcfced12016-09-05 14:09:53 +0100724 while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
Will Deacon48ec83b2015-05-27 17:25:59 +0100725 if (ktime_compare(ktime_get(), timeout) > 0)
726 return -ETIMEDOUT;
727
728 if (wfe) {
729 wfe();
730 } else {
731 cpu_relax();
732 udelay(1);
733 }
734 }
735
736 return 0;
737}
738
739static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
740{
741 int i;
742
743 for (i = 0; i < n_dwords; ++i)
744 *dst++ = cpu_to_le64(*src++);
745}
746
747static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
748{
749 if (queue_full(q))
750 return -ENOSPC;
751
752 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
753 queue_inc_prod(q);
754 return 0;
755}
756
757static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
758{
759 int i;
760
761 for (i = 0; i < n_dwords; ++i)
762 *dst++ = le64_to_cpu(*src++);
763}
764
765static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
766{
767 if (queue_empty(q))
768 return -EAGAIN;
769
770 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
771 queue_inc_cons(q);
772 return 0;
773}
774
775/* High-level queue accessors */
776static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
777{
778 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
779 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
780
781 switch (ent->opcode) {
782 case CMDQ_OP_TLBI_EL2_ALL:
783 case CMDQ_OP_TLBI_NSNH_ALL:
784 break;
785 case CMDQ_OP_PREFETCH_CFG:
786 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
787 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
788 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
789 break;
790 case CMDQ_OP_CFGI_STE:
791 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
792 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
793 break;
794 case CMDQ_OP_CFGI_ALL:
795 /* Cover the entire SID range */
796 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
797 break;
798 case CMDQ_OP_TLBI_NH_VA:
799 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
Will Deacon1c27df12015-09-18 16:12:56 +0100800 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
801 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
802 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100803 case CMDQ_OP_TLBI_S2_IPA:
804 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
805 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
Will Deacon1c27df12015-09-18 16:12:56 +0100806 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
Will Deacon48ec83b2015-05-27 17:25:59 +0100807 break;
808 case CMDQ_OP_TLBI_NH_ASID:
809 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
810 /* Fallthrough */
811 case CMDQ_OP_TLBI_S12_VMALL:
812 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
813 break;
814 case CMDQ_OP_PRI_RESP:
815 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
816 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
817 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
818 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
819 switch (ent->pri.resp) {
820 case PRI_RESP_DENY:
821 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
822 break;
823 case PRI_RESP_FAIL:
824 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
825 break;
826 case PRI_RESP_SUCC:
827 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
828 break;
829 default:
830 return -EINVAL;
831 }
832 break;
833 case CMDQ_OP_CMD_SYNC:
834 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
835 break;
836 default:
837 return -ENOENT;
838 }
839
840 return 0;
841}
842
843static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
844{
845 static const char *cerror_str[] = {
846 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
847 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
848 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
849 };
850
851 int i;
852 u64 cmd[CMDQ_ENT_DWORDS];
853 struct arm_smmu_queue *q = &smmu->cmdq.q;
854 u32 cons = readl_relaxed(q->cons_reg);
855 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
856 struct arm_smmu_cmdq_ent cmd_sync = {
857 .opcode = CMDQ_OP_CMD_SYNC,
858 };
859
860 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
Will Deacona0d5c042015-12-04 12:00:29 +0000861 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
Will Deacon48ec83b2015-05-27 17:25:59 +0100862
863 switch (idx) {
Will Deacon48ec83b2015-05-27 17:25:59 +0100864 case CMDQ_ERR_CERROR_ABT_IDX:
865 dev_err(smmu->dev, "retrying command fetch\n");
866 case CMDQ_ERR_CERROR_NONE_IDX:
867 return;
Will Deacona0d5c042015-12-04 12:00:29 +0000868 case CMDQ_ERR_CERROR_ILL_IDX:
869 /* Fallthrough */
870 default:
871 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100872 }
873
874 /*
875 * We may have concurrent producers, so we need to be careful
876 * not to touch any of the shadow cmdq state.
877 */
Will Deaconaea20372016-07-29 11:15:37 +0100878 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
Will Deacon48ec83b2015-05-27 17:25:59 +0100879 dev_err(smmu->dev, "skipping command in error state:\n");
880 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
881 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
882
883 /* Convert the erroneous command into a CMD_SYNC */
884 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
885 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
886 return;
887 }
888
Will Deaconaea20372016-07-29 11:15:37 +0100889 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
Will Deacon48ec83b2015-05-27 17:25:59 +0100890}
891
892static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
893 struct arm_smmu_cmdq_ent *ent)
894{
Will Deacon48ec83b2015-05-27 17:25:59 +0100895 u64 cmd[CMDQ_ENT_DWORDS];
896 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
897 struct arm_smmu_queue *q = &smmu->cmdq.q;
898
899 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
900 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
901 ent->opcode);
902 return;
903 }
904
905 spin_lock(&smmu->cmdq.lock);
Jean-Philippe Bruckerbcfced12016-09-05 14:09:53 +0100906 while (queue_insert_raw(q, cmd) == -ENOSPC) {
907 if (queue_poll_cons(q, false, wfe))
Will Deacon48ec83b2015-05-27 17:25:59 +0100908 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
909 }
910
Jean-Philippe Bruckerbcfced12016-09-05 14:09:53 +0100911 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
Will Deacon48ec83b2015-05-27 17:25:59 +0100912 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
913 spin_unlock(&smmu->cmdq.lock);
914}
915
916/* Context descriptor manipulation functions */
917static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
918{
919 u64 val = 0;
920
921 /* Repack the TCR. Just care about TTBR0 for now */
922 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
923 val |= ARM_SMMU_TCR2CD(tcr, TG0);
924 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
925 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
926 val |= ARM_SMMU_TCR2CD(tcr, SH0);
927 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
928 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
929 val |= ARM_SMMU_TCR2CD(tcr, IPS);
930 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
931
932 return val;
933}
934
935static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
936 struct arm_smmu_s1_cfg *cfg)
937{
938 u64 val;
939
940 /*
941 * We don't need to issue any invalidation here, as we'll invalidate
942 * the STE when installing the new entry anyway.
