blob: 488f763877d2c02d559ba6001852a098c201db11 [file] [log] [blame]
Will Deacon48ec83b2015-05-27 17:25:59 +01001/*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23#include <linux/delay.h>
24#include <linux/err.h>
25#include <linux/interrupt.h>
26#include <linux/iommu.h>
27#include <linux/iopoll.h>
28#include <linux/module.h>
Marc Zyngier166bdbd2015-10-13 18:32:30 +010029#include <linux/msi.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010030#include <linux/of.h>
31#include <linux/of_address.h>
Will Deacon941a8022015-08-11 16:25:10 +010032#include <linux/of_platform.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010033#include <linux/pci.h>
34#include <linux/platform_device.h>
35
36#include "io-pgtable.h"
37
38/* MMIO registers */
39#define ARM_SMMU_IDR0 0x0
40#define IDR0_ST_LVL_SHIFT 27
41#define IDR0_ST_LVL_MASK 0x3
42#define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
43#define IDR0_STALL_MODEL (3 << 24)
44#define IDR0_TTENDIAN_SHIFT 21
45#define IDR0_TTENDIAN_MASK 0x3
46#define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
47#define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
48#define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
49#define IDR0_CD2L (1 << 19)
50#define IDR0_VMID16 (1 << 18)
51#define IDR0_PRI (1 << 16)
52#define IDR0_SEV (1 << 14)
53#define IDR0_MSI (1 << 13)
54#define IDR0_ASID16 (1 << 12)
55#define IDR0_ATS (1 << 10)
56#define IDR0_HYP (1 << 9)
57#define IDR0_COHACC (1 << 4)
58#define IDR0_TTF_SHIFT 2
59#define IDR0_TTF_MASK 0x3
60#define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
Will Deaconf0c453d2015-08-20 12:12:32 +010061#define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +010062#define IDR0_S1P (1 << 1)
63#define IDR0_S2P (1 << 0)
64
65#define ARM_SMMU_IDR1 0x4
66#define IDR1_TABLES_PRESET (1 << 30)
67#define IDR1_QUEUES_PRESET (1 << 29)
68#define IDR1_REL (1 << 28)
69#define IDR1_CMDQ_SHIFT 21
70#define IDR1_CMDQ_MASK 0x1f
71#define IDR1_EVTQ_SHIFT 16
72#define IDR1_EVTQ_MASK 0x1f
73#define IDR1_PRIQ_SHIFT 11
74#define IDR1_PRIQ_MASK 0x1f
75#define IDR1_SSID_SHIFT 6
76#define IDR1_SSID_MASK 0x1f
77#define IDR1_SID_SHIFT 0
78#define IDR1_SID_MASK 0x3f
79
80#define ARM_SMMU_IDR5 0x14
81#define IDR5_STALL_MAX_SHIFT 16
82#define IDR5_STALL_MAX_MASK 0xffff
83#define IDR5_GRAN64K (1 << 6)
84#define IDR5_GRAN16K (1 << 5)
85#define IDR5_GRAN4K (1 << 4)
86#define IDR5_OAS_SHIFT 0
87#define IDR5_OAS_MASK 0x7
88#define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
89#define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
90#define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
91#define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
92#define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
93#define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
94
95#define ARM_SMMU_CR0 0x20
96#define CR0_CMDQEN (1 << 3)
97#define CR0_EVTQEN (1 << 2)
98#define CR0_PRIQEN (1 << 1)
99#define CR0_SMMUEN (1 << 0)
100
101#define ARM_SMMU_CR0ACK 0x24
102
103#define ARM_SMMU_CR1 0x28
104#define CR1_SH_NSH 0
105#define CR1_SH_OSH 2
106#define CR1_SH_ISH 3
107#define CR1_CACHE_NC 0
108#define CR1_CACHE_WB 1
109#define CR1_CACHE_WT 2
110#define CR1_TABLE_SH_SHIFT 10
111#define CR1_TABLE_OC_SHIFT 8
112#define CR1_TABLE_IC_SHIFT 6
113#define CR1_QUEUE_SH_SHIFT 4
114#define CR1_QUEUE_OC_SHIFT 2
115#define CR1_QUEUE_IC_SHIFT 0
116
117#define ARM_SMMU_CR2 0x2c
118#define CR2_PTM (1 << 2)
119#define CR2_RECINVSID (1 << 1)
120#define CR2_E2H (1 << 0)
121
122#define ARM_SMMU_IRQ_CTRL 0x50
123#define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
Marc Zyngierccd63852015-07-15 11:55:18 +0100124#define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
Will Deacon48ec83b2015-05-27 17:25:59 +0100125#define IRQ_CTRL_GERROR_IRQEN (1 << 0)
126
127#define ARM_SMMU_IRQ_CTRLACK 0x54
128
129#define ARM_SMMU_GERROR 0x60
130#define GERROR_SFM_ERR (1 << 8)
131#define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
132#define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
133#define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
134#define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
135#define GERROR_PRIQ_ABT_ERR (1 << 3)
136#define GERROR_EVTQ_ABT_ERR (1 << 2)
137#define GERROR_CMDQ_ERR (1 << 0)
138#define GERROR_ERR_MASK 0xfd
139
140#define ARM_SMMU_GERRORN 0x64
141
142#define ARM_SMMU_GERROR_IRQ_CFG0 0x68
143#define ARM_SMMU_GERROR_IRQ_CFG1 0x70
144#define ARM_SMMU_GERROR_IRQ_CFG2 0x74
145
146#define ARM_SMMU_STRTAB_BASE 0x80
147#define STRTAB_BASE_RA (1UL << 62)
148#define STRTAB_BASE_ADDR_SHIFT 6
149#define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
150
151#define ARM_SMMU_STRTAB_BASE_CFG 0x88
152#define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
153#define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
154#define STRTAB_BASE_CFG_SPLIT_SHIFT 6
155#define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
156#define STRTAB_BASE_CFG_FMT_SHIFT 16
157#define STRTAB_BASE_CFG_FMT_MASK 0x3
158#define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
159#define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
160
161#define ARM_SMMU_CMDQ_BASE 0x90
162#define ARM_SMMU_CMDQ_PROD 0x98
163#define ARM_SMMU_CMDQ_CONS 0x9c
164
165#define ARM_SMMU_EVTQ_BASE 0xa0
166#define ARM_SMMU_EVTQ_PROD 0x100a8
167#define ARM_SMMU_EVTQ_CONS 0x100ac
168#define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
169#define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
170#define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
171
172#define ARM_SMMU_PRIQ_BASE 0xc0
173#define ARM_SMMU_PRIQ_PROD 0x100c8
174#define ARM_SMMU_PRIQ_CONS 0x100cc
175#define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
176#define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
177#define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
178
179/* Common MSI config fields */
Will Deacon48ec83b2015-05-27 17:25:59 +0100180#define MSI_CFG0_ADDR_SHIFT 2
181#define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
Marc Zyngierec11d632015-07-15 11:55:19 +0100182#define MSI_CFG2_SH_SHIFT 4
183#define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
184#define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
185#define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
186#define MSI_CFG2_MEMATTR_SHIFT 0
187#define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +0100188
189#define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
190#define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
191#define Q_OVERFLOW_FLAG (1 << 31)
192#define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
193#define Q_ENT(q, p) ((q)->base + \
194 Q_IDX(q, p) * (q)->ent_dwords)
195
196#define Q_BASE_RWA (1UL << 62)
197#define Q_BASE_ADDR_SHIFT 5
198#define Q_BASE_ADDR_MASK 0xfffffffffffUL
199#define Q_BASE_LOG2SIZE_SHIFT 0
200#define Q_BASE_LOG2SIZE_MASK 0x1fUL
201
202/*
203 * Stream table.
