blob: 970d78dcac53ee2683924f172a0ea981343210e6 [file] [log] [blame]
Will Deacon48ec83b2015-05-27 17:25:59 +01001/*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23#include <linux/delay.h>
24#include <linux/err.h>
25#include <linux/interrupt.h>
26#include <linux/iommu.h>
27#include <linux/iopoll.h>
28#include <linux/module.h>
29#include <linux/of.h>
30#include <linux/of_address.h>
Will Deacon941a8022015-08-11 16:25:10 +010031#include <linux/of_platform.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010032#include <linux/pci.h>
33#include <linux/platform_device.h>
34
35#include "io-pgtable.h"
36
37/* MMIO registers */
38#define ARM_SMMU_IDR0 0x0
39#define IDR0_ST_LVL_SHIFT 27
40#define IDR0_ST_LVL_MASK 0x3
41#define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
42#define IDR0_STALL_MODEL (3 << 24)
43#define IDR0_TTENDIAN_SHIFT 21
44#define IDR0_TTENDIAN_MASK 0x3
45#define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
46#define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
47#define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
48#define IDR0_CD2L (1 << 19)
49#define IDR0_VMID16 (1 << 18)
50#define IDR0_PRI (1 << 16)
51#define IDR0_SEV (1 << 14)
52#define IDR0_MSI (1 << 13)
53#define IDR0_ASID16 (1 << 12)
54#define IDR0_ATS (1 << 10)
55#define IDR0_HYP (1 << 9)
56#define IDR0_COHACC (1 << 4)
57#define IDR0_TTF_SHIFT 2
58#define IDR0_TTF_MASK 0x3
59#define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
60#define IDR0_S1P (1 << 1)
61#define IDR0_S2P (1 << 0)
62
63#define ARM_SMMU_IDR1 0x4
64#define IDR1_TABLES_PRESET (1 << 30)
65#define IDR1_QUEUES_PRESET (1 << 29)
66#define IDR1_REL (1 << 28)
67#define IDR1_CMDQ_SHIFT 21
68#define IDR1_CMDQ_MASK 0x1f
69#define IDR1_EVTQ_SHIFT 16
70#define IDR1_EVTQ_MASK 0x1f
71#define IDR1_PRIQ_SHIFT 11
72#define IDR1_PRIQ_MASK 0x1f
73#define IDR1_SSID_SHIFT 6
74#define IDR1_SSID_MASK 0x1f
75#define IDR1_SID_SHIFT 0
76#define IDR1_SID_MASK 0x3f
77
78#define ARM_SMMU_IDR5 0x14
79#define IDR5_STALL_MAX_SHIFT 16
80#define IDR5_STALL_MAX_MASK 0xffff
81#define IDR5_GRAN64K (1 << 6)
82#define IDR5_GRAN16K (1 << 5)
83#define IDR5_GRAN4K (1 << 4)
84#define IDR5_OAS_SHIFT 0
85#define IDR5_OAS_MASK 0x7
86#define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
87#define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
88#define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
89#define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
90#define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
91#define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
92
93#define ARM_SMMU_CR0 0x20
94#define CR0_CMDQEN (1 << 3)
95#define CR0_EVTQEN (1 << 2)
96#define CR0_PRIQEN (1 << 1)
97#define CR0_SMMUEN (1 << 0)
98
99#define ARM_SMMU_CR0ACK 0x24
100
101#define ARM_SMMU_CR1 0x28
102#define CR1_SH_NSH 0
103#define CR1_SH_OSH 2
104#define CR1_SH_ISH 3
105#define CR1_CACHE_NC 0
106#define CR1_CACHE_WB 1
107#define CR1_CACHE_WT 2
108#define CR1_TABLE_SH_SHIFT 10
109#define CR1_TABLE_OC_SHIFT 8
110#define CR1_TABLE_IC_SHIFT 6
111#define CR1_QUEUE_SH_SHIFT 4
112#define CR1_QUEUE_OC_SHIFT 2
113#define CR1_QUEUE_IC_SHIFT 0
114
115#define ARM_SMMU_CR2 0x2c
116#define CR2_PTM (1 << 2)
117#define CR2_RECINVSID (1 << 1)
118#define CR2_E2H (1 << 0)
119
120#define ARM_SMMU_IRQ_CTRL 0x50
121#define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
Marc Zyngierccd63852015-07-15 11:55:18 +0100122#define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
Will Deacon48ec83b2015-05-27 17:25:59 +0100123#define IRQ_CTRL_GERROR_IRQEN (1 << 0)
124
125#define ARM_SMMU_IRQ_CTRLACK 0x54
126
127#define ARM_SMMU_GERROR 0x60
128#define GERROR_SFM_ERR (1 << 8)
129#define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
130#define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
131#define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
132#define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
133#define GERROR_PRIQ_ABT_ERR (1 << 3)
134#define GERROR_EVTQ_ABT_ERR (1 << 2)
135#define GERROR_CMDQ_ERR (1 << 0)
136#define GERROR_ERR_MASK 0xfd
137
138#define ARM_SMMU_GERRORN 0x64
139
140#define ARM_SMMU_GERROR_IRQ_CFG0 0x68
141#define ARM_SMMU_GERROR_IRQ_CFG1 0x70
142#define ARM_SMMU_GERROR_IRQ_CFG2 0x74
143
144#define ARM_SMMU_STRTAB_BASE 0x80
145#define STRTAB_BASE_RA (1UL << 62)
146#define STRTAB_BASE_ADDR_SHIFT 6
147#define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
148
149#define ARM_SMMU_STRTAB_BASE_CFG 0x88
150#define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
151#define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
152#define STRTAB_BASE_CFG_SPLIT_SHIFT 6
153#define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
154#define STRTAB_BASE_CFG_FMT_SHIFT 16
155#define STRTAB_BASE_CFG_FMT_MASK 0x3
156#define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
157#define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
158
159#define ARM_SMMU_CMDQ_BASE 0x90
160#define ARM_SMMU_CMDQ_PROD 0x98
161#define ARM_SMMU_CMDQ_CONS 0x9c
162
163#define ARM_SMMU_EVTQ_BASE 0xa0
164#define ARM_SMMU_EVTQ_PROD 0x100a8
165#define ARM_SMMU_EVTQ_CONS 0x100ac
166#define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
167#define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
168#define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
169
170#define ARM_SMMU_PRIQ_BASE 0xc0
171#define ARM_SMMU_PRIQ_PROD 0x100c8
172#define ARM_SMMU_PRIQ_CONS 0x100cc
173#define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
174#define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
175#define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
176
177/* Common MSI config fields */
Will Deacon48ec83b2015-05-27 17:25:59 +0100178#define MSI_CFG0_ADDR_SHIFT 2
179#define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
Marc Zyngierec11d632015-07-15 11:55:19 +0100180#define MSI_CFG2_SH_SHIFT 4
181#define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
182#define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
183#define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
184#define MSI_CFG2_MEMATTR_SHIFT 0
185#define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +0100186
187#define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
188#define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
189#define Q_OVERFLOW_FLAG (1 << 31)
190#define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
191#define Q_ENT(q, p) ((q)->base + \
192 Q_IDX(q, p) * (q)->ent_dwords)
193
194#define Q_BASE_RWA (1UL << 62)
195#define Q_BASE_ADDR_SHIFT 5
196#define Q_BASE_ADDR_MASK 0xfffffffffffUL
197#define Q_BASE_LOG2SIZE_SHIFT 0
198#define Q_BASE_LOG2SIZE_MASK 0x1fUL
199
200/*
201 * Stream table.