943 */
944 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
945#ifdef __BIG_ENDIAN
946 CTXDESC_CD_0_ENDI |
947#endif
948 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
949 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
950 CTXDESC_CD_0_V;
951 cfg->cdptr[0] = cpu_to_le64(val);
952
953 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
954 cfg->cdptr[1] = cpu_to_le64(val);
955
956 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
957}
958
959/* Stream table manipulation functions */
960static void
961arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
962{
963 u64 val = 0;
964
965 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
966 << STRTAB_L1_DESC_SPAN_SHIFT;
967 val |= desc->l2ptr_dma &
968 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
969
970 *dst = cpu_to_le64(val);
971}
972
973static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
974{
975 struct arm_smmu_cmdq_ent cmd = {
976 .opcode = CMDQ_OP_CFGI_STE,
977 .cfgi = {
978 .sid = sid,
979 .leaf = true,
980 },
981 };
982
983 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
984 cmd.opcode = CMDQ_OP_CMD_SYNC;
985 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
986}
987
988static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
989 __le64 *dst, struct arm_smmu_strtab_ent *ste)
990{
991 /*
992 * This is hideously complicated, but we only really care about
993 * three cases at the moment:
994 *
995 * 1. Invalid (all zero) -> bypass (init)
996 * 2. Bypass -> translation (attach)
997 * 3. Translation -> bypass (detach)
998 *
999 * Given that we can't update the STE atomically and the SMMU
1000 * doesn't read the thing in a defined order, that leaves us
1001 * with the following maintenance requirements:
1002 *
1003 * 1. Update Config, return (init time STEs aren't live)
1004 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1005 * 3. Update Config, sync
1006 */
1007 u64 val = le64_to_cpu(dst[0]);
1008 bool ste_live = false;
1009 struct arm_smmu_cmdq_ent prefetch_cmd = {
1010 .opcode = CMDQ_OP_PREFETCH_CFG,
1011 .prefetch = {
1012 .sid = sid,
1013 },
1014 };
1015
1016 if (val & STRTAB_STE_0_V) {
1017 u64 cfg;
1018
1019 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1020 switch (cfg) {
1021 case STRTAB_STE_0_CFG_BYPASS:
1022 break;
1023 case STRTAB_STE_0_CFG_S1_TRANS:
1024 case STRTAB_STE_0_CFG_S2_TRANS:
1025 ste_live = true;
1026 break;
Will Deacon5bc0a112016-08-16 14:29:16 +01001027 case STRTAB_STE_0_CFG_ABORT:
1028 if (disable_bypass)
1029 break;
Will Deacon48ec83b2015-05-27 17:25:59 +01001030 default:
1031 BUG(); /* STE corruption */
1032 }
1033 }
1034
1035 /* Nuke the existing Config, as we're going to rewrite it */
1036 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1037
1038 if (ste->valid)
1039 val |= STRTAB_STE_0_V;
1040 else
1041 val &= ~STRTAB_STE_0_V;
1042
1043 if (ste->bypass) {
1044 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1045 : STRTAB_STE_0_CFG_BYPASS;
1046 dst[0] = cpu_to_le64(val);
Will Deacona0eacd82015-11-18 18:15:51 +00001047 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1048 << STRTAB_STE_1_SHCFG_SHIFT);
Will Deacon48ec83b2015-05-27 17:25:59 +01001049 dst[2] = 0; /* Nuke the VMID */
1050 if (ste_live)
1051 arm_smmu_sync_ste_for_sid(smmu, sid);
1052 return;
1053 }
1054
1055 if (ste->s1_cfg) {
1056 BUG_ON(ste_live);
1057 dst[1] = cpu_to_le64(
1058 STRTAB_STE_1_S1C_CACHE_WBRA
1059 << STRTAB_STE_1_S1CIR_SHIFT |
1060 STRTAB_STE_1_S1C_CACHE_WBRA
1061 << STRTAB_STE_1_S1COR_SHIFT |
1062 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
Will Deacon48ec83b2015-05-27 17:25:59 +01001063#ifdef CONFIG_PCI_ATS
1064 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1065#endif
1066 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1067
Prem Mallappa6380be02015-12-14 22:01:23 +05301068 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1069 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1070
Will Deacon48ec83b2015-05-27 17:25:59 +01001071 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1072 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1073 STRTAB_STE_0_CFG_S1_TRANS;
1074
1075 }
1076
1077 if (ste->s2_cfg) {
1078 BUG_ON(ste_live);
1079 dst[2] = cpu_to_le64(
1080 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1081 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1082 << STRTAB_STE_2_VTCR_SHIFT |
1083#ifdef __BIG_ENDIAN
1084 STRTAB_STE_2_S2ENDI |
1085#endif
1086 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1087 STRTAB_STE_2_S2R);
1088
1089 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1090 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1091
1092 val |= STRTAB_STE_0_CFG_S2_TRANS;
1093 }
1094
1095 arm_smmu_sync_ste_for_sid(smmu, sid);
1096 dst[0] = cpu_to_le64(val);
1097 arm_smmu_sync_ste_for_sid(smmu, sid);
1098
1099 /* It's likely that we'll want to use the new STE soon */
Zhen Lei5e929462015-07-07 04:30:18 +01001100 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1101 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
Will Deacon48ec83b2015-05-27 17:25:59 +01001102}
1103
1104static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1105{
1106 unsigned int i;
1107 struct arm_smmu_strtab_ent ste = {
1108 .valid = true,
1109 .bypass = true,
1110 };
1111
1112 for (i = 0; i < nent; ++i) {
1113 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1114 strtab += STRTAB_STE_DWORDS;
1115 }
1116}
1117
1118static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1119{
1120 size_t size;
1121 void *strtab;
1122 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1123 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1124
1125 if (desc->l2ptr)
1126 return 0;
1127
1128 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
Zhen Lei69146e72015-06-26 09:32:58 +01001129 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
Will Deacon48ec83b2015-05-27 17:25:59 +01001130
1131 desc->span = STRTAB_SPLIT + 1;
Will Deacon04fa26c2015-10-30 18:12:41 +00001132 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1133 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001134 if (!desc->l2ptr) {
1135 dev_err(smmu->dev,
1136 "failed to allocate l2 stream table for SID %u\n",
1137 sid);
1138 return -ENOMEM;
1139 }
1140
1141 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1142 arm_smmu_write_strtab_l1_desc(strtab, desc);
1143 return 0;
1144}
1145
1146/* IRQ and event handlers */
1147static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1148{
1149 int i;
1150 struct arm_smmu_device *smmu = dev;
1151 struct arm_smmu_queue *q = &smmu->evtq.q;
1152 u64 evt[EVTQ_ENT_DWORDS];
1153
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001154 do {
1155 while (!queue_remove_raw(q, evt)) {
1156 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
Will Deacon48ec83b2015-05-27 17:25:59 +01001157
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001158 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1159 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1160 dev_info(smmu->dev, "\t0x%016llx\n",
1161 (unsigned long long)evt[i]);
1162
1163 }
1164
1165 /*
1166 * Not much we can do on overflow, so scream and pretend we're
1167 * trying harder.