204 *
205 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
Zhen Leie2f4c232015-07-07 04:30:17 +0100206 * 2lvl: 128k L1 entries,
207 * 256 lazy entries per table (each table covers a PCI bus)
Will Deacon48ec83b2015-05-27 17:25:59 +0100208 */
Zhen Leie2f4c232015-07-07 04:30:17 +0100209#define STRTAB_L1_SZ_SHIFT 20
Will Deacon48ec83b2015-05-27 17:25:59 +0100210#define STRTAB_SPLIT 8
211
212#define STRTAB_L1_DESC_DWORDS 1
213#define STRTAB_L1_DESC_SPAN_SHIFT 0
214#define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
215#define STRTAB_L1_DESC_L2PTR_SHIFT 6
216#define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
217
218#define STRTAB_STE_DWORDS 8
219#define STRTAB_STE_0_V (1UL << 0)
220#define STRTAB_STE_0_CFG_SHIFT 1
221#define STRTAB_STE_0_CFG_MASK 0x7UL
222#define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
223#define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
224#define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
225#define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
226
227#define STRTAB_STE_0_S1FMT_SHIFT 4
228#define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
229#define STRTAB_STE_0_S1CTXPTR_SHIFT 6
230#define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
231#define STRTAB_STE_0_S1CDMAX_SHIFT 59
232#define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
233
234#define STRTAB_STE_1_S1C_CACHE_NC 0UL
235#define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
236#define STRTAB_STE_1_S1C_CACHE_WT 2UL
237#define STRTAB_STE_1_S1C_CACHE_WB 3UL
238#define STRTAB_STE_1_S1C_SH_NSH 0UL
239#define STRTAB_STE_1_S1C_SH_OSH 2UL
240#define STRTAB_STE_1_S1C_SH_ISH 3UL
241#define STRTAB_STE_1_S1CIR_SHIFT 2
242#define STRTAB_STE_1_S1COR_SHIFT 4
243#define STRTAB_STE_1_S1CSH_SHIFT 6
244
245#define STRTAB_STE_1_S1STALLD (1UL << 27)
246
247#define STRTAB_STE_1_EATS_ABT 0UL
248#define STRTAB_STE_1_EATS_TRANS 1UL
249#define STRTAB_STE_1_EATS_S1CHK 2UL
250#define STRTAB_STE_1_EATS_SHIFT 28
251
252#define STRTAB_STE_1_STRW_NSEL1 0UL
253#define STRTAB_STE_1_STRW_EL2 2UL
254#define STRTAB_STE_1_STRW_SHIFT 30
255
Will Deacona0eacd82015-11-18 18:15:51 +0000256#define STRTAB_STE_1_SHCFG_INCOMING 1UL
257#define STRTAB_STE_1_SHCFG_SHIFT 44
258
Will Deacon48ec83b2015-05-27 17:25:59 +0100259#define STRTAB_STE_2_S2VMID_SHIFT 0
260#define STRTAB_STE_2_S2VMID_MASK 0xffffUL
261#define STRTAB_STE_2_VTCR_SHIFT 32
262#define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
263#define STRTAB_STE_2_S2AA64 (1UL << 51)
264#define STRTAB_STE_2_S2ENDI (1UL << 52)
265#define STRTAB_STE_2_S2PTW (1UL << 54)
266#define STRTAB_STE_2_S2R (1UL << 58)
267
268#define STRTAB_STE_3_S2TTB_SHIFT 4
269#define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
270
271/* Context descriptor (stage-1 only) */
272#define CTXDESC_CD_DWORDS 8
273#define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
274#define ARM64_TCR_T0SZ_SHIFT 0
275#define ARM64_TCR_T0SZ_MASK 0x1fUL
276#define CTXDESC_CD_0_TCR_TG0_SHIFT 6
277#define ARM64_TCR_TG0_SHIFT 14
278#define ARM64_TCR_TG0_MASK 0x3UL
279#define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
Zhen Lei5d58c622015-06-26 09:32:59 +0100280#define ARM64_TCR_IRGN0_SHIFT 8
Will Deacon48ec83b2015-05-27 17:25:59 +0100281#define ARM64_TCR_IRGN0_MASK 0x3UL
282#define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
Zhen Lei5d58c622015-06-26 09:32:59 +0100283#define ARM64_TCR_ORGN0_SHIFT 10
Will Deacon48ec83b2015-05-27 17:25:59 +0100284#define ARM64_TCR_ORGN0_MASK 0x3UL
285#define CTXDESC_CD_0_TCR_SH0_SHIFT 12
286#define ARM64_TCR_SH0_SHIFT 12
287#define ARM64_TCR_SH0_MASK 0x3UL
288#define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
289#define ARM64_TCR_EPD0_SHIFT 7
290#define ARM64_TCR_EPD0_MASK 0x1UL
291#define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
292#define ARM64_TCR_EPD1_SHIFT 23
293#define ARM64_TCR_EPD1_MASK 0x1UL
294
295#define CTXDESC_CD_0_ENDI (1UL << 15)
296#define CTXDESC_CD_0_V (1UL << 31)
297
298#define CTXDESC_CD_0_TCR_IPS_SHIFT 32
299#define ARM64_TCR_IPS_SHIFT 32
300#define ARM64_TCR_IPS_MASK 0x7UL
301#define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
302#define ARM64_TCR_TBI0_SHIFT 37
303#define ARM64_TCR_TBI0_MASK 0x1UL
304
305#define CTXDESC_CD_0_AA64 (1UL << 41)
306#define CTXDESC_CD_0_R (1UL << 45)
307#define CTXDESC_CD_0_A (1UL << 46)
308#define CTXDESC_CD_0_ASET_SHIFT 47
309#define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
310#define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
311#define CTXDESC_CD_0_ASID_SHIFT 48
312#define CTXDESC_CD_0_ASID_MASK 0xffffUL
313
314#define CTXDESC_CD_1_TTB0_SHIFT 4
315#define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
316
317#define CTXDESC_CD_3_MAIR_SHIFT 0
318
319/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
320#define ARM_SMMU_TCR2CD(tcr, fld) \
321 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
322 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
323
324/* Command queue */
325#define CMDQ_ENT_DWORDS 2
326#define CMDQ_MAX_SZ_SHIFT 8
327
328#define CMDQ_ERR_SHIFT 24
329#define CMDQ_ERR_MASK 0x7f
330#define CMDQ_ERR_CERROR_NONE_IDX 0
331#define CMDQ_ERR_CERROR_ILL_IDX 1
332#define CMDQ_ERR_CERROR_ABT_IDX 2
333
334#define CMDQ_0_OP_SHIFT 0
335#define CMDQ_0_OP_MASK 0xffUL
336#define CMDQ_0_SSV (1UL << 11)
337
338#define CMDQ_PREFETCH_0_SID_SHIFT 32
339#define CMDQ_PREFETCH_1_SIZE_SHIFT 0
340#define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
341
342#define CMDQ_CFGI_0_SID_SHIFT 32
343#define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
344#define CMDQ_CFGI_1_LEAF (1UL << 0)
345#define CMDQ_CFGI_1_RANGE_SHIFT 0
346#define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
347
348#define CMDQ_TLBI_0_VMID_SHIFT 32
349#define CMDQ_TLBI_0_ASID_SHIFT 48
350#define CMDQ_TLBI_1_LEAF (1UL << 0)
Will Deacon1c27df12015-09-18 16:12:56 +0100351#define CMDQ_TLBI_1_VA_MASK ~0xfffUL
352#define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
Will Deacon48ec83b2015-05-27 17:25:59 +0100353
354#define CMDQ_PRI_0_SSID_SHIFT 12
355#define CMDQ_PRI_0_SSID_MASK 0xfffffUL
356#define CMDQ_PRI_0_SID_SHIFT 32
357#define CMDQ_PRI_0_SID_MASK 0xffffffffUL
358#define CMDQ_PRI_1_GRPID_SHIFT 0
359#define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
360#define CMDQ_PRI_1_RESP_SHIFT 12
361#define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
362#define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
363#define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
364
365#define CMDQ_SYNC_0_CS_SHIFT 12
366#define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
367#define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
368
369/* Event queue */
370#define EVTQ_ENT_DWORDS 4
371#define EVTQ_MAX_SZ_SHIFT 7
372
373#define EVTQ_0_ID_SHIFT 0
374#define EVTQ_0_ID_MASK 0xffUL
375
376/* PRI queue */
377#define PRIQ_ENT_DWORDS 2
378#define PRIQ_MAX_SZ_SHIFT 8
379
380#define PRIQ_0_SID_SHIFT 0
381#define PRIQ_0_SID_MASK 0xffffffffUL
382#define PRIQ_0_SSID_SHIFT 32
383#define PRIQ_0_SSID_MASK 0xfffffUL
Will Deacon48ec83b2015-05-27 17:25:59 +0100384#define PRIQ_0_PERM_PRIV (1UL << 58)
385#define PRIQ_0_PERM_EXEC (1UL << 59)
386#define PRIQ_0_PERM_READ (1UL << 60)
387#define PRIQ_0_PERM_WRITE (1UL << 61)
388#define PRIQ_0_PRG_LAST (1UL << 62)
389#define PRIQ_0_SSID_V (1UL << 63)
390
391#define PRIQ_1_PRG_IDX_SHIFT 0
392#define PRIQ_1_PRG_IDX_MASK 0x1ffUL
393#define PRIQ_1_ADDR_SHIFT 12
394#define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
395
396/* High-level queue structures */
397#define ARM_SMMU_POLL_TIMEOUT_US 100
398
399static bool disable_bypass;
400module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
401MODULE_PARM_DESC(disable_bypass,
402 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
403
404enum pri_resp {
405 PRI_RESP_DENY,
406 PRI_RESP_FAIL,
407 PRI_RESP_SUCC,
408};
409
Marc Zyngier166bdbd2015-10-13 18:32:30 +0100410enum arm_smmu_msi_index {
411 EVTQ_MSI_INDEX,
412 GERROR_MSI_INDEX,
413 PRIQ_MSI_INDEX,
414 ARM_SMMU_MAX_MSIS,
415};
416
417static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
418 [EVTQ_MSI_INDEX] = {
419 ARM_SMMU_EVTQ_IRQ_CFG0,
420 ARM_SMMU_EVTQ_IRQ_CFG1,
421 ARM_SMMU_EVTQ_IRQ_CFG2,
422 },
423 [GERROR_MSI_INDEX] = {
424 ARM_SMMU_GERROR_IRQ_CFG0,
425 ARM_SMMU_GERROR_IRQ_CFG1,
426 ARM_SMMU_GERROR_IRQ_CFG2,
427 },
428 [PRIQ_MSI_INDEX] = {
429 ARM_SMMU_PRIQ_IRQ_CFG0,
430 ARM_SMMU_PRIQ_IRQ_CFG1,
431 ARM_SMMU_PRIQ_IRQ_CFG2,
432 },
433};
434
Will Deacon48ec83b2015-05-27 17:25:59 +0100435struct arm_smmu_cmdq_ent {
436 /* Common fields */
437 u8 opcode;
438 bool substream_valid;
439
440 /* Command-specific fields */
441 union {
442 #define CMDQ_OP_PREFETCH_CFG 0x1
443 struct {
444 u32 sid;
445 u8 size;
446 u64 addr;
447 } prefetch;
448
449 #define CMDQ_OP_CFGI_STE 0x3
450 #define CMDQ_OP_CFGI_ALL 0x4
451 struct {
452 u32 sid;
453 union {
454 bool leaf;
455 u8 span;
456 };
457 } cfgi;
458
459 #define CMDQ_OP_TLBI_NH_ASID 0x11
460 #define CMDQ_OP_TLBI_NH_VA 0x12
461 #define CMDQ_OP_TLBI_EL2_ALL 0x20
462 #define CMDQ_OP_TLBI_S12_VMALL 0x28
463 #define CMDQ_OP_TLBI_S2_IPA 0x2a
464 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
465 struct {
466 u16 asid;
467 u16 vmid;
468 bool leaf;
469 u64 addr;
470 } tlbi;
471
472 #define CMDQ_OP_PRI_RESP 0x41
473 struct {
474 u32 sid;
475 u32 ssid;
476 u16 grpid;
477 enum pri_resp resp;
478 } pri;
479
480 #define CMDQ_OP_CMD_SYNC 0x46
481 };
482};
483
484struct arm_smmu_queue {
485 int irq; /* Wired interrupt */
486
487 __le64 *base;
488 dma_addr_t base_dma;
489 u64 q_base;
490
491 size_t ent_dwords;
492 u32 max_n_shift;
493 u32 prod;
494 u32 cons;
495
496 u32 __iomem *prod_reg;
497 u32 __iomem *cons_reg;
498};
499
500struct arm_smmu_cmdq {
501 struct arm_smmu_queue q;
502 spinlock_t lock;
503};
504
505struct arm_smmu_evtq {
506 struct arm_smmu_queue q;
507 u32 max_stalls;
508};
509
510struct arm_smmu_priq {
511 struct arm_smmu_queue q;
512};
513
514/* High-level stream table and context descriptor structures */
515struct arm_smmu_strtab_l1_desc {
516 u8 span;
517
518 __le64 *l2ptr;
519 dma_addr_t l2ptr_dma;
520};
521
522struct arm_smmu_s1_cfg {
523 __le64 *cdptr;
524 dma_addr_t cdptr_dma;
525
526 struct arm_smmu_ctx_desc {
527 u16 asid;
528 u64 ttbr;
529 u64 tcr;
530 u64 mair;
531 } cd;
532};
533
534struct arm_smmu_s2_cfg {
535 u16 vmid;
536 u64 vttbr;
537 u64 vtcr;
538};
539
540struct arm_smmu_strtab_ent {
541 bool valid;
542
543 bool bypass; /* Overrides s1/s2 config */
544 struct arm_smmu_s1_cfg *s1_cfg;
545 struct arm_smmu_s2_cfg *s2_cfg;
546};
547
548struct arm_smmu_strtab_cfg {
549 __le64 *strtab;
550 dma_addr_t strtab_dma;
551 struct arm_smmu_strtab_l1_desc *l1_desc;
552 unsigned int num_l1_ents;