202 *
203 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
Zhen Leie2f4c232015-07-07 04:30:17 +0100204 * 2lvl: 128k L1 entries,
205 * 256 lazy entries per table (each table covers a PCI bus)
Will Deacon48ec83b2015-05-27 17:25:59 +0100206 */
Zhen Leie2f4c232015-07-07 04:30:17 +0100207#define STRTAB_L1_SZ_SHIFT 20
Will Deacon48ec83b2015-05-27 17:25:59 +0100208#define STRTAB_SPLIT 8
209
210#define STRTAB_L1_DESC_DWORDS 1
211#define STRTAB_L1_DESC_SPAN_SHIFT 0
212#define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
213#define STRTAB_L1_DESC_L2PTR_SHIFT 6
214#define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
215
216#define STRTAB_STE_DWORDS 8
217#define STRTAB_STE_0_V (1UL << 0)
218#define STRTAB_STE_0_CFG_SHIFT 1
219#define STRTAB_STE_0_CFG_MASK 0x7UL
220#define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
221#define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
222#define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
223#define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
224
225#define STRTAB_STE_0_S1FMT_SHIFT 4
226#define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
227#define STRTAB_STE_0_S1CTXPTR_SHIFT 6
228#define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
229#define STRTAB_STE_0_S1CDMAX_SHIFT 59
230#define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
231
232#define STRTAB_STE_1_S1C_CACHE_NC 0UL
233#define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
234#define STRTAB_STE_1_S1C_CACHE_WT 2UL
235#define STRTAB_STE_1_S1C_CACHE_WB 3UL
236#define STRTAB_STE_1_S1C_SH_NSH 0UL
237#define STRTAB_STE_1_S1C_SH_OSH 2UL
238#define STRTAB_STE_1_S1C_SH_ISH 3UL
239#define STRTAB_STE_1_S1CIR_SHIFT 2
240#define STRTAB_STE_1_S1COR_SHIFT 4
241#define STRTAB_STE_1_S1CSH_SHIFT 6
242
243#define STRTAB_STE_1_S1STALLD (1UL << 27)
244
245#define STRTAB_STE_1_EATS_ABT 0UL
246#define STRTAB_STE_1_EATS_TRANS 1UL
247#define STRTAB_STE_1_EATS_S1CHK 2UL
248#define STRTAB_STE_1_EATS_SHIFT 28
249
250#define STRTAB_STE_1_STRW_NSEL1 0UL
251#define STRTAB_STE_1_STRW_EL2 2UL
252#define STRTAB_STE_1_STRW_SHIFT 30
253
254#define STRTAB_STE_2_S2VMID_SHIFT 0
255#define STRTAB_STE_2_S2VMID_MASK 0xffffUL
256#define STRTAB_STE_2_VTCR_SHIFT 32
257#define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
258#define STRTAB_STE_2_S2AA64 (1UL << 51)
259#define STRTAB_STE_2_S2ENDI (1UL << 52)
260#define STRTAB_STE_2_S2PTW (1UL << 54)
261#define STRTAB_STE_2_S2R (1UL << 58)
262
263#define STRTAB_STE_3_S2TTB_SHIFT 4
264#define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
265
266/* Context descriptor (stage-1 only) */
267#define CTXDESC_CD_DWORDS 8
268#define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
269#define ARM64_TCR_T0SZ_SHIFT 0
270#define ARM64_TCR_T0SZ_MASK 0x1fUL
271#define CTXDESC_CD_0_TCR_TG0_SHIFT 6
272#define ARM64_TCR_TG0_SHIFT 14
273#define ARM64_TCR_TG0_MASK 0x3UL
274#define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
Zhen Lei5d58c622015-06-26 09:32:59 +0100275#define ARM64_TCR_IRGN0_SHIFT 8
Will Deacon48ec83b2015-05-27 17:25:59 +0100276#define ARM64_TCR_IRGN0_MASK 0x3UL
277#define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
Zhen Lei5d58c622015-06-26 09:32:59 +0100278#define ARM64_TCR_ORGN0_SHIFT 10
Will Deacon48ec83b2015-05-27 17:25:59 +0100279#define ARM64_TCR_ORGN0_MASK 0x3UL
280#define CTXDESC_CD_0_TCR_SH0_SHIFT 12
281#define ARM64_TCR_SH0_SHIFT 12
282#define ARM64_TCR_SH0_MASK 0x3UL
283#define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
284#define ARM64_TCR_EPD0_SHIFT 7
285#define ARM64_TCR_EPD0_MASK 0x1UL
286#define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
287#define ARM64_TCR_EPD1_SHIFT 23
288#define ARM64_TCR_EPD1_MASK 0x1UL
289
290#define CTXDESC_CD_0_ENDI (1UL << 15)
291#define CTXDESC_CD_0_V (1UL << 31)
292
293#define CTXDESC_CD_0_TCR_IPS_SHIFT 32
294#define ARM64_TCR_IPS_SHIFT 32
295#define ARM64_TCR_IPS_MASK 0x7UL
296#define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
297#define ARM64_TCR_TBI0_SHIFT 37
298#define ARM64_TCR_TBI0_MASK 0x1UL
299
300#define CTXDESC_CD_0_AA64 (1UL << 41)
301#define CTXDESC_CD_0_R (1UL << 45)
302#define CTXDESC_CD_0_A (1UL << 46)
303#define CTXDESC_CD_0_ASET_SHIFT 47
304#define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
305#define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
306#define CTXDESC_CD_0_ASID_SHIFT 48
307#define CTXDESC_CD_0_ASID_MASK 0xffffUL
308
309#define CTXDESC_CD_1_TTB0_SHIFT 4
310#define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
311
312#define CTXDESC_CD_3_MAIR_SHIFT 0
313
314/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
315#define ARM_SMMU_TCR2CD(tcr, fld) \
316 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
317 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
318
319/* Command queue */
320#define CMDQ_ENT_DWORDS 2
321#define CMDQ_MAX_SZ_SHIFT 8
322
323#define CMDQ_ERR_SHIFT 24
324#define CMDQ_ERR_MASK 0x7f
325#define CMDQ_ERR_CERROR_NONE_IDX 0
326#define CMDQ_ERR_CERROR_ILL_IDX 1
327#define CMDQ_ERR_CERROR_ABT_IDX 2
328
329#define CMDQ_0_OP_SHIFT 0
330#define CMDQ_0_OP_MASK 0xffUL
331#define CMDQ_0_SSV (1UL << 11)
332
333#define CMDQ_PREFETCH_0_SID_SHIFT 32
334#define CMDQ_PREFETCH_1_SIZE_SHIFT 0
335#define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