1168 */
1169 if (queue_sync_prod(q) == -EOVERFLOW)
1170 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1171 } while (!queue_empty(q));
Will Deacon48ec83b2015-05-27 17:25:59 +01001172
1173 /* Sync our overflow flag, as we believe we're up to speed */
1174 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1175 return IRQ_HANDLED;
1176}
1177
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001178static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
Will Deacon48ec83b2015-05-27 17:25:59 +01001179{
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001180 u32 sid, ssid;
1181 u16 grpid;
1182 bool ssv, last;
Will Deacon48ec83b2015-05-27 17:25:59 +01001183
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001184 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1185 ssv = evt[0] & PRIQ_0_SSID_V;
1186 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1187 last = evt[0] & PRIQ_0_PRG_LAST;
1188 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
Will Deacon48ec83b2015-05-27 17:25:59 +01001189
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001190 dev_info(smmu->dev, "unexpected PRI request received:\n");
1191 dev_info(smmu->dev,
1192 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1193 sid, ssid, grpid, last ? "L" : "",
1194 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1195 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1196 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1197 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1198 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1199
1200 if (last) {
1201 struct arm_smmu_cmdq_ent cmd = {
1202 .opcode = CMDQ_OP_PRI_RESP,
1203 .substream_valid = ssv,
1204 .pri = {
1205 .sid = sid,
1206 .ssid = ssid,
1207 .grpid = grpid,
1208 .resp = PRI_RESP_DENY,
1209 },
1210 };
1211
1212 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1213 }
Will Deacon48ec83b2015-05-27 17:25:59 +01001214}
1215
1216static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1217{
1218 struct arm_smmu_device *smmu = dev;
1219 struct arm_smmu_queue *q = &smmu->priq.q;
1220 u64 evt[PRIQ_ENT_DWORDS];
1221
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001222 do {
1223 while (!queue_remove_raw(q, evt))
1224 arm_smmu_handle_ppr(smmu, evt);
Will Deacon48ec83b2015-05-27 17:25:59 +01001225
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001226 if (queue_sync_prod(q) == -EOVERFLOW)
1227 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1228 } while (!queue_empty(q));
Will Deacon48ec83b2015-05-27 17:25:59 +01001229
1230 /* Sync our overflow flag, as we believe we're up to speed */
1231 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1232 return IRQ_HANDLED;
1233}
1234
Will Deacon48ec83b2015-05-27 17:25:59 +01001235static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1236{
1237 /* We don't actually use CMD_SYNC interrupts for anything */
1238 return IRQ_HANDLED;
1239}
1240
1241static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1242
1243static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1244{
Prem Mallappa324ba102015-12-14 22:01:14 +05301245 u32 gerror, gerrorn, active;
Will Deacon48ec83b2015-05-27 17:25:59 +01001246 struct arm_smmu_device *smmu = dev;
1247
1248 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1249 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1250
Prem Mallappa324ba102015-12-14 22:01:14 +05301251 active = gerror ^ gerrorn;
1252 if (!(active & GERROR_ERR_MASK))
Will Deacon48ec83b2015-05-27 17:25:59 +01001253 return IRQ_NONE; /* No errors pending */
1254
1255 dev_warn(smmu->dev,
1256 "unexpected global error reported (0x%08x), this could be serious\n",
Prem Mallappa324ba102015-12-14 22:01:14 +05301257 active);
Will Deacon48ec83b2015-05-27 17:25:59 +01001258
Prem Mallappa324ba102015-12-14 22:01:14 +05301259 if (active & GERROR_SFM_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001260 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1261 arm_smmu_device_disable(smmu);
1262 }
1263
Prem Mallappa324ba102015-12-14 22:01:14 +05301264 if (active & GERROR_MSI_GERROR_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001265 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1266
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001267 if (active & GERROR_MSI_PRIQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001268 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
Will Deacon48ec83b2015-05-27 17:25:59 +01001269
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01001270 if (active & GERROR_MSI_EVTQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001271 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
Will Deacon48ec83b2015-05-27 17:25:59 +01001272
Prem Mallappa324ba102015-12-14 22:01:14 +05301273 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001274 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1275 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1276 }
1277
Prem Mallappa324ba102015-12-14 22:01:14 +05301278 if (active & GERROR_PRIQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001279 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1280
Prem Mallappa324ba102015-12-14 22:01:14 +05301281 if (active & GERROR_EVTQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001282 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1283
Prem Mallappa324ba102015-12-14 22:01:14 +05301284 if (active & GERROR_CMDQ_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001285 arm_smmu_cmdq_skip_err(smmu);
1286
1287 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1288 return IRQ_HANDLED;
1289}
1290
1291/* IO_PGTABLE API */
1292static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1293{
1294 struct arm_smmu_cmdq_ent cmd;
1295
1296 cmd.opcode = CMDQ_OP_CMD_SYNC;
1297 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1298}
1299
1300static void arm_smmu_tlb_sync(void *cookie)
1301{
1302 struct arm_smmu_domain *smmu_domain = cookie;
1303 __arm_smmu_tlb_sync(smmu_domain->smmu);
1304}
1305
1306static void arm_smmu_tlb_inv_context(void *cookie)
1307{
1308 struct arm_smmu_domain *smmu_domain = cookie;
1309 struct arm_smmu_device *smmu = smmu_domain->smmu;
1310 struct arm_smmu_cmdq_ent cmd;
1311
1312 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1313 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1314 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1315 cmd.tlbi.vmid = 0;
1316 } else {
1317 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1318 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1319 }
1320
1321 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1322 __arm_smmu_tlb_sync(smmu);
1323}
1324
1325static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
Robin Murphy06c610e2015-12-07 18:18:53 +00001326 size_t granule, bool leaf, void *cookie)
Will Deacon48ec83b2015-05-27 17:25:59 +01001327{
1328 struct arm_smmu_domain *smmu_domain = cookie;
1329 struct arm_smmu_device *smmu = smmu_domain->smmu;
1330 struct arm_smmu_cmdq_ent cmd = {
1331 .tlbi = {
1332 .leaf = leaf,
1333 .addr = iova,
1334 },
1335 };
1336
1337 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1338 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1339 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1340 } else {
1341 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1342 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1343 }
1344
Robin Murphy75df1382015-12-07 18:18:52 +00001345 do {
1346 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1347 cmd.tlbi.addr += granule;
1348 } while (size -= granule);
Will Deacon48ec83b2015-05-27 17:25:59 +01001349}
1350
Will Deacon48ec83b2015-05-27 17:25:59 +01001351static struct iommu_gather_ops arm_smmu_gather_ops = {
1352 .tlb_flush_all = arm_smmu_tlb_inv_context,
1353 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1354 .tlb_sync = arm_smmu_tlb_sync,
Will Deacon48ec83b2015-05-27 17:25:59 +01001355};
1356
1357/* IOMMU API */
1358static bool arm_smmu_capable(enum iommu_cap cap)
1359{
1360 switch (cap) {
1361 case IOMMU_CAP_CACHE_COHERENCY:
1362 return true;
1363 case IOMMU_CAP_INTR_REMAP:
1364 return true; /* MSIs are just memory writes */
1365 case IOMMU_CAP_NOEXEC:
1366 return true;
1367 default:
1368 return false;
1369 }
1370}
1371
1372static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1373{
1374 struct arm_smmu_domain *smmu_domain;
1375
Robin Murphy9adb9592016-01-26 18:06:36 +00001376 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
Will Deacon48ec83b2015-05-27 17:25:59 +01001377 return NULL;
1378
1379 /*
1380 * Allocate the domain and initialise some of its data structures.
1381 * We can't really do anything meaningful until we've added a
1382 * master.