553
554 u64 strtab_base;
555 u32 strtab_base_cfg;
556};
557
558/* An SMMUv3 instance */
559struct arm_smmu_device {
560 struct device *dev;
561 void __iomem *base;
562
563#define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
564#define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
565#define ARM_SMMU_FEAT_TT_LE (1 << 2)
566#define ARM_SMMU_FEAT_TT_BE (1 << 3)
567#define ARM_SMMU_FEAT_PRI (1 << 4)
568#define ARM_SMMU_FEAT_ATS (1 << 5)
569#define ARM_SMMU_FEAT_SEV (1 << 6)
570#define ARM_SMMU_FEAT_MSI (1 << 7)
571#define ARM_SMMU_FEAT_COHERENCY (1 << 8)
572#define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
573#define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
574#define ARM_SMMU_FEAT_STALLS (1 << 11)
575#define ARM_SMMU_FEAT_HYP (1 << 12)
576 u32 features;
577
Zhen Lei5e929462015-07-07 04:30:18 +0100578#define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
579 u32 options;
580
Will Deacon48ec83b2015-05-27 17:25:59 +0100581 struct arm_smmu_cmdq cmdq;
582 struct arm_smmu_evtq evtq;
583 struct arm_smmu_priq priq;
584
585 int gerr_irq;
586
587 unsigned long ias; /* IPA */
588 unsigned long oas; /* PA */
589
590#define ARM_SMMU_MAX_ASIDS (1 << 16)
591 unsigned int asid_bits;
592 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
593
594#define ARM_SMMU_MAX_VMIDS (1 << 16)
595 unsigned int vmid_bits;
596 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
597
598 unsigned int ssid_bits;
599 unsigned int sid_bits;
600
601 struct arm_smmu_strtab_cfg strtab_cfg;
Will Deacon48ec83b2015-05-27 17:25:59 +0100602};
603
604/* SMMU private data for an IOMMU group */
605struct arm_smmu_group {
606 struct arm_smmu_device *smmu;
607 struct arm_smmu_domain *domain;
608 int num_sids;
609 u32 *sids;
610 struct arm_smmu_strtab_ent ste;
611};
612
613/* SMMU private data for an IOMMU domain */
614enum arm_smmu_domain_stage {
615 ARM_SMMU_DOMAIN_S1 = 0,
616 ARM_SMMU_DOMAIN_S2,
617 ARM_SMMU_DOMAIN_NESTED,
618};
619
620struct arm_smmu_domain {
621 struct arm_smmu_device *smmu;
622 struct mutex init_mutex; /* Protects smmu pointer */
623
624 struct io_pgtable_ops *pgtbl_ops;
625 spinlock_t pgtbl_lock;
626
627 enum arm_smmu_domain_stage stage;
628 union {
629 struct arm_smmu_s1_cfg s1_cfg;
630 struct arm_smmu_s2_cfg s2_cfg;
631 };
632
633 struct iommu_domain domain;
634};
635
Zhen Lei5e929462015-07-07 04:30:18 +0100636struct arm_smmu_option_prop {
637 u32 opt;
638 const char *prop;
639};
640
641static struct arm_smmu_option_prop arm_smmu_options[] = {
642 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
643 { 0, NULL},
644};
645
Will Deacon48ec83b2015-05-27 17:25:59 +0100646static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
647{
648 return container_of(dom, struct arm_smmu_domain, domain);
649}
650
Zhen Lei5e929462015-07-07 04:30:18 +0100651static void parse_driver_options(struct arm_smmu_device *smmu)
652{
653 int i = 0;
654
655 do {
656 if (of_property_read_bool(smmu->dev->of_node,
657 arm_smmu_options[i].prop)) {
658 smmu->options |= arm_smmu_options[i].opt;
659 dev_notice(smmu->dev, "option %s\n",
660 arm_smmu_options[i].prop);
661 }
662 } while (arm_smmu_options[++i].opt);
663}
664
Will Deacon48ec83b2015-05-27 17:25:59 +0100665/* Low-level queue manipulation functions */
666static bool queue_full(struct arm_smmu_queue *q)
667{
668 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
669 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
670}
671
672static bool queue_empty(struct arm_smmu_queue *q)
673{
674 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
675 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
676}
677
678static void queue_sync_cons(struct arm_smmu_queue *q)
679{
680 q->cons = readl_relaxed(q->cons_reg);
681}
682
683static void queue_inc_cons(struct arm_smmu_queue *q)
684{
685 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
686
687 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
688 writel(q->cons, q->cons_reg);
689}
690
691static int queue_sync_prod(struct arm_smmu_queue *q)
692{
693 int ret = 0;
694 u32 prod = readl_relaxed(q->prod_reg);
695
696 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
697 ret = -EOVERFLOW;
698
699 q->prod = prod;
700 return ret;
701}
702
703static void queue_inc_prod(struct arm_smmu_queue *q)
704{
705 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
706
707 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
708 writel(q->prod, q->prod_reg);
709}
710
711static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
712{
713 if (Q_WRP(q, q->cons) == Q_WRP(q, until))
714 return Q_IDX(q, q->cons) < Q_IDX(q, until);
715
716 return Q_IDX(q, q->cons) >= Q_IDX(q, until);
717}
718
719static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
720{
721 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
722
723 while (queue_sync_cons(q), __queue_cons_before(q, until)) {
724 if (ktime_compare(ktime_get(), timeout) > 0)
725 return -ETIMEDOUT;
726
727 if (wfe) {
728 wfe();
729 } else {
730 cpu_relax();
731 udelay(1);
732 }
733 }
734
735 return 0;
736}
737
738static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
739{
740 int i;
741
742 for (i = 0; i < n_dwords; ++i)
743 *dst++ = cpu_to_le64(*src++);
744}
745
746static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
747{
748 if (queue_full(q))
749 return -ENOSPC;
750
751 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
752 queue_inc_prod(q);
753 return 0;
754}
755
756static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
757{
758 int i;
759
760 for (i = 0; i < n_dwords; ++i)
761 *dst++ = le64_to_cpu(*src++);
762}
763
764static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
765{
766 if (queue_empty(q))
767 return -EAGAIN;
768
769 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
770 queue_inc_cons(q);
771 return 0;
772}
773
774/* High-level queue accessors */
775static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
776{
777 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
778 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
779
780 switch (ent->opcode) {
781 case CMDQ_OP_TLBI_EL2_ALL:
782 case CMDQ_OP_TLBI_NSNH_ALL:
783 break;
784 case CMDQ_OP_PREFETCH_CFG:
785 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
786 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
787 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
788 break;
789 case CMDQ_OP_CFGI_STE:
790 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
791 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
792 break;
793 case CMDQ_OP_CFGI_ALL:
794 /* Cover the entire SID range */
795 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
796 break;
797 case CMDQ_OP_TLBI_NH_VA:
798 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
Will Deacon1c27df12015-09-18 16:12:56 +0100799 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
800 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
801 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100802 case CMDQ_OP_TLBI_S2_IPA:
803 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
804 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
Will Deacon1c27df12015-09-18 16:12:56 +0100805 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
Will Deacon48ec83b2015-05-27 17:25:59 +0100806 break;
807 case CMDQ_OP_TLBI_NH_ASID:
808 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
809 /* Fallthrough */
810 case CMDQ_OP_TLBI_S12_VMALL:
811 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
812 break;
813 case CMDQ_OP_PRI_RESP:
814 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
815 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
816 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
817 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
818 switch (ent->pri.resp) {
819 case PRI_RESP_DENY:
820 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
821 break;
822 case PRI_RESP_FAIL:
823 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
824 break;
825 case PRI_RESP_SUCC:
826 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
827 break;
828 default:
829 return -EINVAL;
830 }
831 break;
832 case CMDQ_OP_CMD_SYNC:
833 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
834 break;
835 default:
836 return -ENOENT;
837 }
838
839 return 0;
840}
841
842static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
843{
844 static const char *cerror_str[] = {
845 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
846 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
847 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
848 };
849
850 int i;
851 u64 cmd[CMDQ_ENT_DWORDS];
852 struct arm_smmu_queue *q = &smmu->cmdq.q;
853 u32 cons = readl_relaxed(q->cons_reg);
854 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
855 struct arm_smmu_cmdq_ent cmd_sync = {
856 .opcode = CMDQ_OP_CMD_SYNC,
857 };
858
859 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
Will Deacona0d5c042015-12-04 12:00:29 +0000860 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
Will Deacon48ec83b2015-05-27 17:25:59 +0100861
862 switch (idx) {
Will Deacon48ec83b2015-05-27 17:25:59 +0100863 case CMDQ_ERR_CERROR_ABT_IDX:
864 dev_err(smmu->dev, "retrying command fetch\n");
865 case CMDQ_ERR_CERROR_NONE_IDX:
866 return;
Will Deacona0d5c042015-12-04 12:00:29 +0000867 case CMDQ_ERR_CERROR_ILL_IDX:
868 /* Fallthrough */
869 default:
870 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100871 }
872
873 /*
874 * We may have concurrent producers, so we need to be careful
875 * not to touch any of the shadow cmdq state.
876 */
877 queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
878 dev_err(smmu->dev, "skipping command in error state:\n");
879 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
880 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
881
882 /* Convert the erroneous command into a CMD_SYNC */
883 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
884 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
885 return;
886 }
887
888 queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
889}
890
891static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
892 struct arm_smmu_cmdq_ent *ent)
893{
894 u32 until;
895 u64 cmd[CMDQ_ENT_DWORDS];
896 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
897 struct arm_smmu_queue *q = &smmu->cmdq.q;
898
899 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
900 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
901 ent->opcode);
902 return;
903 }
904
905 spin_lock(&smmu->cmdq.lock);
906 while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
907 /*
908 * Keep the queue locked, otherwise the producer could wrap
909 * twice and we could see a future consumer pointer that looks
910 * like it's behind us.