336
337#define CMDQ_CFGI_0_SID_SHIFT 32
338#define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
339#define CMDQ_CFGI_1_LEAF (1UL << 0)
340#define CMDQ_CFGI_1_RANGE_SHIFT 0
341#define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
342
343#define CMDQ_TLBI_0_VMID_SHIFT 32
344#define CMDQ_TLBI_0_ASID_SHIFT 48
345#define CMDQ_TLBI_1_LEAF (1UL << 0)
346#define CMDQ_TLBI_1_ADDR_MASK ~0xfffUL
347
348#define CMDQ_PRI_0_SSID_SHIFT 12
349#define CMDQ_PRI_0_SSID_MASK 0xfffffUL
350#define CMDQ_PRI_0_SID_SHIFT 32
351#define CMDQ_PRI_0_SID_MASK 0xffffffffUL
352#define CMDQ_PRI_1_GRPID_SHIFT 0
353#define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
354#define CMDQ_PRI_1_RESP_SHIFT 12
355#define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
356#define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
357#define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
358
359#define CMDQ_SYNC_0_CS_SHIFT 12
360#define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
361#define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
362
363/* Event queue */
364#define EVTQ_ENT_DWORDS 4
365#define EVTQ_MAX_SZ_SHIFT 7
366
367#define EVTQ_0_ID_SHIFT 0
368#define EVTQ_0_ID_MASK 0xffUL
369
370/* PRI queue */
371#define PRIQ_ENT_DWORDS 2
372#define PRIQ_MAX_SZ_SHIFT 8
373
374#define PRIQ_0_SID_SHIFT 0
375#define PRIQ_0_SID_MASK 0xffffffffUL
376#define PRIQ_0_SSID_SHIFT 32
377#define PRIQ_0_SSID_MASK 0xfffffUL
378#define PRIQ_0_OF (1UL << 57)
379#define PRIQ_0_PERM_PRIV (1UL << 58)
380#define PRIQ_0_PERM_EXEC (1UL << 59)
381#define PRIQ_0_PERM_READ (1UL << 60)
382#define PRIQ_0_PERM_WRITE (1UL << 61)
383#define PRIQ_0_PRG_LAST (1UL << 62)
384#define PRIQ_0_SSID_V (1UL << 63)
385
386#define PRIQ_1_PRG_IDX_SHIFT 0
387#define PRIQ_1_PRG_IDX_MASK 0x1ffUL
388#define PRIQ_1_ADDR_SHIFT 12
389#define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
390
391/* High-level queue structures */
392#define ARM_SMMU_POLL_TIMEOUT_US 100
393
394static bool disable_bypass;
395module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
396MODULE_PARM_DESC(disable_bypass,
397 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
398
399enum pri_resp {
400 PRI_RESP_DENY,
401 PRI_RESP_FAIL,
402 PRI_RESP_SUCC,
403};
404
405struct arm_smmu_cmdq_ent {
406 /* Common fields */
407 u8 opcode;
408 bool substream_valid;
409
410 /* Command-specific fields */
411 union {
412 #define CMDQ_OP_PREFETCH_CFG 0x1
413 struct {
414 u32 sid;
415 u8 size;
416 u64 addr;
417 } prefetch;
418
419 #define CMDQ_OP_CFGI_STE 0x3
420 #define CMDQ_OP_CFGI_ALL 0x4
421 struct {
422 u32 sid;
423 union {
424 bool leaf;
425 u8 span;
426 };
427 } cfgi;
428
429 #define CMDQ_OP_TLBI_NH_ASID 0x11
430 #define CMDQ_OP_TLBI_NH_VA 0x12
431 #define CMDQ_OP_TLBI_EL2_ALL 0x20
432 #define CMDQ_OP_TLBI_S12_VMALL 0x28
433 #define CMDQ_OP_TLBI_S2_IPA 0x2a
434 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
435 struct {
436 u16 asid;
437 u16 vmid;
438 bool leaf;
439 u64 addr;
440 } tlbi;
441
442 #define CMDQ_OP_PRI_RESP 0x41
443 struct {
444 u32 sid;
445 u32 ssid;
446 u16 grpid;
447 enum pri_resp resp;
448 } pri;
449
450 #define CMDQ_OP_CMD_SYNC 0x46
451 };
452};
453
454struct arm_smmu_queue {
455 int irq; /* Wired interrupt */
456
457 __le64 *base;
458 dma_addr_t base_dma;
459 u64 q_base;
460
461 size_t ent_dwords;
462 u32 max_n_shift;
463 u32 prod;
464 u32 cons;
465
466 u32 __iomem *prod_reg;
467 u32 __iomem *cons_reg;
468};
469
470struct arm_smmu_cmdq {
471 struct arm_smmu_queue q;
472 spinlock_t lock;
473};
474
475struct arm_smmu_evtq {
476 struct arm_smmu_queue q;
477 u32 max_stalls;
478};
479
480struct arm_smmu_priq {
481 struct arm_smmu_queue q;
482};
483
484/* High-level stream table and context descriptor structures */
485struct arm_smmu_strtab_l1_desc {
486 u8 span;
487
488 __le64 *l2ptr;
489 dma_addr_t l2ptr_dma;
490};
491
492struct arm_smmu_s1_cfg {
493 __le64 *cdptr;
494 dma_addr_t cdptr_dma;
495
496 struct arm_smmu_ctx_desc {
497 u16 asid;
498 u64 ttbr;
499 u64 tcr;
500 u64 mair;
501 } cd;
502};
503
504struct arm_smmu_s2_cfg {
505 u16 vmid;
506 u64 vttbr;
507 u64 vtcr;
508};
509
510struct arm_smmu_strtab_ent {
511 bool valid;
512
513 bool bypass; /* Overrides s1/s2 config */
514 struct arm_smmu_s1_cfg *s1_cfg;
515 struct arm_smmu_s2_cfg *s2_cfg;
516};
517
518struct arm_smmu_strtab_cfg {
519 __le64 *strtab;
520 dma_addr_t strtab_dma;
521 struct arm_smmu_strtab_l1_desc *l1_desc;
522 unsigned int num_l1_ents;
523
524 u64 strtab_base;
525 u32 strtab_base_cfg;
526};
527
528/* An SMMUv3 instance */
529struct arm_smmu_device {
530 struct device *dev;
531 void __iomem *base;
532
533#define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
534#define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
535#define ARM_SMMU_FEAT_TT_LE (1 << 2)
536#define ARM_SMMU_FEAT_TT_BE (1 << 3)
537#define ARM_SMMU_FEAT_PRI (1 << 4)
538#define ARM_SMMU_FEAT_ATS (1 << 5)
539#define ARM_SMMU_FEAT_SEV (1 << 6)
540#define ARM_SMMU_FEAT_MSI (1 << 7)
541#define ARM_SMMU_FEAT_COHERENCY (1 << 8)
542#define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
543#define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
544#define ARM_SMMU_FEAT_STALLS (1 << 11)
545#define ARM_SMMU_FEAT_HYP (1 << 12)
546 u32 features;
547