1383 */
1384 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1385 if (!smmu_domain)
1386 return NULL;
1387
Robin Murphy9adb9592016-01-26 18:06:36 +00001388 if (type == IOMMU_DOMAIN_DMA &&
1389 iommu_get_dma_cookie(&smmu_domain->domain)) {
1390 kfree(smmu_domain);
1391 return NULL;
1392 }
1393
Will Deacon48ec83b2015-05-27 17:25:59 +01001394 mutex_init(&smmu_domain->init_mutex);
1395 spin_lock_init(&smmu_domain->pgtbl_lock);
1396 return &smmu_domain->domain;
1397}
1398
1399static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1400{
1401 int idx, size = 1 << span;
1402
1403 do {
1404 idx = find_first_zero_bit(map, size);
1405 if (idx == size)
1406 return -ENOSPC;
1407 } while (test_and_set_bit(idx, map));
1408
1409 return idx;
1410}
1411
1412static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1413{
1414 clear_bit(idx, map);
1415}
1416
1417static void arm_smmu_domain_free(struct iommu_domain *domain)
1418{
1419 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1420 struct arm_smmu_device *smmu = smmu_domain->smmu;
1421
Robin Murphy9adb9592016-01-26 18:06:36 +00001422 iommu_put_dma_cookie(domain);
Markus Elfringa6e08fb2015-06-29 17:47:43 +01001423 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
Will Deacon48ec83b2015-05-27 17:25:59 +01001424
1425 /* Free the CD and ASID, if we allocated them */
1426 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1427 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1428
1429 if (cfg->cdptr) {
Will Deacon04fa26c2015-10-30 18:12:41 +00001430 dmam_free_coherent(smmu_domain->smmu->dev,
1431 CTXDESC_CD_DWORDS << 3,
1432 cfg->cdptr,
1433 cfg->cdptr_dma);
Will Deacon48ec83b2015-05-27 17:25:59 +01001434
1435 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1436 }
1437 } else {
1438 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1439 if (cfg->vmid)
1440 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1441 }
1442
1443 kfree(smmu_domain);
1444}
1445
1446static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1447 struct io_pgtable_cfg *pgtbl_cfg)
1448{
1449 int ret;
Will Deaconc0733a22015-10-13 17:51:14 +01001450 int asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001451 struct arm_smmu_device *smmu = smmu_domain->smmu;
1452 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1453
1454 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001455 if (asid < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001456 return asid;
1457
Will Deacon04fa26c2015-10-30 18:12:41 +00001458 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1459 &cfg->cdptr_dma,
1460 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001461 if (!cfg->cdptr) {
1462 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
Will Deaconc0733a22015-10-13 17:51:14 +01001463 ret = -ENOMEM;
Will Deacon48ec83b2015-05-27 17:25:59 +01001464 goto out_free_asid;
1465 }
1466
Will Deaconc0733a22015-10-13 17:51:14 +01001467 cfg->cd.asid = (u16)asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001468 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1469 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1470 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1471 return 0;
1472
1473out_free_asid:
1474 arm_smmu_bitmap_free(smmu->asid_map, asid);
1475 return ret;
1476}
1477
1478static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1479 struct io_pgtable_cfg *pgtbl_cfg)
1480{
Will Deaconc0733a22015-10-13 17:51:14 +01001481 int vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001482 struct arm_smmu_device *smmu = smmu_domain->smmu;
1483 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1484
1485 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001486 if (vmid < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001487 return vmid;
1488
Will Deaconc0733a22015-10-13 17:51:14 +01001489 cfg->vmid = (u16)vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001490 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1491 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1492 return 0;
1493}
1494
Will Deacon48ec83b2015-05-27 17:25:59 +01001495static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1496{
1497 int ret;
1498 unsigned long ias, oas;
1499 enum io_pgtable_fmt fmt;
1500 struct io_pgtable_cfg pgtbl_cfg;
1501 struct io_pgtable_ops *pgtbl_ops;
1502 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1503 struct io_pgtable_cfg *);
1504 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1505 struct arm_smmu_device *smmu = smmu_domain->smmu;
1506
1507 /* Restrict the stage to what we can actually support */
1508 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1509 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1510 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1511 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1512
1513 switch (smmu_domain->stage) {
1514 case ARM_SMMU_DOMAIN_S1:
1515 ias = VA_BITS;
1516 oas = smmu->ias;
1517 fmt = ARM_64_LPAE_S1;
1518 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1519 break;
1520 case ARM_SMMU_DOMAIN_NESTED:
1521 case ARM_SMMU_DOMAIN_S2:
1522 ias = smmu->ias;
1523 oas = smmu->oas;
1524 fmt = ARM_64_LPAE_S2;
1525 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1526 break;
1527 default:
1528 return -EINVAL;
1529 }
1530
1531 pgtbl_cfg = (struct io_pgtable_cfg) {
Robin Murphyd5466352016-05-09 17:20:09 +01001532 .pgsize_bitmap = smmu->pgsize_bitmap,
Will Deacon48ec83b2015-05-27 17:25:59 +01001533 .ias = ias,
1534 .oas = oas,
1535 .tlb = &arm_smmu_gather_ops,
Robin Murphybdc6d972015-07-29 19:46:07 +01001536 .iommu_dev = smmu->dev,
Will Deacon48ec83b2015-05-27 17:25:59 +01001537 };
1538
1539 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1540 if (!pgtbl_ops)
1541 return -ENOMEM;
1542
Robin Murphyd5466352016-05-09 17:20:09 +01001543 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
Will Deacon48ec83b2015-05-27 17:25:59 +01001544 smmu_domain->pgtbl_ops = pgtbl_ops;
1545
1546 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001547 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001548 free_io_pgtable_ops(pgtbl_ops);
1549
1550 return ret;
1551}
1552
1553static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1554{
1555 struct iommu_group *group;
1556 struct arm_smmu_group *smmu_group;
1557
1558 group = iommu_group_get(dev);
1559 if (!group)
1560 return NULL;
1561
1562 smmu_group = iommu_group_get_iommudata(group);
1563 iommu_group_put(group);
1564 return smmu_group;
1565}
1566
1567static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1568{
1569 __le64 *step;
1570 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1571
1572 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1573 struct arm_smmu_strtab_l1_desc *l1_desc;
1574 int idx;
1575
1576 /* Two-level walk */
1577 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1578 l1_desc = &cfg->l1_desc[idx];
1579 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1580 step = &l1_desc->l2ptr[idx];
1581 } else {
1582 /* Simple linear lookup */
1583 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1584 }
1585
1586 return step;
1587}
1588
1589static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1590{
1591 int i;
1592 struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1593 struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1594 struct arm_smmu_device *smmu = smmu_group->smmu;
1595
1596 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1597 ste->s1_cfg = &smmu_domain->s1_cfg;
1598 ste->s2_cfg = NULL;
1599 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1600 } else {
1601 ste->s1_cfg = NULL;
1602 ste->s2_cfg = &smmu_domain->s2_cfg;
1603 }
1604
1605 for (i = 0; i < smmu_group->num_sids; ++i) {
1606 u32 sid = smmu_group->sids[i];
1607 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1608
1609 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1610 }
1611
1612 return 0;
1613}
1614
Will Deaconbc7f2ce2016-02-17 17:41:57 +00001615static void arm_smmu_detach_dev(struct device *dev)
1616{
1617 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1618
1619 smmu_group->ste.bypass = true;
Arnd Bergmann287980e2016-05-27 23:23:25 +02001620 if (arm_smmu_install_ste_for_group(smmu_group) < 0)
Will Deaconbc7f2ce2016-02-17 17:41:57 +00001621 dev_warn(dev, "failed to install bypass STE\n");
1622
1623 smmu_group->domain = NULL;
1624}
1625
Will Deacon48ec83b2015-05-27 17:25:59 +01001626static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1627{
1628 int ret = 0;
1629 struct arm_smmu_device *smmu;
1630 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1631 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1632
1633 if (!smmu_group)
1634 return -ENOENT;
1635
1636 /* Already attached to a different domain? */
1637 if (smmu_group->domain && smmu_group->domain != smmu_domain)
Will Deaconbc7f2ce2016-02-17 17:41:57 +00001638 arm_smmu_detach_dev(dev);
Will Deacon48ec83b2015-05-27 17:25:59 +01001639
1640 smmu = smmu_group->smmu;
1641 mutex_lock(&smmu_domain->init_mutex);
1642
1643 if (!smmu_domain->smmu) {
1644 smmu_domain->smmu = smmu;
1645 ret = arm_smmu_domain_finalise(domain);
1646 if (ret) {
1647 smmu_domain->smmu = NULL;
1648 goto out_unlock;
1649 }
1650 } else if (smmu_domain->smmu != smmu) {
1651 dev_err(dev,
1652 "cannot attach to SMMU %s (upstream of %s)\n",
1653 dev_name(smmu_domain->smmu->dev),
1654 dev_name(smmu->dev));
1655 ret = -ENXIO;
1656 goto out_unlock;
1657 }
1658
1659 /* Group already attached to this domain? */
1660 if (smmu_group->domain)
1661 goto out_unlock;
1662
1663 smmu_group->domain = smmu_domain;
Will Deaconcbf82772016-02-18 12:05:57 +00001664
1665 /*
1666 * FIXME: This should always be "false" once we have IOMMU-backed
1667 * DMA ops for all devices behind the SMMU.