911 */
912 if (queue_poll_cons(q, until, wfe))
913 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
914 }
915
916 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
917 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
918 spin_unlock(&smmu->cmdq.lock);
919}
920
921/* Context descriptor manipulation functions */
922static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
923{
924 u64 val = 0;
925
926 /* Repack the TCR. Just care about TTBR0 for now */
927 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
928 val |= ARM_SMMU_TCR2CD(tcr, TG0);
929 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
930 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
931 val |= ARM_SMMU_TCR2CD(tcr, SH0);
932 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
933 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
934 val |= ARM_SMMU_TCR2CD(tcr, IPS);
935 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
936
937 return val;
938}
939
940static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
941 struct arm_smmu_s1_cfg *cfg)
942{
943 u64 val;
944
945 /*
946 * We don't need to issue any invalidation here, as we'll invalidate
947 * the STE when installing the new entry anyway.
948 */
949 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
950#ifdef __BIG_ENDIAN
951 CTXDESC_CD_0_ENDI |
952#endif
953 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
954 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
955 CTXDESC_CD_0_V;
956 cfg->cdptr[0] = cpu_to_le64(val);
957
958 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
959 cfg->cdptr[1] = cpu_to_le64(val);
960
961 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
962}
963
964/* Stream table manipulation functions */
965static void
966arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
967{
968 u64 val = 0;
969
970 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
971 << STRTAB_L1_DESC_SPAN_SHIFT;
972 val |= desc->l2ptr_dma &
973 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
974
975 *dst = cpu_to_le64(val);
976}
977
978static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
979{
980 struct arm_smmu_cmdq_ent cmd = {
981 .opcode = CMDQ_OP_CFGI_STE,
982 .cfgi = {
983 .sid = sid,
984 .leaf = true,
985 },
986 };
987
988 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
989 cmd.opcode = CMDQ_OP_CMD_SYNC;
990 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
991}
992
993static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
994 __le64 *dst, struct arm_smmu_strtab_ent *ste)
995{
996 /*
997 * This is hideously complicated, but we only really care about
998 * three cases at the moment:
999 *
1000 * 1. Invalid (all zero) -> bypass (init)
1001 * 2. Bypass -> translation (attach)
1002 * 3. Translation -> bypass (detach)
1003 *
1004 * Given that we can't update the STE atomically and the SMMU
1005 * doesn't read the thing in a defined order, that leaves us
1006 * with the following maintenance requirements:
1007 *
1008 * 1. Update Config, return (init time STEs aren't live)
1009 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1010 * 3. Update Config, sync
1011 */
1012 u64 val = le64_to_cpu(dst[0]);
1013 bool ste_live = false;
1014 struct arm_smmu_cmdq_ent prefetch_cmd = {
1015 .opcode = CMDQ_OP_PREFETCH_CFG,
1016 .prefetch = {
1017 .sid = sid,
1018 },
1019 };
1020
1021 if (val & STRTAB_STE_0_V) {
1022 u64 cfg;
1023
1024 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1025 switch (cfg) {
1026 case STRTAB_STE_0_CFG_BYPASS:
1027 break;
1028 case STRTAB_STE_0_CFG_S1_TRANS:
1029 case STRTAB_STE_0_CFG_S2_TRANS:
1030 ste_live = true;
1031 break;
1032 default:
1033 BUG(); /* STE corruption */
1034 }
1035 }
1036
1037 /* Nuke the existing Config, as we're going to rewrite it */
1038 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1039
1040 if (ste->valid)
1041 val |= STRTAB_STE_0_V;
1042 else
1043 val &= ~STRTAB_STE_0_V;
1044
1045 if (ste->bypass) {
1046 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1047 : STRTAB_STE_0_CFG_BYPASS;
1048 dst[0] = cpu_to_le64(val);
Will Deacona0eacd82015-11-18 18:15:51 +00001049 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1050 << STRTAB_STE_1_SHCFG_SHIFT);
Will Deacon48ec83b2015-05-27 17:25:59 +01001051 dst[2] = 0; /* Nuke the VMID */
1052 if (ste_live)
1053 arm_smmu_sync_ste_for_sid(smmu, sid);
1054 return;
1055 }
1056
1057 if (ste->s1_cfg) {
1058 BUG_ON(ste_live);
1059 dst[1] = cpu_to_le64(
1060 STRTAB_STE_1_S1C_CACHE_WBRA
1061 << STRTAB_STE_1_S1CIR_SHIFT |
1062 STRTAB_STE_1_S1C_CACHE_WBRA
1063 << STRTAB_STE_1_S1COR_SHIFT |
1064 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1065 STRTAB_STE_1_S1STALLD |
1066#ifdef CONFIG_PCI_ATS
1067 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1068#endif
1069 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1070
1071 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1072 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1073 STRTAB_STE_0_CFG_S1_TRANS;
1074
1075 }
1076
1077 if (ste->s2_cfg) {
1078 BUG_ON(ste_live);
1079 dst[2] = cpu_to_le64(
1080 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1081 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1082 << STRTAB_STE_2_VTCR_SHIFT |
1083#ifdef __BIG_ENDIAN
1084 STRTAB_STE_2_S2ENDI |
1085#endif
1086 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1087 STRTAB_STE_2_S2R);
1088
1089 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1090 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1091
1092 val |= STRTAB_STE_0_CFG_S2_TRANS;
1093 }
1094
1095 arm_smmu_sync_ste_for_sid(smmu, sid);
1096 dst[0] = cpu_to_le64(val);
1097 arm_smmu_sync_ste_for_sid(smmu, sid);
1098
1099 /* It's likely that we'll want to use the new STE soon */
Zhen Lei5e929462015-07-07 04:30:18 +01001100 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1101 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
Will Deacon48ec83b2015-05-27 17:25:59 +01001102}
1103
1104static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1105{
1106 unsigned int i;
1107 struct arm_smmu_strtab_ent ste = {
1108 .valid = true,
1109 .bypass = true,
1110 };
1111
1112 for (i = 0; i < nent; ++i) {
1113 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1114 strtab += STRTAB_STE_DWORDS;
1115 }
1116}
1117
1118static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1119{
1120 size_t size;
1121 void *strtab;
1122 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1123 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1124
1125 if (desc->l2ptr)
1126 return 0;
1127
1128 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
Zhen Lei69146e72015-06-26 09:32:58 +01001129 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
Will Deacon48ec83b2015-05-27 17:25:59 +01001130
1131 desc->span = STRTAB_SPLIT + 1;
Will Deacon04fa26c2015-10-30 18:12:41 +00001132 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1133 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001134 if (!desc->l2ptr) {
1135 dev_err(smmu->dev,
1136 "failed to allocate l2 stream table for SID %u\n",
1137 sid);
1138 return -ENOMEM;
1139 }
1140
1141 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1142 arm_smmu_write_strtab_l1_desc(strtab, desc);
1143 return 0;
1144}
1145
1146/* IRQ and event handlers */
1147static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1148{
1149 int i;
1150 struct arm_smmu_device *smmu = dev;
1151 struct arm_smmu_queue *q = &smmu->evtq.q;
1152 u64 evt[EVTQ_ENT_DWORDS];
1153
1154 while (!queue_remove_raw(q, evt)) {
1155 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1156
1157 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1158 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1159 dev_info(smmu->dev, "\t0x%016llx\n",
1160 (unsigned long long)evt[i]);
1161 }
1162
1163 /* Sync our overflow flag, as we believe we're up to speed */
1164 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1165 return IRQ_HANDLED;
1166}
1167
1168static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1169{
1170 irqreturn_t ret = IRQ_WAKE_THREAD;
1171 struct arm_smmu_device *smmu = dev;
1172 struct arm_smmu_queue *q = &smmu->evtq.q;
1173
1174 /*
1175 * Not much we can do on overflow, so scream and pretend we're
1176 * trying harder.