Zhen Lei5e929462015-07-07 04:30:18 +0100548#define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
549 u32 options;
550
Will Deacon48ec83b2015-05-27 17:25:59 +0100551 struct arm_smmu_cmdq cmdq;
552 struct arm_smmu_evtq evtq;
553 struct arm_smmu_priq priq;
554
555 int gerr_irq;
556
557 unsigned long ias; /* IPA */
558 unsigned long oas; /* PA */
559
560#define ARM_SMMU_MAX_ASIDS (1 << 16)
561 unsigned int asid_bits;
562 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
563
564#define ARM_SMMU_MAX_VMIDS (1 << 16)
565 unsigned int vmid_bits;
566 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
567
568 unsigned int ssid_bits;
569 unsigned int sid_bits;
570
571 struct arm_smmu_strtab_cfg strtab_cfg;
Will Deacon48ec83b2015-05-27 17:25:59 +0100572};
573
574/* SMMU private data for an IOMMU group */
575struct arm_smmu_group {
576 struct arm_smmu_device *smmu;
577 struct arm_smmu_domain *domain;
578 int num_sids;
579 u32 *sids;
580 struct arm_smmu_strtab_ent ste;
581};
582
583/* SMMU private data for an IOMMU domain */
584enum arm_smmu_domain_stage {
585 ARM_SMMU_DOMAIN_S1 = 0,
586 ARM_SMMU_DOMAIN_S2,
587 ARM_SMMU_DOMAIN_NESTED,
588};
589
590struct arm_smmu_domain {
591 struct arm_smmu_device *smmu;
592 struct mutex init_mutex; /* Protects smmu pointer */
593
594 struct io_pgtable_ops *pgtbl_ops;
595 spinlock_t pgtbl_lock;
596
597 enum arm_smmu_domain_stage stage;
598 union {
599 struct arm_smmu_s1_cfg s1_cfg;
600 struct arm_smmu_s2_cfg s2_cfg;
601 };
602
603 struct iommu_domain domain;
604};
605
Zhen Lei5e929462015-07-07 04:30:18 +0100606struct arm_smmu_option_prop {
607 u32 opt;
608 const char *prop;
609};
610
611static struct arm_smmu_option_prop arm_smmu_options[] = {
612 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
613 { 0, NULL},
614};
615
Will Deacon48ec83b2015-05-27 17:25:59 +0100616static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
617{
618 return container_of(dom, struct arm_smmu_domain, domain);
619}
620
Zhen Lei5e929462015-07-07 04:30:18 +0100621static void parse_driver_options(struct arm_smmu_device *smmu)
622{
623 int i = 0;
624
625 do {
626 if (of_property_read_bool(smmu->dev->of_node,
627 arm_smmu_options[i].prop)) {
628 smmu->options |= arm_smmu_options[i].opt;
629 dev_notice(smmu->dev, "option %s\n",
630 arm_smmu_options[i].prop);
631 }
632 } while (arm_smmu_options[++i].opt);
633}
634
Will Deacon48ec83b2015-05-27 17:25:59 +0100635/* Low-level queue manipulation functions */
636static bool queue_full(struct arm_smmu_queue *q)
637{
638 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
639 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
640}
641
642static bool queue_empty(struct arm_smmu_queue *q)
643{
644 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
645 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
646}
647
648static void queue_sync_cons(struct arm_smmu_queue *q)
649{
650 q->cons = readl_relaxed(q->cons_reg);
651}
652
653static void queue_inc_cons(struct arm_smmu_queue *q)
654{
655 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
656
657 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
658 writel(q->cons, q->cons_reg);
659}
660
661static int queue_sync_prod(struct arm_smmu_queue *q)
662{
663 int ret = 0;
664 u32 prod = readl_relaxed(q->prod_reg);
665
666 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
667 ret = -EOVERFLOW;
668
669 q->prod = prod;
670 return ret;
671}
672
673static void queue_inc_prod(struct arm_smmu_queue *q)
674{
675 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
676
677 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
678 writel(q->prod, q->prod_reg);
679}
680
681static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
682{
683 if (Q_WRP(q, q->cons) == Q_WRP(q, until))
684 return Q_IDX(q, q->cons) < Q_IDX(q, until);
685
686 return Q_IDX(q, q->cons) >= Q_IDX(q, until);
687}
688
689static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
690{
691 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
692
693 while (queue_sync_cons(q), __queue_cons_before(q, until)) {
694 if (ktime_compare(ktime_get(), timeout) > 0)
695 return -ETIMEDOUT;
696
697 if (wfe) {
698 wfe();
699 } else {
700 cpu_relax();
701 udelay(1);
702 }
703 }
704
705 return 0;
706}
707
708static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
709{
710 int i;
711
712 for (i = 0; i < n_dwords; ++i)
713 *dst++ = cpu_to_le64(*src++);
714}
715
716static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
717{
718 if (queue_full(q))
719 return -ENOSPC;
720
721 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
722 queue_inc_prod(q);
723 return 0;
724}
725
726static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
727{
728 int i;
729
730 for (i = 0; i < n_dwords; ++i)
731 *dst++ = le64_to_cpu(*src++);
732}
733
734static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
735{
736 if (queue_empty(q))
737 return -EAGAIN;
738
739 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
740 queue_inc_cons(q);
741 return 0;
742}
743
744/* High-level queue accessors */
745static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
746{
747 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
748 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
749
750 switch (ent->opcode) {