1668 */
1669 smmu_group->ste.bypass = domain->type == IOMMU_DOMAIN_DMA;
Will Deacon48ec83b2015-05-27 17:25:59 +01001670
1671 ret = arm_smmu_install_ste_for_group(smmu_group);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001672 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001673 smmu_group->domain = NULL;
1674
1675out_unlock:
1676 mutex_unlock(&smmu_domain->init_mutex);
1677 return ret;
1678}
1679
Will Deacon48ec83b2015-05-27 17:25:59 +01001680static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1681 phys_addr_t paddr, size_t size, int prot)
1682{
1683 int ret;
1684 unsigned long flags;
1685 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1686 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1687
1688 if (!ops)
1689 return -ENODEV;
1690
1691 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1692 ret = ops->map(ops, iova, paddr, size, prot);
1693 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1694 return ret;
1695}
1696
1697static size_t
1698arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1699{
1700 size_t ret;
1701 unsigned long flags;
1702 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1703 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1704
1705 if (!ops)
1706 return 0;
1707
1708 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1709 ret = ops->unmap(ops, iova, size);
1710 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1711 return ret;
1712}
1713
1714static phys_addr_t
1715arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1716{
1717 phys_addr_t ret;
1718 unsigned long flags;
1719 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1720 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1721
1722 if (!ops)
1723 return 0;
1724
1725 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1726 ret = ops->iova_to_phys(ops, iova);
1727 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1728
1729 return ret;
1730}
1731
1732static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1733{
1734 *(u32 *)sidp = alias;
1735 return 0; /* Continue walking */
1736}
1737
1738static void __arm_smmu_release_pci_iommudata(void *data)
1739{
1740 kfree(data);
1741}
1742
1743static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1744{
1745 struct device_node *of_node;
Will Deacon941a8022015-08-11 16:25:10 +01001746 struct platform_device *smmu_pdev;
1747 struct arm_smmu_device *smmu = NULL;
Will Deacon48ec83b2015-05-27 17:25:59 +01001748 struct pci_bus *bus = pdev->bus;
1749
1750 /* Walk up to the root bus */
1751 while (!pci_is_root_bus(bus))
1752 bus = bus->parent;
1753
1754 /* Follow the "iommus" phandle from the host controller */
1755 of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1756 if (!of_node)
1757 return NULL;
1758
1759 /* See if we can find an SMMU corresponding to the phandle */
Will Deacon941a8022015-08-11 16:25:10 +01001760 smmu_pdev = of_find_device_by_node(of_node);
1761 if (smmu_pdev)
1762 smmu = platform_get_drvdata(smmu_pdev);
1763
Will Deacon48ec83b2015-05-27 17:25:59 +01001764 of_node_put(of_node);
1765 return smmu;
1766}
1767
1768static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1769{
1770 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1771
1772 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1773 limit *= 1UL << STRTAB_SPLIT;
1774
1775 return sid < limit;
1776}
1777
1778static int arm_smmu_add_device(struct device *dev)
1779{
1780 int i, ret;
1781 u32 sid, *sids;
1782 struct pci_dev *pdev;
1783 struct iommu_group *group;
1784 struct arm_smmu_group *smmu_group;
1785 struct arm_smmu_device *smmu;
1786
1787 /* We only support PCI, for now */
1788 if (!dev_is_pci(dev))
1789 return -ENODEV;
1790
1791 pdev = to_pci_dev(dev);
1792 group = iommu_group_get_for_dev(dev);
1793 if (IS_ERR(group))
1794 return PTR_ERR(group);
1795
1796 smmu_group = iommu_group_get_iommudata(group);
1797 if (!smmu_group) {
1798 smmu = arm_smmu_get_for_pci_dev(pdev);
1799 if (!smmu) {
1800 ret = -ENOENT;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001801 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001802 }
1803
1804 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1805 if (!smmu_group) {
1806 ret = -ENOMEM;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001807 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001808 }
1809
1810 smmu_group->ste.valid = true;
1811 smmu_group->smmu = smmu;
1812 iommu_group_set_iommudata(group, smmu_group,
1813 __arm_smmu_release_pci_iommudata);
1814 } else {
1815 smmu = smmu_group->smmu;
1816 }
1817
1818 /* Assume SID == RID until firmware tells us otherwise */
1819 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1820 for (i = 0; i < smmu_group->num_sids; ++i) {
1821 /* If we already know about this SID, then we're done */
1822 if (smmu_group->sids[i] == sid)
Peng Fan9a4a9d82015-11-20 16:56:18 +08001823 goto out_put_group;
Will Deacon48ec83b2015-05-27 17:25:59 +01001824 }
1825
1826 /* Check the SID is in range of the SMMU and our stream table */
1827 if (!arm_smmu_sid_in_range(smmu, sid)) {
1828 ret = -ERANGE;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001829 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001830 }
1831
1832 /* Ensure l2 strtab is initialised */
1833 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1834 ret = arm_smmu_init_l2_strtab(smmu, sid);
1835 if (ret)
Peng Fan9a4a9d82015-11-20 16:56:18 +08001836 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001837 }
1838
1839 /* Resize the SID array for the group */
1840 smmu_group->num_sids++;
1841 sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1842 GFP_KERNEL);
1843 if (!sids) {
1844 smmu_group->num_sids--;
1845 ret = -ENOMEM;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001846 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001847 }
1848
1849 /* Add the new SID */
1850 sids[smmu_group->num_sids - 1] = sid;
1851 smmu_group->sids = sids;
Will Deacon48ec83b2015-05-27 17:25:59 +01001852
1853out_put_group:
1854 iommu_group_put(group);
Peng Fan9a4a9d82015-11-20 16:56:18 +08001855 return 0;
1856
1857out_remove_dev:
1858 iommu_group_remove_device(dev);
1859 iommu_group_put(group);
Will Deacon48ec83b2015-05-27 17:25:59 +01001860 return ret;
1861}
1862
1863static void arm_smmu_remove_device(struct device *dev)
1864{
1865 iommu_group_remove_device(dev);
1866}
1867
1868static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1869 enum iommu_attr attr, void *data)
1870{
1871 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1872
1873 switch (attr) {
1874 case DOMAIN_ATTR_NESTING:
1875 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1876 return 0;
1877 default:
1878 return -ENODEV;
1879 }
1880}
1881
1882static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1883 enum iommu_attr attr, void *data)
1884{
1885 int ret = 0;
1886 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1887
1888 mutex_lock(&smmu_domain->init_mutex);
1889
1890 switch (attr) {
1891 case DOMAIN_ATTR_NESTING:
1892 if (smmu_domain->smmu) {
1893 ret = -EPERM;
1894 goto out_unlock;
1895 }
1896
1897 if (*(int *)data)
1898 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1899 else
1900 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1901
1902 break;
1903 default:
1904 ret = -ENODEV;
1905 }
1906
1907out_unlock:
1908 mutex_unlock(&smmu_domain->init_mutex);
1909 return ret;
1910}
1911
1912static struct iommu_ops arm_smmu_ops = {
1913 .capable = arm_smmu_capable,
1914 .domain_alloc = arm_smmu_domain_alloc,
1915 .domain_free = arm_smmu_domain_free,
1916 .attach_dev = arm_smmu_attach_dev,
Will Deacon48ec83b2015-05-27 17:25:59 +01001917 .map = arm_smmu_map,
1918 .unmap = arm_smmu_unmap,
Jean-Philippe Brucker9aeb26c2016-06-03 11:50:30 +01001919 .map_sg = default_iommu_map_sg,
Will Deacon48ec83b2015-05-27 17:25:59 +01001920 .iova_to_phys = arm_smmu_iova_to_phys,
1921 .add_device = arm_smmu_add_device,
1922 .remove_device = arm_smmu_remove_device,
Joerg Roedelaf659932015-10-21 23:51:41 +02001923 .device_group = pci_device_group,
Will Deacon48ec83b2015-05-27 17:25:59 +01001924 .domain_get_attr = arm_smmu_domain_get_attr,
1925 .domain_set_attr = arm_smmu_domain_set_attr,
1926 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1927};
1928
1929/* Probing and initialisation functions */
1930static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1931 struct arm_smmu_queue *q,
1932 unsigned long prod_off,
1933 unsigned long cons_off,
1934 size_t dwords)
1935{
1936 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1937
Will Deacon04fa26c2015-10-30 18:12:41 +00001938 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