1177 */
1178 if (queue_sync_prod(q) == -EOVERFLOW)
1179 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1180 else if (queue_empty(q))
1181 ret = IRQ_NONE;
1182
1183 return ret;
1184}
1185
1186static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1187{
1188 struct arm_smmu_device *smmu = dev;
1189 struct arm_smmu_queue *q = &smmu->priq.q;
1190 u64 evt[PRIQ_ENT_DWORDS];
1191
1192 while (!queue_remove_raw(q, evt)) {
1193 u32 sid, ssid;
1194 u16 grpid;
1195 bool ssv, last;
1196
1197 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1198 ssv = evt[0] & PRIQ_0_SSID_V;
1199 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1200 last = evt[0] & PRIQ_0_PRG_LAST;
1201 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1202
1203 dev_info(smmu->dev, "unexpected PRI request received:\n");
1204 dev_info(smmu->dev,
1205 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1206 sid, ssid, grpid, last ? "L" : "",
1207 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1208 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1209 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1210 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1211 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1212
1213 if (last) {
1214 struct arm_smmu_cmdq_ent cmd = {
1215 .opcode = CMDQ_OP_PRI_RESP,
1216 .substream_valid = ssv,
1217 .pri = {
1218 .sid = sid,
1219 .ssid = ssid,
1220 .grpid = grpid,
1221 .resp = PRI_RESP_DENY,
1222 },
1223 };
1224
1225 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1226 }
1227 }
1228
1229 /* Sync our overflow flag, as we believe we're up to speed */
1230 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1231 return IRQ_HANDLED;
1232}
1233
1234static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1235{
1236 irqreturn_t ret = IRQ_WAKE_THREAD;
1237 struct arm_smmu_device *smmu = dev;
1238 struct arm_smmu_queue *q = &smmu->priq.q;
1239
1240 /* PRIQ overflow indicates a programming error */
1241 if (queue_sync_prod(q) == -EOVERFLOW)
1242 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1243 else if (queue_empty(q))
1244 ret = IRQ_NONE;
1245
1246 return ret;
1247}
1248
1249static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1250{
1251 /* We don't actually use CMD_SYNC interrupts for anything */
1252 return IRQ_HANDLED;
1253}
1254
1255static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1256
1257static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1258{
Prem Mallappa324ba102015-12-14 22:01:14 +05301259 u32 gerror, gerrorn, active;
Will Deacon48ec83b2015-05-27 17:25:59 +01001260 struct arm_smmu_device *smmu = dev;
1261
1262 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1263 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1264
Prem Mallappa324ba102015-12-14 22:01:14 +05301265 active = gerror ^ gerrorn;
1266 if (!(active & GERROR_ERR_MASK))
Will Deacon48ec83b2015-05-27 17:25:59 +01001267 return IRQ_NONE; /* No errors pending */
1268
1269 dev_warn(smmu->dev,
1270 "unexpected global error reported (0x%08x), this could be serious\n",
Prem Mallappa324ba102015-12-14 22:01:14 +05301271 active);
Will Deacon48ec83b2015-05-27 17:25:59 +01001272
Prem Mallappa324ba102015-12-14 22:01:14 +05301273 if (active & GERROR_SFM_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001274 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1275 arm_smmu_device_disable(smmu);
1276 }
1277
Prem Mallappa324ba102015-12-14 22:01:14 +05301278 if (active & GERROR_MSI_GERROR_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001279 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1280
Prem Mallappa324ba102015-12-14 22:01:14 +05301281 if (active & GERROR_MSI_PRIQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001282 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1283 arm_smmu_priq_handler(irq, smmu->dev);
1284 }
1285
Prem Mallappa324ba102015-12-14 22:01:14 +05301286 if (active & GERROR_MSI_EVTQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001287 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1288 arm_smmu_evtq_handler(irq, smmu->dev);
1289 }
1290
Prem Mallappa324ba102015-12-14 22:01:14 +05301291 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001292 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1293 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1294 }
1295
Prem Mallappa324ba102015-12-14 22:01:14 +05301296 if (active & GERROR_PRIQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001297 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1298
Prem Mallappa324ba102015-12-14 22:01:14 +05301299 if (active & GERROR_EVTQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001300 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1301
Prem Mallappa324ba102015-12-14 22:01:14 +05301302 if (active & GERROR_CMDQ_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001303 arm_smmu_cmdq_skip_err(smmu);
1304
1305 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1306 return IRQ_HANDLED;
1307}
1308
1309/* IO_PGTABLE API */
1310static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1311{
1312 struct arm_smmu_cmdq_ent cmd;
1313
1314 cmd.opcode = CMDQ_OP_CMD_SYNC;
1315 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1316}
1317
1318static void arm_smmu_tlb_sync(void *cookie)
1319{
1320 struct arm_smmu_domain *smmu_domain = cookie;
1321 __arm_smmu_tlb_sync(smmu_domain->smmu);
1322}
1323
1324static void arm_smmu_tlb_inv_context(void *cookie)
1325{
1326 struct arm_smmu_domain *smmu_domain = cookie;
1327 struct arm_smmu_device *smmu = smmu_domain->smmu;
1328 struct arm_smmu_cmdq_ent cmd;
1329
1330 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1331 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1332 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1333 cmd.tlbi.vmid = 0;
1334 } else {
1335 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1336 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1337 }
1338
1339 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1340 __arm_smmu_tlb_sync(smmu);
1341}
1342
1343static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
Robin Murphy06c610e2015-12-07 18:18:53 +00001344 size_t granule, bool leaf, void *cookie)
Will Deacon48ec83b2015-05-27 17:25:59 +01001345{
1346 struct arm_smmu_domain *smmu_domain = cookie;
1347 struct arm_smmu_device *smmu = smmu_domain->smmu;
1348 struct arm_smmu_cmdq_ent cmd = {
1349 .tlbi = {
1350 .leaf = leaf,
1351 .addr = iova,
1352 },
1353 };
1354
1355 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1356 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1357 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1358 } else {
1359 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1360 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1361 }
1362
Robin Murphy75df1382015-12-07 18:18:52 +00001363 do {
1364 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1365 cmd.tlbi.addr += granule;
1366 } while (size -= granule);
Will Deacon48ec83b2015-05-27 17:25:59 +01001367}
1368
Will Deacon48ec83b2015-05-27 17:25:59 +01001369static struct iommu_gather_ops arm_smmu_gather_ops = {
1370 .tlb_flush_all = arm_smmu_tlb_inv_context,
1371 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1372 .tlb_sync = arm_smmu_tlb_sync,
Will Deacon48ec83b2015-05-27 17:25:59 +01001373};
1374
1375/* IOMMU API */
1376static bool arm_smmu_capable(enum iommu_cap cap)
1377{
1378 switch (cap) {
1379 case IOMMU_CAP_CACHE_COHERENCY:
1380 return true;
1381 case IOMMU_CAP_INTR_REMAP:
1382 return true; /* MSIs are just memory writes */
1383 case IOMMU_CAP_NOEXEC:
1384 return true;
1385 default:
1386 return false;
1387 }
1388}
1389
1390static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1391{
1392 struct arm_smmu_domain *smmu_domain;
1393
1394 if (type != IOMMU_DOMAIN_UNMANAGED)
1395 return NULL;
1396
1397 /*
1398 * Allocate the domain and initialise some of its data structures.
1399 * We can't really do anything meaningful until we've added a
1400 * master.
1401 */
1402 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1403 if (!smmu_domain)
1404 return NULL;
1405
1406 mutex_init(&smmu_domain->init_mutex);
1407 spin_lock_init(&smmu_domain->pgtbl_lock);
1408 return &smmu_domain->domain;
1409}
1410
1411static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1412{
1413 int idx, size = 1 << span;
1414
1415 do {
1416 idx = find_first_zero_bit(map, size);
1417 if (idx == size)
1418 return -ENOSPC;
1419 } while (test_and_set_bit(idx, map));
1420
1421 return idx;
1422}
1423
1424static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1425{
1426 clear_bit(idx, map);
1427}
1428
1429static void arm_smmu_domain_free(struct iommu_domain *domain)
1430{
1431 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1432 struct arm_smmu_device *smmu = smmu_domain->smmu;
1433
Markus Elfringa6e08fb2015-06-29 17:47:43 +01001434 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
Will Deacon48ec83b2015-05-27 17:25:59 +01001435
1436 /* Free the CD and ASID, if we allocated them */
1437 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1438 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1439
1440 if (cfg->cdptr) {
Will Deacon04fa26c2015-10-30 18:12:41 +00001441 dmam_free_coherent(smmu_domain->smmu->dev,
1442 CTXDESC_CD_DWORDS << 3,
1443 cfg->cdptr,
1444 cfg->cdptr_dma);
Will Deacon48ec83b2015-05-27 17:25:59 +01001445
1446 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1447 }
1448 } else {
1449 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1450 if (cfg->vmid)
1451 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1452 }
1453
1454 kfree(smmu_domain);
1455}
1456
1457static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1458 struct io_pgtable_cfg *pgtbl_cfg)
1459{
1460 int ret;
Will Deaconc0733a22015-10-13 17:51:14 +01001461 int asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001462 struct arm_smmu_device *smmu = smmu_domain->smmu;
1463 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1464
1465 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1466 if (IS_ERR_VALUE(asid))
1467 return asid;
1468
Will Deacon04fa26c2015-10-30 18:12:41 +00001469 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1470 &cfg->cdptr_dma,
1471 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001472 if (!cfg->cdptr) {
1473 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
Will Deaconc0733a22015-10-13 17:51:14 +01001474 ret = -ENOMEM;
Will Deacon48ec83b2015-05-27 17:25:59 +01001475 goto out_free_asid;
1476 }
1477
Will Deaconc0733a22015-10-13 17:51:14 +01001478 cfg->cd.asid = (u16)asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001479 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1480 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1481 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1482 return 0;
1483
1484out_free_asid:
1485 arm_smmu_bitmap_free(smmu->asid_map, asid);
1486 return ret;
1487}
1488
1489static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1490 struct io_pgtable_cfg *pgtbl_cfg)
1491{
Will Deaconc0733a22015-10-13 17:51:14 +01001492 int vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001493 struct arm_smmu_device *smmu = smmu_domain->smmu;
1494 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1495
1496 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1497 if (IS_ERR_VALUE(vmid))
1498 return vmid;
1499
Will Deaconc0733a22015-10-13 17:51:14 +01001500 cfg->vmid = (u16)vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001501 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1502 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1503 return 0;
1504}
1505
1506static struct iommu_ops arm_smmu_ops;
1507
1508static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1509{
1510 int ret;
1511 unsigned long ias, oas;
1512 enum io_pgtable_fmt fmt;
1513 struct io_pgtable_cfg pgtbl_cfg;
1514 struct io_pgtable_ops *pgtbl_ops;
1515 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1516 struct io_pgtable_cfg *);
1517 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1518 struct arm_smmu_device *smmu = smmu_domain->smmu;
1519
1520 /* Restrict the stage to what we can actually support */
1521 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1522 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1523 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1524 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1525
1526 switch (smmu_domain->stage) {
1527 case ARM_SMMU_DOMAIN_S1:
1528 ias = VA_BITS;
1529 oas = smmu->ias;
1530 fmt = ARM_64_LPAE_S1;
1531 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1532 break;
1533 case ARM_SMMU_DOMAIN_NESTED:
1534 case ARM_SMMU_DOMAIN_S2:
1535 ias = smmu->ias;
1536 oas = smmu->oas;
1537 fmt = ARM_64_LPAE_S2;
1538 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1539 break;
1540 default:
1541 return -EINVAL;
1542 }
1543
1544 pgtbl_cfg = (struct io_pgtable_cfg) {
1545 .pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
1546 .ias = ias,
1547 .oas = oas,
1548 .tlb = &arm_smmu_gather_ops,
Robin Murphybdc6d972015-07-29 19:46:07 +01001549 .iommu_dev = smmu->dev,
Will Deacon48ec83b2015-05-27 17:25:59 +01001550 };
1551
1552 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1553 if (!pgtbl_ops)
1554 return -ENOMEM;
1555
1556 arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1557 smmu_domain->pgtbl_ops = pgtbl_ops;
1558
1559 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1560 if (IS_ERR_VALUE(ret))
1561 free_io_pgtable_ops(pgtbl_ops);
1562
1563 return ret;
1564}
1565
1566static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1567{
1568 struct iommu_group *group;
1569 struct arm_smmu_group *smmu_group;
1570
1571 group = iommu_group_get(dev);
1572 if (!group)
1573 return NULL;
1574
1575 smmu_group = iommu_group_get_iommudata(group);
1576 iommu_group_put(group);
1577 return smmu_group;
1578}
1579
1580static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1581{