751 case CMDQ_OP_TLBI_EL2_ALL:
752 case CMDQ_OP_TLBI_NSNH_ALL:
753 break;
754 case CMDQ_OP_PREFETCH_CFG:
755 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
756 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
757 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
758 break;
759 case CMDQ_OP_CFGI_STE:
760 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
761 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
762 break;
763 case CMDQ_OP_CFGI_ALL:
764 /* Cover the entire SID range */
765 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
766 break;
767 case CMDQ_OP_TLBI_NH_VA:
768 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
769 /* Fallthrough */
770 case CMDQ_OP_TLBI_S2_IPA:
771 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
772 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
773 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_ADDR_MASK;
774 break;
775 case CMDQ_OP_TLBI_NH_ASID:
776 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
777 /* Fallthrough */
778 case CMDQ_OP_TLBI_S12_VMALL:
779 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
780 break;
781 case CMDQ_OP_PRI_RESP:
782 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
783 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
784 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
785 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
786 switch (ent->pri.resp) {
787 case PRI_RESP_DENY:
788 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
789 break;
790 case PRI_RESP_FAIL:
791 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
792 break;
793 case PRI_RESP_SUCC:
794 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
795 break;
796 default:
797 return -EINVAL;
798 }
799 break;
800 case CMDQ_OP_CMD_SYNC:
801 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
802 break;
803 default:
804 return -ENOENT;
805 }
806
807 return 0;
808}
809
810static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
811{
812 static const char *cerror_str[] = {
813 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
814 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
815 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
816 };
817
818 int i;
819 u64 cmd[CMDQ_ENT_DWORDS];
820 struct arm_smmu_queue *q = &smmu->cmdq.q;
821 u32 cons = readl_relaxed(q->cons_reg);
822 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
823 struct arm_smmu_cmdq_ent cmd_sync = {
824 .opcode = CMDQ_OP_CMD_SYNC,
825 };
826
827 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
828 cerror_str[idx]);
829
830 switch (idx) {
831 case CMDQ_ERR_CERROR_ILL_IDX:
832 break;
833 case CMDQ_ERR_CERROR_ABT_IDX:
834 dev_err(smmu->dev, "retrying command fetch\n");
835 case CMDQ_ERR_CERROR_NONE_IDX:
836 return;
837 }
838
839 /*
840 * We may have concurrent producers, so we need to be careful
841 * not to touch any of the shadow cmdq state.
842 */
843 queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
844 dev_err(smmu->dev, "skipping command in error state:\n");
845 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
846 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
847
848 /* Convert the erroneous command into a CMD_SYNC */
849 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
850 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
851 return;
852 }
853
854 queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
855}
856
857static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
858 struct arm_smmu_cmdq_ent *ent)
859{
860 u32 until;
861 u64 cmd[CMDQ_ENT_DWORDS];
862 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
863 struct arm_smmu_queue *q = &smmu->cmdq.q;
864
865 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
866 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
867 ent->opcode);
868 return;
869 }
870
871 spin_lock(&smmu->cmdq.lock);
872 while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
873 /*
874 * Keep the queue locked, otherwise the producer could wrap
875 * twice and we could see a future consumer pointer that looks
876 * like it's behind us.
877 */
878 if (queue_poll_cons(q, until, wfe))
879 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
880 }
881
882 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
883 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
884 spin_unlock(&smmu->cmdq.lock);
885}
886
887/* Context descriptor manipulation functions */
888static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
889{
890 u64 val = 0;
891
892 /* Repack the TCR. Just care about TTBR0 for now */
893 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
894 val |= ARM_SMMU_TCR2CD(tcr, TG0);
895 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
896 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
897 val |= ARM_SMMU_TCR2CD(tcr, SH0);
898 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
899 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
900 val |= ARM_SMMU_TCR2CD(tcr, IPS);
901 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
902
903 return val;
904}
905
906static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
907 struct arm_smmu_s1_cfg *cfg)
908{
909 u64 val;
910
911 /*
912 * We don't need to issue any invalidation here, as we'll invalidate
913 * the STE when installing the new entry anyway.