Will Deacon48ec83b2015-05-27 17:25:59 +01001939 if (!q->base) {
1940 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1941 qsz);
1942 return -ENOMEM;
1943 }
1944
1945 q->prod_reg = smmu->base + prod_off;
1946 q->cons_reg = smmu->base + cons_off;
1947 q->ent_dwords = dwords;
1948
1949 q->q_base = Q_BASE_RWA;
1950 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1951 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1952 << Q_BASE_LOG2SIZE_SHIFT;
1953
1954 q->prod = q->cons = 0;
1955 return 0;
1956}
1957
Will Deacon48ec83b2015-05-27 17:25:59 +01001958static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1959{
1960 int ret;
1961
1962 /* cmdq */
1963 spin_lock_init(&smmu->cmdq.lock);
1964 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1965 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1966 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00001967 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01001968
1969 /* evtq */
1970 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1971 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1972 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00001973 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01001974
1975 /* priq */
1976 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1977 return 0;
1978
Will Deacon04fa26c2015-10-30 18:12:41 +00001979 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1980 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
Will Deacon48ec83b2015-05-27 17:25:59 +01001981}
1982
1983static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1984{
1985 unsigned int i;
1986 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1987 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1988 void *strtab = smmu->strtab_cfg.strtab;
1989
1990 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1991 if (!cfg->l1_desc) {
1992 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1993 return -ENOMEM;
1994 }
1995
1996 for (i = 0; i < cfg->num_l1_ents; ++i) {
1997 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1998 strtab += STRTAB_L1_DESC_DWORDS << 3;
1999 }
2000
2001 return 0;
2002}
2003
2004static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2005{
2006 void *strtab;
2007 u64 reg;
Will Deacond2e88e72015-06-30 10:02:28 +01002008 u32 size, l1size;
Will Deacon48ec83b2015-05-27 17:25:59 +01002009 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2010
Will Deacon28c8b402015-07-16 17:50:12 +01002011 /*
2012 * If we can resolve everything with a single L2 table, then we
2013 * just need a single L1 descriptor. Otherwise, calculate the L1
2014 * size, capped to the SIDSIZE.
2015 */
2016 if (smmu->sid_bits < STRTAB_SPLIT) {
2017 size = 0;
2018 } else {
2019 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2020 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2021 }
Will Deacond2e88e72015-06-30 10:02:28 +01002022 cfg->num_l1_ents = 1 << size;
2023
2024 size += STRTAB_SPLIT;
2025 if (size < smmu->sid_bits)
Will Deacon48ec83b2015-05-27 17:25:59 +01002026 dev_warn(smmu->dev,
2027 "2-level strtab only covers %u/%u bits of SID\n",
Will Deacond2e88e72015-06-30 10:02:28 +01002028 size, smmu->sid_bits);
Will Deacon48ec83b2015-05-27 17:25:59 +01002029
Will Deacond2e88e72015-06-30 10:02:28 +01002030 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002031 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2032 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002033 if (!strtab) {
2034 dev_err(smmu->dev,
2035 "failed to allocate l1 stream table (%u bytes)\n",
2036 size);
2037 return -ENOMEM;
2038 }
2039 cfg->strtab = strtab;
2040
2041 /* Configure strtab_base_cfg for 2 levels */
2042 reg = STRTAB_BASE_CFG_FMT_2LVL;
2043 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2044 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2045 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2046 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2047 cfg->strtab_base_cfg = reg;
2048
Will Deacon04fa26c2015-10-30 18:12:41 +00002049 return arm_smmu_init_l1_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002050}
2051
2052static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2053{
2054 void *strtab;
2055 u64 reg;
2056 u32 size;
2057 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2058
2059 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002060 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2061 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002062 if (!strtab) {
2063 dev_err(smmu->dev,
2064 "failed to allocate linear stream table (%u bytes)\n",
2065 size);
2066 return -ENOMEM;
2067 }
2068 cfg->strtab = strtab;
2069 cfg->num_l1_ents = 1 << smmu->sid_bits;
2070
2071 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2072 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2073 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2074 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2075 cfg->strtab_base_cfg = reg;
2076
2077 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2078 return 0;
2079}
2080
2081static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2082{
2083 u64 reg;
2084 int ret;
2085
2086 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2087 ret = arm_smmu_init_strtab_2lvl(smmu);
2088 else
2089 ret = arm_smmu_init_strtab_linear(smmu);
2090
2091 if (ret)
2092 return ret;
2093
2094 /* Set the strtab base address */
2095 reg = smmu->strtab_cfg.strtab_dma &
2096 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2097 reg |= STRTAB_BASE_RA;
2098 smmu->strtab_cfg.strtab_base = reg;
2099
2100 /* Allocate the first VMID for stage-2 bypass STEs */
2101 set_bit(0, smmu->vmid_map);
2102 return 0;
2103}
2104
Will Deacon48ec83b2015-05-27 17:25:59 +01002105static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2106{
2107 int ret;
2108
2109 ret = arm_smmu_init_queues(smmu);
2110 if (ret)
2111 return ret;
2112
Will Deacon04fa26c2015-10-30 18:12:41 +00002113 return arm_smmu_init_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002114}
2115
2116static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2117 unsigned int reg_off, unsigned int ack_off)
2118{
2119 u32 reg;
2120
2121 writel_relaxed(val, smmu->base + reg_off);
2122 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2123 1, ARM_SMMU_POLL_TIMEOUT_US);
2124}
2125
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002126static void arm_smmu_free_msis(void *data)
2127{
2128 struct device *dev = data;
2129 platform_msi_domain_free_irqs(dev);
2130}
2131
2132static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2133{
2134 phys_addr_t doorbell;
2135 struct device *dev = msi_desc_to_dev(desc);
2136 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2137 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2138
2139 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2140 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2141
2142 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2143 writel_relaxed(msg->data, smmu->base + cfg[1]);
2144 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2145}
2146
2147static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2148{
2149 struct msi_desc *desc;
2150 int ret, nvec = ARM_SMMU_MAX_MSIS;
2151 struct device *dev = smmu->dev;
2152
2153 /* Clear the MSI address regs */
2154 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2155 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2156
2157 if (smmu->features & ARM_SMMU_FEAT_PRI)
2158 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2159 else
2160 nvec--;
2161
2162 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2163 return;
2164
2165 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2166 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2167 if (ret) {
2168 dev_warn(dev, "failed to allocate MSIs\n");
2169 return;
2170 }
2171
2172 for_each_msi_entry(desc, dev) {
2173 switch (desc->platform.msi_index) {
2174 case EVTQ_MSI_INDEX:
2175 smmu->evtq.q.irq = desc->irq;
2176 break;
2177 case GERROR_MSI_INDEX:
2178 smmu->gerr_irq = desc->irq;
2179 break;
2180 case PRIQ_MSI_INDEX:
2181 smmu->priq.q.irq = desc->irq;
2182 break;
2183 default: /* Unknown */
2184 continue;
2185 }
2186 }
2187
2188 /* Add callback to free MSIs on teardown */
2189 devm_add_action(dev, arm_smmu_free_msis, dev);
2190}
2191
Will Deacon48ec83b2015-05-27 17:25:59 +01002192static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2193{
2194 int ret, irq;
Marc Zyngierccd63852015-07-15 11:55:18 +01002195 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002196