1582 __le64 *step;
1583 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1584
1585 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1586 struct arm_smmu_strtab_l1_desc *l1_desc;
1587 int idx;
1588
1589 /* Two-level walk */
1590 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1591 l1_desc = &cfg->l1_desc[idx];
1592 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1593 step = &l1_desc->l2ptr[idx];
1594 } else {
1595 /* Simple linear lookup */
1596 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1597 }
1598
1599 return step;
1600}
1601
1602static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1603{
1604 int i;
1605 struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1606 struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1607 struct arm_smmu_device *smmu = smmu_group->smmu;
1608
1609 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1610 ste->s1_cfg = &smmu_domain->s1_cfg;
1611 ste->s2_cfg = NULL;
1612 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1613 } else {
1614 ste->s1_cfg = NULL;
1615 ste->s2_cfg = &smmu_domain->s2_cfg;
1616 }
1617
1618 for (i = 0; i < smmu_group->num_sids; ++i) {
1619 u32 sid = smmu_group->sids[i];
1620 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1621
1622 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1623 }
1624
1625 return 0;
1626}
1627
1628static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1629{
1630 int ret = 0;
1631 struct arm_smmu_device *smmu;
1632 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1633 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1634
1635 if (!smmu_group)
1636 return -ENOENT;
1637
1638 /* Already attached to a different domain? */
1639 if (smmu_group->domain && smmu_group->domain != smmu_domain)
1640 return -EEXIST;
1641
1642 smmu = smmu_group->smmu;
1643 mutex_lock(&smmu_domain->init_mutex);
1644
1645 if (!smmu_domain->smmu) {
1646 smmu_domain->smmu = smmu;
1647 ret = arm_smmu_domain_finalise(domain);
1648 if (ret) {
1649 smmu_domain->smmu = NULL;
1650 goto out_unlock;
1651 }
1652 } else if (smmu_domain->smmu != smmu) {
1653 dev_err(dev,
1654 "cannot attach to SMMU %s (upstream of %s)\n",
1655 dev_name(smmu_domain->smmu->dev),
1656 dev_name(smmu->dev));
1657 ret = -ENXIO;
1658 goto out_unlock;
1659 }
1660
1661 /* Group already attached to this domain? */
1662 if (smmu_group->domain)
1663 goto out_unlock;
1664
1665 smmu_group->domain = smmu_domain;
1666 smmu_group->ste.bypass = false;
1667
1668 ret = arm_smmu_install_ste_for_group(smmu_group);
1669 if (IS_ERR_VALUE(ret))
1670 smmu_group->domain = NULL;
1671
1672out_unlock:
1673 mutex_unlock(&smmu_domain->init_mutex);
1674 return ret;
1675}
1676
1677static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1678{
1679 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1680 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1681
1682 BUG_ON(!smmu_domain);
1683 BUG_ON(!smmu_group);
1684
1685 mutex_lock(&smmu_domain->init_mutex);
1686 BUG_ON(smmu_group->domain != smmu_domain);
1687
1688 smmu_group->ste.bypass = true;
1689 if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1690 dev_warn(dev, "failed to install bypass STE\n");
1691
1692 smmu_group->domain = NULL;
1693 mutex_unlock(&smmu_domain->init_mutex);
1694}
1695
1696static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1697 phys_addr_t paddr, size_t size, int prot)
1698{
1699 int ret;
1700 unsigned long flags;
1701 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1702 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1703
1704 if (!ops)
1705 return -ENODEV;
1706
1707 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1708 ret = ops->map(ops, iova, paddr, size, prot);
1709 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1710 return ret;
1711}
1712
1713static size_t
1714arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1715{
1716 size_t ret;
1717 unsigned long flags;
1718 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1719 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1720
1721 if (!ops)
1722 return 0;
1723
1724 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1725 ret = ops->unmap(ops, iova, size);
1726 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1727 return ret;
1728}
1729
1730static phys_addr_t
1731arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1732{
1733 phys_addr_t ret;
1734 unsigned long flags;
1735 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1736 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1737
1738 if (!ops)
1739 return 0;
1740
1741 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1742 ret = ops->iova_to_phys(ops, iova);
1743 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1744
1745 return ret;
1746}
1747
1748static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1749{
1750 *(u32 *)sidp = alias;
1751 return 0; /* Continue walking */
1752}
1753
1754static void __arm_smmu_release_pci_iommudata(void *data)
1755{
1756 kfree(data);
1757}
1758
1759static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1760{
1761 struct device_node *of_node;
Will Deacon941a8022015-08-11 16:25:10 +01001762 struct platform_device *smmu_pdev;
1763 struct arm_smmu_device *smmu = NULL;
Will Deacon48ec83b2015-05-27 17:25:59 +01001764 struct pci_bus *bus = pdev->bus;
1765
1766 /* Walk up to the root bus */
1767 while (!pci_is_root_bus(bus))
1768 bus = bus->parent;
1769
1770 /* Follow the "iommus" phandle from the host controller */
1771 of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1772 if (!of_node)
1773 return NULL;
1774
1775 /* See if we can find an SMMU corresponding to the phandle */
Will Deacon941a8022015-08-11 16:25:10 +01001776 smmu_pdev = of_find_device_by_node(of_node);
1777 if (smmu_pdev)
1778 smmu = platform_get_drvdata(smmu_pdev);
1779
Will Deacon48ec83b2015-05-27 17:25:59 +01001780 of_node_put(of_node);
1781 return smmu;
1782}
1783
1784static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1785{
1786 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1787
1788 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1789 limit *= 1UL << STRTAB_SPLIT;
1790
1791 return sid < limit;
1792}
1793
1794static int arm_smmu_add_device(struct device *dev)
1795{
1796 int i, ret;
1797 u32 sid, *sids;
1798 struct pci_dev *pdev;
1799 struct iommu_group *group;
1800 struct arm_smmu_group *smmu_group;
1801 struct arm_smmu_device *smmu;
1802
1803 /* We only support PCI, for now */
1804 if (!dev_is_pci(dev))
1805 return -ENODEV;
1806
1807 pdev = to_pci_dev(dev);
1808 group = iommu_group_get_for_dev(dev);
1809 if (IS_ERR(group))
1810 return PTR_ERR(group);
1811
1812 smmu_group = iommu_group_get_iommudata(group);
1813 if (!smmu_group) {
1814 smmu = arm_smmu_get_for_pci_dev(pdev);
1815 if (!smmu) {
1816 ret = -ENOENT;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001817 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001818 }
1819
1820 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1821 if (!smmu_group) {
1822 ret = -ENOMEM;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001823 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001824 }
1825
1826 smmu_group->ste.valid = true;
1827 smmu_group->smmu = smmu;
1828 iommu_group_set_iommudata(group, smmu_group,
1829 __arm_smmu_release_pci_iommudata);
1830 } else {
1831 smmu = smmu_group->smmu;
1832 }
1833
1834 /* Assume SID == RID until firmware tells us otherwise */
1835 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1836 for (i = 0; i < smmu_group->num_sids; ++i) {
1837 /* If we already know about this SID, then we're done */
1838 if (smmu_group->sids[i] == sid)
Peng Fan9a4a9d82015-11-20 16:56:18 +08001839 goto out_put_group;
Will Deacon48ec83b2015-05-27 17:25:59 +01001840 }
1841
1842 /* Check the SID is in range of the SMMU and our stream table */
1843 if (!arm_smmu_sid_in_range(smmu, sid)) {
1844 ret = -ERANGE;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001845 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001846 }
1847
1848 /* Ensure l2 strtab is initialised */
1849 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1850 ret = arm_smmu_init_l2_strtab(smmu, sid);
1851 if (ret)
Peng Fan9a4a9d82015-11-20 16:56:18 +08001852 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001853 }
1854
1855 /* Resize the SID array for the group */
1856 smmu_group->num_sids++;
1857 sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1858 GFP_KERNEL);
1859 if (!sids) {
1860 smmu_group->num_sids--;
1861 ret = -ENOMEM;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001862 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001863 }
1864
1865 /* Add the new SID */
1866 sids[smmu_group->num_sids - 1] = sid;
1867 smmu_group->sids = sids;
Will Deacon48ec83b2015-05-27 17:25:59 +01001868
1869out_put_group:
1870 iommu_group_put(group);
Peng Fan9a4a9d82015-11-20 16:56:18 +08001871 return 0;
1872
1873out_remove_dev:
1874 iommu_group_remove_device(dev);
1875 iommu_group_put(group);
Will Deacon48ec83b2015-05-27 17:25:59 +01001876 return ret;
1877}
1878
1879static void arm_smmu_remove_device(struct device *dev)
1880{
1881 iommu_group_remove_device(dev);
1882}
1883
1884static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1885 enum iommu_attr attr, void *data)
1886{
1887 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1888
1889 switch (attr) {
1890 case DOMAIN_ATTR_NESTING:
1891 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1892 return 0;
1893 default:
1894 return -ENODEV;
1895 }
1896}
1897
1898static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1899 enum iommu_attr attr, void *data)
1900{
1901 int ret = 0;
1902 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1903
1904 mutex_lock(&smmu_domain->init_mutex);
1905
1906 switch (attr) {
1907 case DOMAIN_ATTR_NESTING:
1908 if (smmu_domain->smmu) {
1909 ret = -EPERM;
1910 goto out_unlock;
1911 }
1912
1913 if (*(int *)data)
1914 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1915 else
1916 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1917
1918 break;
1919 default:
1920 ret = -ENODEV;
1921 }
1922
1923out_unlock:
1924 mutex_unlock(&smmu_domain->init_mutex);
1925 return ret;
1926}
1927
1928static struct iommu_ops arm_smmu_ops = {
1929 .capable = arm_smmu_capable,
1930 .domain_alloc = arm_smmu_domain_alloc,
1931 .domain_free = arm_smmu_domain_free,
1932 .attach_dev = arm_smmu_attach_dev,
1933 .detach_dev = arm_smmu_detach_dev,
1934 .map = arm_smmu_map,
1935 .unmap = arm_smmu_unmap,
1936 .iova_to_phys = arm_smmu_iova_to_phys,
1937 .add_device = arm_smmu_add_device,
1938 .remove_device = arm_smmu_remove_device,
Joerg Roedelaf659932015-10-21 23:51:41 +02001939 .device_group = pci_device_group,
Will Deacon48ec83b2015-05-27 17:25:59 +01001940 .domain_get_attr = arm_smmu_domain_get_attr,
1941 .domain_set_attr = arm_smmu_domain_set_attr,
1942 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1943};
1944
1945/* Probing and initialisation functions */
1946static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1947 struct arm_smmu_queue *q,
1948 unsigned long prod_off,
1949 unsigned long cons_off,
1950 size_t dwords)
1951{
1952 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1953
Will Deacon04fa26c2015-10-30 18:12:41 +00001954 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
Will Deacon48ec83b2015-05-27 17:25:59 +01001955 if (!q->base) {
1956 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1957 qsz);
1958 return -ENOMEM;
1959 }
1960
1961 q->prod_reg = smmu->base + prod_off;
1962 q->cons_reg = smmu->base + cons_off;
1963 q->ent_dwords = dwords;
1964
1965 q->q_base = Q_BASE_RWA;
1966 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1967 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1968 << Q_BASE_LOG2SIZE_SHIFT;
1969
1970 q->prod = q->cons = 0;
1971 return 0;
1972}
1973
Will Deacon48ec83b2015-05-27 17:25:59 +01001974static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1975{
1976 int ret;
1977
1978 /* cmdq */
1979 spin_lock_init(&smmu->cmdq.lock);
1980 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1981 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1982 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00001983 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01001984
1985 /* evtq */
1986 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1987 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1988 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00001989 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01001990
1991 /* priq */
1992 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1993 return 0;
1994
Will Deacon04fa26c2015-10-30 18:12:41 +00001995 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1996 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
Will Deacon48ec83b2015-05-27 17:25:59 +01001997}
1998
1999static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2000{
2001 unsigned int i;
2002 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2003 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2004 void *strtab = smmu->strtab_cfg.strtab;
2005
2006 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2007 if (!cfg->l1_desc) {
2008 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2009 return -ENOMEM;
2010 }
2011
2012 for (i = 0; i < cfg->num_l1_ents; ++i) {
2013 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2014 strtab += STRTAB_L1_DESC_DWORDS << 3;
2015 }
2016
2017 return 0;
2018}
2019
2020static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2021{
2022 void *strtab;
2023 u64 reg;
Will Deacond2e88e72015-06-30 10:02:28 +01002024 u32 size, l1size;
Will Deacon48ec83b2015-05-27 17:25:59 +01002025 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2026
Will Deacon28c8b402015-07-16 17:50:12 +01002027 /*
2028 * If we can resolve everything with a single L2 table, then we
2029 * just need a single L1 descriptor. Otherwise, calculate the L1
2030 * size, capped to the SIDSIZE.