914 */
915 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
916#ifdef __BIG_ENDIAN
917 CTXDESC_CD_0_ENDI |
918#endif
919 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
920 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
921 CTXDESC_CD_0_V;
922 cfg->cdptr[0] = cpu_to_le64(val);
923
924 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
925 cfg->cdptr[1] = cpu_to_le64(val);
926
927 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
928}
929
930/* Stream table manipulation functions */
931static void
932arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
933{
934 u64 val = 0;
935
936 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
937 << STRTAB_L1_DESC_SPAN_SHIFT;
938 val |= desc->l2ptr_dma &
939 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
940
941 *dst = cpu_to_le64(val);
942}
943
944static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
945{
946 struct arm_smmu_cmdq_ent cmd = {
947 .opcode = CMDQ_OP_CFGI_STE,
948 .cfgi = {
949 .sid = sid,
950 .leaf = true,
951 },
952 };
953
954 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
955 cmd.opcode = CMDQ_OP_CMD_SYNC;
956 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
957}
958
959static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
960 __le64 *dst, struct arm_smmu_strtab_ent *ste)
961{
962 /*
963 * This is hideously complicated, but we only really care about
964 * three cases at the moment:
965 *
966 * 1. Invalid (all zero) -> bypass (init)
967 * 2. Bypass -> translation (attach)
968 * 3. Translation -> bypass (detach)
969 *
970 * Given that we can't update the STE atomically and the SMMU
971 * doesn't read the thing in a defined order, that leaves us
972 * with the following maintenance requirements:
973 *
974 * 1. Update Config, return (init time STEs aren't live)
975 * 2. Write everything apart from dword 0, sync, write dword 0, sync
976 * 3. Update Config, sync
977 */
978 u64 val = le64_to_cpu(dst[0]);
979 bool ste_live = false;
980 struct arm_smmu_cmdq_ent prefetch_cmd = {
981 .opcode = CMDQ_OP_PREFETCH_CFG,
982 .prefetch = {
983 .sid = sid,
984 },
985 };
986
987 if (val & STRTAB_STE_0_V) {
988 u64 cfg;
989
990 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
991 switch (cfg) {
992 case STRTAB_STE_0_CFG_BYPASS:
993 break;
994 case STRTAB_STE_0_CFG_S1_TRANS:
995 case STRTAB_STE_0_CFG_S2_TRANS:
996 ste_live = true;
997 break;
998 default:
999 BUG(); /* STE corruption */
1000 }
1001 }
1002
1003 /* Nuke the existing Config, as we're going to rewrite it */
1004 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1005
1006 if (ste->valid)
1007 val |= STRTAB_STE_0_V;
1008 else
1009 val &= ~STRTAB_STE_0_V;
1010
1011 if (ste->bypass) {
1012 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1013 : STRTAB_STE_0_CFG_BYPASS;
1014 dst[0] = cpu_to_le64(val);
1015 dst[2] = 0; /* Nuke the VMID */
1016 if (ste_live)
1017 arm_smmu_sync_ste_for_sid(smmu, sid);
1018 return;
1019 }
1020
1021 if (ste->s1_cfg) {
1022 BUG_ON(ste_live);
1023 dst[1] = cpu_to_le64(
1024 STRTAB_STE_1_S1C_CACHE_WBRA
1025 << STRTAB_STE_1_S1CIR_SHIFT |
1026 STRTAB_STE_1_S1C_CACHE_WBRA
1027 << STRTAB_STE_1_S1COR_SHIFT |
1028 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1029 STRTAB_STE_1_S1STALLD |
1030#ifdef CONFIG_PCI_ATS
1031 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1032#endif
1033 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1034
1035 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1036 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1037 STRTAB_STE_0_CFG_S1_TRANS;
1038
1039 }
1040
1041 if (ste->s2_cfg) {
1042 BUG_ON(ste_live);
1043 dst[2] = cpu_to_le64(
1044 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1045 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1046 << STRTAB_STE_2_VTCR_SHIFT |
1047#ifdef __BIG_ENDIAN
1048 STRTAB_STE_2_S2ENDI |
1049#endif
1050 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1051 STRTAB_STE_2_S2R);
1052
1053 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1054 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1055
1056 val |= STRTAB_STE_0_CFG_S2_TRANS;
1057 }
1058
1059 arm_smmu_sync_ste_for_sid(smmu, sid);
1060 dst[0] = cpu_to_le64(val);
1061 arm_smmu_sync_ste_for_sid(smmu, sid);
1062
1063 /* It's likely that we'll want to use the new STE soon */
Zhen Lei5e929462015-07-07 04:30:18 +01001064 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1065 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
Will Deacon48ec83b2015-05-27 17:25:59 +01001066}
1067
1068static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1069{
1070 unsigned int i;
1071 struct arm_smmu_strtab_ent ste = {
1072 .valid = true,
1073 .bypass = true,
1074 };
1075
1076 for (i = 0; i < nent; ++i) {
1077 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1078 strtab += STRTAB_STE_DWORDS;
1079 }
1080}
1081
1082static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1083{
1084 size_t size;
1085 void *strtab;
1086 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1087 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1088
1089 if (desc->l2ptr)
1090 return 0;
1091
1092 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
Zhen Lei69146e72015-06-26 09:32:58 +01001093 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
Will Deacon48ec83b2015-05-27 17:25:59 +01001094
1095 desc->span = STRTAB_SPLIT + 1;
1096 desc->l2ptr = dma_zalloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1097 GFP_KERNEL);
1098 if (!desc->l2ptr) {
1099 dev_err(smmu->dev,
1100 "failed to allocate l2 stream table for SID %u\n",
1101 sid);
1102 return -ENOMEM;
1103 }
1104
1105 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1106 arm_smmu_write_strtab_l1_desc(strtab, desc);
1107 return 0;
1108}
1109
1110/* IRQ and event handlers */
1111static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1112{
1113 int i;
1114 struct arm_smmu_device *smmu = dev;
1115 struct arm_smmu_queue *q = &smmu->evtq.q;
1116 u64 evt[EVTQ_ENT_DWORDS];
1117
1118 while (!queue_remove_raw(q, evt)) {
1119 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1120
1121 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1122 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1123 dev_info(smmu->dev, "\t0x%016llx\n",
1124 (unsigned long long)evt[i]);
1125 }
1126
1127 /* Sync our overflow flag, as we believe we're up to speed */
1128 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1129 return IRQ_HANDLED;
1130}
1131
1132static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1133{
1134 irqreturn_t ret = IRQ_WAKE_THREAD;
1135 struct arm_smmu_device *smmu = dev;
1136 struct arm_smmu_queue *q = &smmu->evtq.q;
1137
1138 /*
1139 * Not much we can do on overflow, so scream and pretend we're
1140 * trying harder.