2197 /* Disable IRQs first */
2198 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2199 ARM_SMMU_IRQ_CTRLACK);
2200 if (ret) {
2201 dev_err(smmu->dev, "failed to disable irqs\n");
2202 return ret;
2203 }
2204
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002205 arm_smmu_setup_msis(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002206
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002207 /* Request interrupt lines */
Will Deacon48ec83b2015-05-27 17:25:59 +01002208 irq = smmu->evtq.q.irq;
2209 if (irq) {
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01002210 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
Will Deacon48ec83b2015-05-27 17:25:59 +01002211 arm_smmu_evtq_thread,
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01002212 IRQF_ONESHOT,
2213 "arm-smmu-v3-evtq", smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002214 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002215 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2216 }
2217
2218 irq = smmu->cmdq.q.irq;
2219 if (irq) {
2220 ret = devm_request_irq(smmu->dev, irq,
2221 arm_smmu_cmdq_sync_handler, 0,
2222 "arm-smmu-v3-cmdq-sync", smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002223 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002224 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2225 }
2226
2227 irq = smmu->gerr_irq;
2228 if (irq) {
2229 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2230 0, "arm-smmu-v3-gerror", smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002231 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002232 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2233 }
2234
2235 if (smmu->features & ARM_SMMU_FEAT_PRI) {
Will Deacon48ec83b2015-05-27 17:25:59 +01002236 irq = smmu->priq.q.irq;
2237 if (irq) {
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01002238 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
Will Deacon48ec83b2015-05-27 17:25:59 +01002239 arm_smmu_priq_thread,
Jean-Philippe Bruckerb4163fb2016-08-22 14:42:24 +01002240 IRQF_ONESHOT,
2241 "arm-smmu-v3-priq",
Will Deacon48ec83b2015-05-27 17:25:59 +01002242 smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002243 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002244 dev_warn(smmu->dev,
2245 "failed to enable priq irq\n");
Marc Zyngierccd63852015-07-15 11:55:18 +01002246 else
2247 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002248 }
2249 }
2250
2251 /* Enable interrupt generation on the SMMU */
Marc Zyngierccd63852015-07-15 11:55:18 +01002252 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
Will Deacon48ec83b2015-05-27 17:25:59 +01002253 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2254 if (ret)
2255 dev_warn(smmu->dev, "failed to enable irqs\n");
2256
2257 return 0;
2258}
2259
2260static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2261{
2262 int ret;
2263
2264 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2265 if (ret)
2266 dev_err(smmu->dev, "failed to clear cr0\n");
2267
2268 return ret;
2269}
2270
2271static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2272{
2273 int ret;
2274 u32 reg, enables;
2275 struct arm_smmu_cmdq_ent cmd;
2276
2277 /* Clear CR0 and sync (disables SMMU and queue processing) */
2278 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2279 if (reg & CR0_SMMUEN)
2280 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2281
2282 ret = arm_smmu_device_disable(smmu);
2283 if (ret)
2284 return ret;
2285
2286 /* CR1 (table and queue memory attributes) */
2287 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2288 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2289 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2290 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2291 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2292 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2293 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2294
2295 /* CR2 (random crap) */
2296 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2297 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2298
2299 /* Stream table */
2300 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2301 smmu->base + ARM_SMMU_STRTAB_BASE);
2302 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2303 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2304
2305 /* Command queue */
2306 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2307 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2308 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2309
2310 enables = CR0_CMDQEN;
2311 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2312 ARM_SMMU_CR0ACK);
2313 if (ret) {
2314 dev_err(smmu->dev, "failed to enable command queue\n");
2315 return ret;
2316 }
2317
2318 /* Invalidate any cached configuration */
2319 cmd.opcode = CMDQ_OP_CFGI_ALL;
2320 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2321 cmd.opcode = CMDQ_OP_CMD_SYNC;
2322 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2323
2324 /* Invalidate any stale TLB entries */
2325 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2326 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2327 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2328 }
2329
2330 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2331 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2332 cmd.opcode = CMDQ_OP_CMD_SYNC;
2333 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2334
2335 /* Event queue */
2336 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2337 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2338 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2339
2340 enables |= CR0_EVTQEN;
2341 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2342 ARM_SMMU_CR0ACK);
2343 if (ret) {
2344 dev_err(smmu->dev, "failed to enable event queue\n");
2345 return ret;
2346 }
2347
2348 /* PRI queue */
2349 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2350 writeq_relaxed(smmu->priq.q.q_base,
2351 smmu->base + ARM_SMMU_PRIQ_BASE);
2352 writel_relaxed(smmu->priq.q.prod,
2353 smmu->base + ARM_SMMU_PRIQ_PROD);
2354 writel_relaxed(smmu->priq.q.cons,
2355 smmu->base + ARM_SMMU_PRIQ_CONS);
2356
2357 enables |= CR0_PRIQEN;
2358 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2359 ARM_SMMU_CR0ACK);
2360 if (ret) {
2361 dev_err(smmu->dev, "failed to enable PRI queue\n");
2362 return ret;
2363 }
2364 }
2365
2366 ret = arm_smmu_setup_irqs(smmu);
2367 if (ret) {
2368 dev_err(smmu->dev, "failed to setup irqs\n");
2369 return ret;
2370 }
2371
2372 /* Enable the SMMU interface */
2373 enables |= CR0_SMMUEN;
2374 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2375 ARM_SMMU_CR0ACK);
2376 if (ret) {
2377 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2378 return ret;
2379 }
2380
2381 return 0;
2382}
2383
2384static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2385{
2386 u32 reg;
2387 bool coherent;
Will Deacon48ec83b2015-05-27 17:25:59 +01002388
2389 /* IDR0 */
2390 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2391
2392 /* 2-level structures */
2393 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2394 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2395
2396 if (reg & IDR0_CD2L)
2397 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2398
2399 /*
2400 * Translation table endianness.
2401 * We currently require the same endianness as the CPU, but this
2402 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2403 */
2404 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2405 case IDR0_TTENDIAN_MIXED:
2406 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2407 break;
2408#ifdef __BIG_ENDIAN
2409 case IDR0_TTENDIAN_BE:
2410 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2411 break;
2412#else
2413 case IDR0_TTENDIAN_LE:
2414 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2415 break;
2416#endif
2417 default:
2418 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2419 return -ENXIO;
2420 }
2421
2422 /* Boolean feature flags */
2423 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2424 smmu->features |= ARM_SMMU_FEAT_PRI;
2425
2426 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2427 smmu->features |= ARM_SMMU_FEAT_ATS;
2428
2429 if (reg & IDR0_SEV)
2430 smmu->features |= ARM_SMMU_FEAT_SEV;
2431
2432 if (reg & IDR0_MSI)
2433 smmu->features |= ARM_SMMU_FEAT_MSI;
2434
2435 if (reg & IDR0_HYP)
2436 smmu->features |= ARM_SMMU_FEAT_HYP;
2437
2438 /*
2439 * The dma-coherent property is used in preference to the ID
2440 * register, but warn on mismatch.