2031 */
2032 if (smmu->sid_bits < STRTAB_SPLIT) {
2033 size = 0;
2034 } else {
2035 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2036 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2037 }
Will Deacond2e88e72015-06-30 10:02:28 +01002038 cfg->num_l1_ents = 1 << size;
2039
2040 size += STRTAB_SPLIT;
2041 if (size < smmu->sid_bits)
Will Deacon48ec83b2015-05-27 17:25:59 +01002042 dev_warn(smmu->dev,
2043 "2-level strtab only covers %u/%u bits of SID\n",
Will Deacond2e88e72015-06-30 10:02:28 +01002044 size, smmu->sid_bits);
Will Deacon48ec83b2015-05-27 17:25:59 +01002045
Will Deacond2e88e72015-06-30 10:02:28 +01002046 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002047 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2048 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002049 if (!strtab) {
2050 dev_err(smmu->dev,
2051 "failed to allocate l1 stream table (%u bytes)\n",
2052 size);
2053 return -ENOMEM;
2054 }
2055 cfg->strtab = strtab;
2056
2057 /* Configure strtab_base_cfg for 2 levels */
2058 reg = STRTAB_BASE_CFG_FMT_2LVL;
2059 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2060 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2061 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2062 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2063 cfg->strtab_base_cfg = reg;
2064
Will Deacon04fa26c2015-10-30 18:12:41 +00002065 return arm_smmu_init_l1_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002066}
2067
2068static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2069{
2070 void *strtab;
2071 u64 reg;
2072 u32 size;
2073 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2074
2075 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002076 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2077 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002078 if (!strtab) {
2079 dev_err(smmu->dev,
2080 "failed to allocate linear stream table (%u bytes)\n",
2081 size);
2082 return -ENOMEM;
2083 }
2084 cfg->strtab = strtab;
2085 cfg->num_l1_ents = 1 << smmu->sid_bits;
2086
2087 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2088 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2089 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2090 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2091 cfg->strtab_base_cfg = reg;
2092
2093 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2094 return 0;
2095}
2096
2097static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2098{
2099 u64 reg;
2100 int ret;
2101
2102 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2103 ret = arm_smmu_init_strtab_2lvl(smmu);
2104 else
2105 ret = arm_smmu_init_strtab_linear(smmu);
2106
2107 if (ret)
2108 return ret;
2109
2110 /* Set the strtab base address */
2111 reg = smmu->strtab_cfg.strtab_dma &
2112 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2113 reg |= STRTAB_BASE_RA;
2114 smmu->strtab_cfg.strtab_base = reg;
2115
2116 /* Allocate the first VMID for stage-2 bypass STEs */
2117 set_bit(0, smmu->vmid_map);
2118 return 0;
2119}
2120
Will Deacon48ec83b2015-05-27 17:25:59 +01002121static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2122{
2123 int ret;
2124
2125 ret = arm_smmu_init_queues(smmu);
2126 if (ret)
2127 return ret;
2128
Will Deacon04fa26c2015-10-30 18:12:41 +00002129 return arm_smmu_init_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002130}
2131
2132static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2133 unsigned int reg_off, unsigned int ack_off)
2134{
2135 u32 reg;
2136
2137 writel_relaxed(val, smmu->base + reg_off);
2138 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2139 1, ARM_SMMU_POLL_TIMEOUT_US);
2140}
2141
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002142static void arm_smmu_free_msis(void *data)
2143{
2144 struct device *dev = data;
2145 platform_msi_domain_free_irqs(dev);
2146}
2147
2148static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2149{
2150 phys_addr_t doorbell;
2151 struct device *dev = msi_desc_to_dev(desc);
2152 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2153 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2154
2155 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2156 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2157
2158 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2159 writel_relaxed(msg->data, smmu->base + cfg[1]);
2160 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2161}
2162
2163static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2164{
2165 struct msi_desc *desc;
2166 int ret, nvec = ARM_SMMU_MAX_MSIS;
2167 struct device *dev = smmu->dev;
2168
2169 /* Clear the MSI address regs */
2170 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2171 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2172
2173 if (smmu->features & ARM_SMMU_FEAT_PRI)
2174 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2175 else
2176 nvec--;
2177
2178 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2179 return;
2180
2181 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2182 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2183 if (ret) {
2184 dev_warn(dev, "failed to allocate MSIs\n");
2185 return;
2186 }
2187
2188 for_each_msi_entry(desc, dev) {
2189 switch (desc->platform.msi_index) {
2190 case EVTQ_MSI_INDEX:
2191 smmu->evtq.q.irq = desc->irq;
2192 break;
2193 case GERROR_MSI_INDEX:
2194 smmu->gerr_irq = desc->irq;
2195 break;
2196 case PRIQ_MSI_INDEX:
2197 smmu->priq.q.irq = desc->irq;
2198 break;
2199 default: /* Unknown */
2200 continue;
2201 }
2202 }
2203
2204 /* Add callback to free MSIs on teardown */
2205 devm_add_action(dev, arm_smmu_free_msis, dev);
2206}
2207
Will Deacon48ec83b2015-05-27 17:25:59 +01002208static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2209{
2210 int ret, irq;
Marc Zyngierccd63852015-07-15 11:55:18 +01002211 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002212
2213 /* Disable IRQs first */
2214 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2215 ARM_SMMU_IRQ_CTRLACK);
2216 if (ret) {
2217 dev_err(smmu->dev, "failed to disable irqs\n");
2218 return ret;
2219 }
2220
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002221 arm_smmu_setup_msis(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002222
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002223 /* Request interrupt lines */
Will Deacon48ec83b2015-05-27 17:25:59 +01002224 irq = smmu->evtq.q.irq;
2225 if (irq) {
2226 ret = devm_request_threaded_irq(smmu->dev, irq,
2227 arm_smmu_evtq_handler,
2228 arm_smmu_evtq_thread,
2229 0, "arm-smmu-v3-evtq", smmu);
2230 if (IS_ERR_VALUE(ret))
2231 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2232 }
2233
2234 irq = smmu->cmdq.q.irq;
2235 if (irq) {
2236 ret = devm_request_irq(smmu->dev, irq,
2237 arm_smmu_cmdq_sync_handler, 0,
2238 "arm-smmu-v3-cmdq-sync", smmu);
2239 if (IS_ERR_VALUE(ret))
2240 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2241 }
2242
2243 irq = smmu->gerr_irq;
2244 if (irq) {
2245 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2246 0, "arm-smmu-v3-gerror", smmu);
2247 if (IS_ERR_VALUE(ret))
2248 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2249 }
2250
2251 if (smmu->features & ARM_SMMU_FEAT_PRI) {
Will Deacon48ec83b2015-05-27 17:25:59 +01002252 irq = smmu->priq.q.irq;
2253 if (irq) {
2254 ret = devm_request_threaded_irq(smmu->dev, irq,
2255 arm_smmu_priq_handler,
2256 arm_smmu_priq_thread,
2257 0, "arm-smmu-v3-priq",
2258 smmu);
2259 if (IS_ERR_VALUE(ret))
2260 dev_warn(smmu->dev,
2261 "failed to enable priq irq\n");
Marc Zyngierccd63852015-07-15 11:55:18 +01002262 else
2263 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002264 }
2265 }
2266
2267 /* Enable interrupt generation on the SMMU */
Marc Zyngierccd63852015-07-15 11:55:18 +01002268 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
Will Deacon48ec83b2015-05-27 17:25:59 +01002269 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2270 if (ret)
2271 dev_warn(smmu->dev, "failed to enable irqs\n");
2272
2273 return 0;
2274}
2275
2276static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2277{
2278 int ret;
2279
2280 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2281 if (ret)
2282 dev_err(smmu->dev, "failed to clear cr0\n");
2283
2284 return ret;
2285}
2286
2287static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2288{
2289 int ret;
2290 u32 reg, enables;
2291 struct arm_smmu_cmdq_ent cmd;
2292
2293 /* Clear CR0 and sync (disables SMMU and queue processing) */
2294 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2295 if (reg & CR0_SMMUEN)
2296 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2297
2298 ret = arm_smmu_device_disable(smmu);
2299 if (ret)
2300 return ret;
2301
2302 /* CR1 (table and queue memory attributes) */
2303 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2304 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2305 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2306 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2307 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2308 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2309 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2310
2311 /* CR2 (random crap) */
2312 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2313 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2314
2315 /* Stream table */
2316 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2317 smmu->base + ARM_SMMU_STRTAB_BASE);
2318 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2319 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2320
2321 /* Command queue */
2322 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2323 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2324 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2325
2326 enables = CR0_CMDQEN;
2327 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2328 ARM_SMMU_CR0ACK);
2329 if (ret) {
2330 dev_err(smmu->dev, "failed to enable command queue\n");
2331 return ret;
2332 }
2333
2334 /* Invalidate any cached configuration */
2335 cmd.opcode = CMDQ_OP_CFGI_ALL;
2336 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2337 cmd.opcode = CMDQ_OP_CMD_SYNC;
2338 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2339
2340 /* Invalidate any stale TLB entries */
2341 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2342 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2343 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2344 }
2345
2346 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2347 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2348 cmd.opcode = CMDQ_OP_CMD_SYNC;
2349 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2350
2351 /* Event queue */
2352 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2353 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2354 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2355
2356 enables |= CR0_EVTQEN;
2357 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2358 ARM_SMMU_CR0ACK);
2359 if (ret) {
2360 dev_err(smmu->dev, "failed to enable event queue\n");
2361 return ret;
2362 }
2363
2364 /* PRI queue */
2365 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2366 writeq_relaxed(smmu->priq.q.q_base,
2367 smmu->base + ARM_SMMU_PRIQ_BASE);
2368 writel_relaxed(smmu->priq.q.prod,
2369 smmu->base + ARM_SMMU_PRIQ_PROD);
2370 writel_relaxed(smmu->priq.q.cons,
2371 smmu->base + ARM_SMMU_PRIQ_CONS);
2372
2373 enables |= CR0_PRIQEN;
2374 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2375 ARM_SMMU_CR0ACK);
2376 if (ret) {
2377 dev_err(smmu->dev, "failed to enable PRI queue\n");
2378 return ret;
2379 }
2380 }
2381
2382 ret = arm_smmu_setup_irqs(smmu);
2383 if (ret) {
2384 dev_err(smmu->dev, "failed to setup irqs\n");
2385 return ret;
2386 }
2387
2388 /* Enable the SMMU interface */
2389 enables |= CR0_SMMUEN;
2390 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2391 ARM_SMMU_CR0ACK);
2392 if (ret) {
2393 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2394 return ret;
2395 }
2396
2397 return 0;
2398}
2399
2400static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2401{
2402 u32 reg;
2403 bool coherent;
2404 unsigned long pgsize_bitmap = 0;
2405
2406 /* IDR0 */
2407 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2408
2409 /* 2-level structures */
2410 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2411 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2412
2413 if (reg & IDR0_CD2L)
2414 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2415
2416 /*
2417 * Translation table endianness.