1141 */
1142 if (queue_sync_prod(q) == -EOVERFLOW)
1143 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1144 else if (queue_empty(q))
1145 ret = IRQ_NONE;
1146
1147 return ret;
1148}
1149
1150static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1151{
1152 struct arm_smmu_device *smmu = dev;
1153 struct arm_smmu_queue *q = &smmu->priq.q;
1154 u64 evt[PRIQ_ENT_DWORDS];
1155
1156 while (!queue_remove_raw(q, evt)) {
1157 u32 sid, ssid;
1158 u16 grpid;
1159 bool ssv, last;
1160
1161 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1162 ssv = evt[0] & PRIQ_0_SSID_V;
1163 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1164 last = evt[0] & PRIQ_0_PRG_LAST;
1165 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1166
1167 dev_info(smmu->dev, "unexpected PRI request received:\n");
1168 dev_info(smmu->dev,
1169 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1170 sid, ssid, grpid, last ? "L" : "",
1171 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1172 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1173 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1174 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1175 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1176
1177 if (last) {
1178 struct arm_smmu_cmdq_ent cmd = {
1179 .opcode = CMDQ_OP_PRI_RESP,
1180 .substream_valid = ssv,
1181 .pri = {
1182 .sid = sid,
1183 .ssid = ssid,
1184 .grpid = grpid,
1185 .resp = PRI_RESP_DENY,
1186 },
1187 };
1188
1189 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1190 }
1191 }
1192
1193 /* Sync our overflow flag, as we believe we're up to speed */
1194 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1195 return IRQ_HANDLED;
1196}
1197
1198static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1199{
1200 irqreturn_t ret = IRQ_WAKE_THREAD;
1201 struct arm_smmu_device *smmu = dev;
1202 struct arm_smmu_queue *q = &smmu->priq.q;
1203
1204 /* PRIQ overflow indicates a programming error */
1205 if (queue_sync_prod(q) == -EOVERFLOW)
1206 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1207 else if (queue_empty(q))
1208 ret = IRQ_NONE;
1209
1210 return ret;
1211}
1212
1213static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1214{
1215 /* We don't actually use CMD_SYNC interrupts for anything */
1216 return IRQ_HANDLED;
1217}
1218
1219static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1220
1221static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1222{
1223 u32 gerror, gerrorn;
1224 struct arm_smmu_device *smmu = dev;
1225
1226 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1227 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1228
1229 gerror ^= gerrorn;
1230 if (!(gerror & GERROR_ERR_MASK))
1231 return IRQ_NONE; /* No errors pending */
1232
1233 dev_warn(smmu->dev,
1234 "unexpected global error reported (0x%08x), this could be serious\n",
1235 gerror);
1236
1237 if (gerror & GERROR_SFM_ERR) {
1238 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1239 arm_smmu_device_disable(smmu);
1240 }
1241
1242 if (gerror & GERROR_MSI_GERROR_ABT_ERR)
1243 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1244
1245 if (gerror & GERROR_MSI_PRIQ_ABT_ERR) {
1246 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1247 arm_smmu_priq_handler(irq, smmu->dev);
1248 }
1249
1250 if (gerror & GERROR_MSI_EVTQ_ABT_ERR) {
1251 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1252 arm_smmu_evtq_handler(irq, smmu->dev);
1253 }
1254
1255 if (gerror & GERROR_MSI_CMDQ_ABT_ERR) {
1256 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1257 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1258 }
1259
1260 if (gerror & GERROR_PRIQ_ABT_ERR)
1261 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1262
1263 if (gerror & GERROR_EVTQ_ABT_ERR)
1264 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1265
1266 if (gerror & GERROR_CMDQ_ERR)
1267 arm_smmu_cmdq_skip_err(smmu);
1268
1269 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1270 return IRQ_HANDLED;
1271}
1272
1273/* IO_PGTABLE API */
1274static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1275{
1276 struct arm_smmu_cmdq_ent cmd;
1277
1278 cmd.opcode = CMDQ_OP_CMD_SYNC;
1279 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1280}
1281
1282static void arm_smmu_tlb_sync(void *cookie)
1283{
1284 struct arm_smmu_domain *smmu_domain = cookie;
1285 __arm_smmu_tlb_sync(smmu_domain->smmu);
1286}
1287
1288static void arm_smmu_tlb_inv_context(void *cookie)
1289{
1290 struct arm_smmu_domain *smmu_domain = cookie;
1291 struct arm_smmu_device *smmu = smmu_domain->smmu;
1292 struct arm_smmu_cmdq_ent cmd;
1293
1294 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1295 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1296 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1297 cmd.tlbi.vmid = 0;
1298 } else {
1299 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1300 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1301 }
1302
1303 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1304 __arm_smmu_tlb_sync(smmu);
1305}
1306
1307static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1308 bool leaf, void *cookie)
1309{
1310 struct arm_smmu_domain *smmu_domain = cookie;
1311 struct arm_smmu_device *smmu = smmu_domain->smmu;
1312 struct arm_smmu_cmdq_ent cmd = {
1313 .tlbi = {
1314 .leaf = leaf,
1315 .addr = iova,
1316 },
1317 };
1318
1319 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1320 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1321 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1322 } else {
1323 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1324 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1325 }
1326
1327 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1328}
1329
Will Deacon48ec83b2015-05-27 17:25:59 +01001330static struct iommu_gather_ops arm_smmu_gather_ops = {
1331 .tlb_flush_all = arm_smmu_tlb_inv_context,
1332 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1333 .tlb_sync = arm_smmu_tlb_sync,
Will Deacon48ec83b2015-05-27 17:25:59 +01001334};
1335
1336/* IOMMU API */
1337static bool arm_smmu_capable(enum iommu_cap cap)
1338{
1339 switch (cap) {
1340 case IOMMU_CAP_CACHE_COHERENCY:
1341 return true;
1342 case IOMMU_CAP_INTR_REMAP:
1343 return true; /* MSIs are just memory writes */
1344 case IOMMU_CAP_NOEXEC:
1345 return true;
1346 default:
1347 return false;
1348 }
1349}
1350
1351static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1352{
1353 struct arm_smmu_domain *smmu_domain;
1354
1355 if (type != IOMMU_DOMAIN_UNMANAGED)
1356 return NULL;
1357
1358 /*
1359 * Allocate the domain and initialise some of its data structures.