2441 */
2442 coherent = of_dma_is_coherent(smmu->dev->of_node);
2443 if (coherent)
2444 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2445
2446 if (!!(reg & IDR0_COHACC) != coherent)
2447 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2448 coherent ? "true" : "false");
2449
Prem Mallappa6380be02015-12-14 22:01:23 +05302450 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2451 case IDR0_STALL_MODEL_STALL:
2452 /* Fallthrough */
2453 case IDR0_STALL_MODEL_FORCE:
Will Deacon48ec83b2015-05-27 17:25:59 +01002454 smmu->features |= ARM_SMMU_FEAT_STALLS;
Prem Mallappa6380be02015-12-14 22:01:23 +05302455 }
Will Deacon48ec83b2015-05-27 17:25:59 +01002456
2457 if (reg & IDR0_S1P)
2458 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2459
2460 if (reg & IDR0_S2P)
2461 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2462
2463 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2464 dev_err(smmu->dev, "no translation support!\n");
2465 return -ENXIO;
2466 }
2467
2468 /* We only support the AArch64 table format at present */
Will Deaconf0c453d2015-08-20 12:12:32 +01002469 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2470 case IDR0_TTF_AARCH32_64:
2471 smmu->ias = 40;
2472 /* Fallthrough */
2473 case IDR0_TTF_AARCH64:
2474 break;
2475 default:
Will Deacon48ec83b2015-05-27 17:25:59 +01002476 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2477 return -ENXIO;
2478 }
2479
2480 /* ASID/VMID sizes */
2481 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2482 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2483
2484 /* IDR1 */
2485 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2486 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2487 dev_err(smmu->dev, "embedded implementation not supported\n");
2488 return -ENXIO;
2489 }
2490
2491 /* Queue sizes, capped at 4k */
2492 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2493 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2494 if (!smmu->cmdq.q.max_n_shift) {
2495 /* Odd alignment restrictions on the base, so ignore for now */
2496 dev_err(smmu->dev, "unit-length command queue not supported\n");
2497 return -ENXIO;
2498 }
2499
2500 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2501 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2502 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2503 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2504
2505 /* SID/SSID sizes */
2506 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2507 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2508
2509 /* IDR5 */
2510 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2511
2512 /* Maximum number of outstanding stalls */
2513 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2514 & IDR5_STALL_MAX_MASK;
2515
2516 /* Page sizes */
2517 if (reg & IDR5_GRAN64K)
Robin Murphyd5466352016-05-09 17:20:09 +01002518 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
Will Deacon48ec83b2015-05-27 17:25:59 +01002519 if (reg & IDR5_GRAN16K)
Robin Murphyd5466352016-05-09 17:20:09 +01002520 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
Will Deacon48ec83b2015-05-27 17:25:59 +01002521 if (reg & IDR5_GRAN4K)
Robin Murphyd5466352016-05-09 17:20:09 +01002522 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
Will Deacon48ec83b2015-05-27 17:25:59 +01002523
Robin Murphyd5466352016-05-09 17:20:09 +01002524 if (arm_smmu_ops.pgsize_bitmap == -1UL)
2525 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2526 else
2527 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
Will Deacon48ec83b2015-05-27 17:25:59 +01002528
2529 /* Output address size */
2530 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2531 case IDR5_OAS_32_BIT:
2532 smmu->oas = 32;
2533 break;
2534 case IDR5_OAS_36_BIT:
2535 smmu->oas = 36;
2536 break;
2537 case IDR5_OAS_40_BIT:
2538 smmu->oas = 40;
2539 break;
2540 case IDR5_OAS_42_BIT:
2541 smmu->oas = 42;
2542 break;
2543 case IDR5_OAS_44_BIT:
2544 smmu->oas = 44;
2545 break;
Will Deacon85430962015-08-03 10:35:40 +01002546 default:
2547 dev_info(smmu->dev,
2548 "unknown output address size. Truncating to 48-bit\n");
2549 /* Fallthrough */
Will Deacon48ec83b2015-05-27 17:25:59 +01002550 case IDR5_OAS_48_BIT:
2551 smmu->oas = 48;
Will Deacon48ec83b2015-05-27 17:25:59 +01002552 }
2553
2554 /* Set the DMA mask for our table walker */
2555 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2556 dev_warn(smmu->dev,
2557 "failed to set DMA mask for table walker\n");
2558
Will Deaconf0c453d2015-08-20 12:12:32 +01002559 smmu->ias = max(smmu->ias, smmu->oas);
Will Deacon48ec83b2015-05-27 17:25:59 +01002560
2561 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2562 smmu->ias, smmu->oas, smmu->features);
2563 return 0;
2564}
2565
2566static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2567{
2568 int irq, ret;
2569 struct resource *res;
2570 struct arm_smmu_device *smmu;
2571 struct device *dev = &pdev->dev;
2572
2573 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2574 if (!smmu) {
2575 dev_err(dev, "failed to allocate arm_smmu_device\n");
2576 return -ENOMEM;
2577 }
2578 smmu->dev = dev;
2579
2580 /* Base address */
2581 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2582 if (resource_size(res) + 1 < SZ_128K) {
2583 dev_err(dev, "MMIO region too small (%pr)\n", res);
2584 return -EINVAL;
2585 }
2586
2587 smmu->base = devm_ioremap_resource(dev, res);
2588 if (IS_ERR(smmu->base))
2589 return PTR_ERR(smmu->base);
2590
2591 /* Interrupt lines */
2592 irq = platform_get_irq_byname(pdev, "eventq");
2593 if (irq > 0)
2594 smmu->evtq.q.irq = irq;
2595
2596 irq = platform_get_irq_byname(pdev, "priq");
2597 if (irq > 0)
2598 smmu->priq.q.irq = irq;
2599
2600 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2601 if (irq > 0)
2602 smmu->cmdq.q.irq = irq;
2603
2604 irq = platform_get_irq_byname(pdev, "gerror");
2605 if (irq > 0)
2606 smmu->gerr_irq = irq;
2607
Zhen Lei5e929462015-07-07 04:30:18 +01002608 parse_driver_options(smmu);
2609
Will Deacon48ec83b2015-05-27 17:25:59 +01002610 /* Probe the h/w */
2611 ret = arm_smmu_device_probe(smmu);
2612 if (ret)
2613 return ret;
2614
2615 /* Initialise in-memory data structures */
2616 ret = arm_smmu_init_structures(smmu);
2617 if (ret)
2618 return ret;
2619
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002620 /* Record our private device structure */
2621 platform_set_drvdata(pdev, smmu);
2622
Will Deacon48ec83b2015-05-27 17:25:59 +01002623 /* Reset the device */
Will Deacon04fa26c2015-10-30 18:12:41 +00002624 return arm_smmu_device_reset(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002625}
2626
2627static int arm_smmu_device_remove(struct platform_device *pdev)
2628{
Will Deacon941a8022015-08-11 16:25:10 +01002629 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
Will Deacon48ec83b2015-05-27 17:25:59 +01002630
2631 arm_smmu_device_disable(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002632 return 0;
2633}
2634
2635static struct of_device_id arm_smmu_of_match[] = {
2636 { .compatible = "arm,smmu-v3", },
2637 { },
2638};
2639MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2640
2641static struct platform_driver arm_smmu_driver = {
2642 .driver = {
2643 .name = "arm-smmu-v3",
2644 .of_match_table = of_match_ptr(arm_smmu_of_match),
2645 },
2646 .probe = arm_smmu_device_dt_probe,
2647 .remove = arm_smmu_device_remove,
2648};
2649
2650static int __init arm_smmu_init(void)
2651{
2652 struct device_node *np;
2653 int ret;
2654
2655 np = of_find_matching_node(NULL, arm_smmu_of_match);
2656 if (!np)
2657 return 0;
2658
2659 of_node_put(np);
2660
2661 ret = platform_driver_register(&arm_smmu_driver);
2662 if (ret)
2663 return ret;
2664
Wei Chen112c8982016-06-13 17:20:17 +08002665 pci_request_acs();
2666
Will Deacon48ec83b2015-05-27 17:25:59 +01002667 return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2668}
2669
2670static void __exit arm_smmu_exit(void)
2671{
2672 return platform_driver_unregister(&arm_smmu_driver);
2673}
2674
2675subsys_initcall(arm_smmu_init);
2676module_exit(arm_smmu_exit);
2677
2678MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2679MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2680MODULE_LICENSE("GPL v2");