2418 * We currently require the same endianness as the CPU, but this
2419 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2420 */
2421 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2422 case IDR0_TTENDIAN_MIXED:
2423 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2424 break;
2425#ifdef __BIG_ENDIAN
2426 case IDR0_TTENDIAN_BE:
2427 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2428 break;
2429#else
2430 case IDR0_TTENDIAN_LE:
2431 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2432 break;
2433#endif
2434 default:
2435 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2436 return -ENXIO;
2437 }
2438
2439 /* Boolean feature flags */
2440 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2441 smmu->features |= ARM_SMMU_FEAT_PRI;
2442
2443 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2444 smmu->features |= ARM_SMMU_FEAT_ATS;
2445
2446 if (reg & IDR0_SEV)
2447 smmu->features |= ARM_SMMU_FEAT_SEV;
2448
2449 if (reg & IDR0_MSI)
2450 smmu->features |= ARM_SMMU_FEAT_MSI;
2451
2452 if (reg & IDR0_HYP)
2453 smmu->features |= ARM_SMMU_FEAT_HYP;
2454
2455 /*
2456 * The dma-coherent property is used in preference to the ID
2457 * register, but warn on mismatch.
2458 */
2459 coherent = of_dma_is_coherent(smmu->dev->of_node);
2460 if (coherent)
2461 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2462
2463 if (!!(reg & IDR0_COHACC) != coherent)
2464 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2465 coherent ? "true" : "false");
2466
2467 if (reg & IDR0_STALL_MODEL)
2468 smmu->features |= ARM_SMMU_FEAT_STALLS;
2469
2470 if (reg & IDR0_S1P)
2471 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2472
2473 if (reg & IDR0_S2P)
2474 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2475
2476 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2477 dev_err(smmu->dev, "no translation support!\n");
2478 return -ENXIO;
2479 }
2480
2481 /* We only support the AArch64 table format at present */
Will Deaconf0c453d2015-08-20 12:12:32 +01002482 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2483 case IDR0_TTF_AARCH32_64:
2484 smmu->ias = 40;
2485 /* Fallthrough */
2486 case IDR0_TTF_AARCH64:
2487 break;
2488 default:
Will Deacon48ec83b2015-05-27 17:25:59 +01002489 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2490 return -ENXIO;
2491 }
2492
2493 /* ASID/VMID sizes */
2494 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2495 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2496
2497 /* IDR1 */
2498 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2499 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2500 dev_err(smmu->dev, "embedded implementation not supported\n");
2501 return -ENXIO;
2502 }
2503
2504 /* Queue sizes, capped at 4k */
2505 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2506 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2507 if (!smmu->cmdq.q.max_n_shift) {
2508 /* Odd alignment restrictions on the base, so ignore for now */
2509 dev_err(smmu->dev, "unit-length command queue not supported\n");
2510 return -ENXIO;
2511 }
2512
2513 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2514 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2515 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2516 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2517
2518 /* SID/SSID sizes */
2519 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2520 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2521
2522 /* IDR5 */
2523 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2524
2525 /* Maximum number of outstanding stalls */
2526 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2527 & IDR5_STALL_MAX_MASK;
2528
2529 /* Page sizes */
2530 if (reg & IDR5_GRAN64K)
2531 pgsize_bitmap |= SZ_64K | SZ_512M;
2532 if (reg & IDR5_GRAN16K)
2533 pgsize_bitmap |= SZ_16K | SZ_32M;
2534 if (reg & IDR5_GRAN4K)
2535 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2536
2537 arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2538
2539 /* Output address size */
2540 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2541 case IDR5_OAS_32_BIT:
2542 smmu->oas = 32;
2543 break;
2544 case IDR5_OAS_36_BIT:
2545 smmu->oas = 36;
2546 break;
2547 case IDR5_OAS_40_BIT:
2548 smmu->oas = 40;
2549 break;
2550 case IDR5_OAS_42_BIT:
2551 smmu->oas = 42;
2552 break;
2553 case IDR5_OAS_44_BIT:
2554 smmu->oas = 44;
2555 break;
Will Deacon85430962015-08-03 10:35:40 +01002556 default:
2557 dev_info(smmu->dev,
2558 "unknown output address size. Truncating to 48-bit\n");
2559 /* Fallthrough */
Will Deacon48ec83b2015-05-27 17:25:59 +01002560 case IDR5_OAS_48_BIT:
2561 smmu->oas = 48;
Will Deacon48ec83b2015-05-27 17:25:59 +01002562 }
2563
2564 /* Set the DMA mask for our table walker */
2565 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2566 dev_warn(smmu->dev,
2567 "failed to set DMA mask for table walker\n");
2568
Will Deaconf0c453d2015-08-20 12:12:32 +01002569 smmu->ias = max(smmu->ias, smmu->oas);
Will Deacon48ec83b2015-05-27 17:25:59 +01002570
2571 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2572 smmu->ias, smmu->oas, smmu->features);
2573 return 0;
2574}
2575
2576static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2577{
2578 int irq, ret;
2579 struct resource *res;
2580 struct arm_smmu_device *smmu;
2581 struct device *dev = &pdev->dev;
2582
2583 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2584 if (!smmu) {
2585 dev_err(dev, "failed to allocate arm_smmu_device\n");
2586 return -ENOMEM;
2587 }
2588 smmu->dev = dev;
2589
2590 /* Base address */
2591 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2592 if (resource_size(res) + 1 < SZ_128K) {
2593 dev_err(dev, "MMIO region too small (%pr)\n", res);
2594 return -EINVAL;
2595 }
2596
2597 smmu->base = devm_ioremap_resource(dev, res);
2598 if (IS_ERR(smmu->base))
2599 return PTR_ERR(smmu->base);
2600
2601 /* Interrupt lines */
2602 irq = platform_get_irq_byname(pdev, "eventq");
2603 if (irq > 0)
2604 smmu->evtq.q.irq = irq;
2605
2606 irq = platform_get_irq_byname(pdev, "priq");
2607 if (irq > 0)
2608 smmu->priq.q.irq = irq;
2609
2610 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2611 if (irq > 0)
2612 smmu->cmdq.q.irq = irq;
2613
2614 irq = platform_get_irq_byname(pdev, "gerror");
2615 if (irq > 0)
2616 smmu->gerr_irq = irq;
2617
Zhen Lei5e929462015-07-07 04:30:18 +01002618 parse_driver_options(smmu);
2619
Will Deacon48ec83b2015-05-27 17:25:59 +01002620 /* Probe the h/w */
2621 ret = arm_smmu_device_probe(smmu);
2622 if (ret)
2623 return ret;
2624
2625 /* Initialise in-memory data structures */
2626 ret = arm_smmu_init_structures(smmu);
2627 if (ret)
2628 return ret;
2629
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002630 /* Record our private device structure */
2631 platform_set_drvdata(pdev, smmu);
2632
Will Deacon48ec83b2015-05-27 17:25:59 +01002633 /* Reset the device */
Will Deacon04fa26c2015-10-30 18:12:41 +00002634 return arm_smmu_device_reset(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002635}
2636
2637static int arm_smmu_device_remove(struct platform_device *pdev)
2638{
Will Deacon941a8022015-08-11 16:25:10 +01002639 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
Will Deacon48ec83b2015-05-27 17:25:59 +01002640
2641 arm_smmu_device_disable(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002642 return 0;
2643}
2644
2645static struct of_device_id arm_smmu_of_match[] = {
2646 { .compatible = "arm,smmu-v3", },
2647 { },
2648};
2649MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2650
2651static struct platform_driver arm_smmu_driver = {
2652 .driver = {
2653 .name = "arm-smmu-v3",
2654 .of_match_table = of_match_ptr(arm_smmu_of_match),
2655 },
2656 .probe = arm_smmu_device_dt_probe,
2657 .remove = arm_smmu_device_remove,
2658};
2659
2660static int __init arm_smmu_init(void)
2661{
2662 struct device_node *np;
2663 int ret;
2664
2665 np = of_find_matching_node(NULL, arm_smmu_of_match);
2666 if (!np)
2667 return 0;
2668
2669 of_node_put(np);
2670
2671 ret = platform_driver_register(&arm_smmu_driver);
2672 if (ret)
2673 return ret;
2674
2675 return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2676}
2677
2678static void __exit arm_smmu_exit(void)
2679{
2680 return platform_driver_unregister(&arm_smmu_driver);
2681}
2682
2683subsys_initcall(arm_smmu_init);
2684module_exit(arm_smmu_exit);
2685
2686MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2687MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2688MODULE_LICENSE("GPL v2");