1360 * We can't really do anything meaningful until we've added a
1361 * master.
1362 */
1363 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1364 if (!smmu_domain)
1365 return NULL;
1366
1367 mutex_init(&smmu_domain->init_mutex);
1368 spin_lock_init(&smmu_domain->pgtbl_lock);
1369 return &smmu_domain->domain;
1370}
1371
1372static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1373{
1374 int idx, size = 1 << span;
1375
1376 do {
1377 idx = find_first_zero_bit(map, size);
1378 if (idx == size)
1379 return -ENOSPC;
1380 } while (test_and_set_bit(idx, map));
1381
1382 return idx;
1383}
1384
1385static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1386{
1387 clear_bit(idx, map);
1388}
1389
1390static void arm_smmu_domain_free(struct iommu_domain *domain)
1391{
1392 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1393 struct arm_smmu_device *smmu = smmu_domain->smmu;
1394
Markus Elfringa6e08fb2015-06-29 17:47:43 +01001395 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
Will Deacon48ec83b2015-05-27 17:25:59 +01001396
1397 /* Free the CD and ASID, if we allocated them */
1398 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1399 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1400
1401 if (cfg->cdptr) {
1402 dma_free_coherent(smmu_domain->smmu->dev,
1403 CTXDESC_CD_DWORDS << 3,
1404 cfg->cdptr,
1405 cfg->cdptr_dma);
1406
1407 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1408 }
1409 } else {
1410 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1411 if (cfg->vmid)
1412 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1413 }
1414
1415 kfree(smmu_domain);
1416}
1417
1418static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1419 struct io_pgtable_cfg *pgtbl_cfg)
1420{
1421 int ret;
Will Deaconc0733a22015-10-13 17:51:14 +01001422 int asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001423 struct arm_smmu_device *smmu = smmu_domain->smmu;
1424 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1425
1426 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1427 if (IS_ERR_VALUE(asid))
1428 return asid;
1429
1430 cfg->cdptr = dma_zalloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1431 &cfg->cdptr_dma, GFP_KERNEL);
1432 if (!cfg->cdptr) {
1433 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
Will Deaconc0733a22015-10-13 17:51:14 +01001434 ret = -ENOMEM;
Will Deacon48ec83b2015-05-27 17:25:59 +01001435 goto out_free_asid;
1436 }
1437
Will Deaconc0733a22015-10-13 17:51:14 +01001438 cfg->cd.asid = (u16)asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001439 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1440 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1441 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1442 return 0;
1443
1444out_free_asid:
1445 arm_smmu_bitmap_free(smmu->asid_map, asid);
1446 return ret;
1447}
1448
1449static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1450 struct io_pgtable_cfg *pgtbl_cfg)
1451{
Will Deaconc0733a22015-10-13 17:51:14 +01001452 int vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001453 struct arm_smmu_device *smmu = smmu_domain->smmu;
1454 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1455
1456 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1457 if (IS_ERR_VALUE(vmid))
1458 return vmid;
1459
Will Deaconc0733a22015-10-13 17:51:14 +01001460 cfg->vmid = (u16)vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001461 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1462 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1463 return 0;
1464}
1465
1466static struct iommu_ops arm_smmu_ops;
1467
1468static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1469{
1470 int ret;
1471 unsigned long ias, oas;
1472 enum io_pgtable_fmt fmt;
1473 struct io_pgtable_cfg pgtbl_cfg;
1474 struct io_pgtable_ops *pgtbl_ops;
1475 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1476 struct io_pgtable_cfg *);
1477 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1478 struct arm_smmu_device *smmu = smmu_domain->smmu;
1479
1480 /* Restrict the stage to what we can actually support */
1481 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1482 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1483 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1484 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1485
1486 switch (smmu_domain->stage) {
1487 case ARM_SMMU_DOMAIN_S1:
1488 ias = VA_BITS;
1489 oas = smmu->ias;
1490 fmt = ARM_64_LPAE_S1;
1491 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1492 break;
1493 case ARM_SMMU_DOMAIN_NESTED:
1494 case ARM_SMMU_DOMAIN_S2:
1495 ias = smmu->ias;
1496 oas = smmu->oas;
1497 fmt = ARM_64_LPAE_S2;
1498 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1499 break;
1500 default:
1501 return -EINVAL;
1502 }
1503
1504 pgtbl_cfg = (struct io_pgtable_cfg) {
1505 .pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
1506 .ias = ias,
1507 .oas = oas,
1508 .tlb = &arm_smmu_gather_ops,
Robin Murphybdc6d972015-07-29 19:46:07 +01001509 .iommu_dev = smmu->dev,
Will Deacon48ec83b2015-05-27 17:25:59 +01001510 };
1511
1512 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1513 if (!pgtbl_ops)
1514 return -ENOMEM;
1515
1516 arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1517 smmu_domain->pgtbl_ops = pgtbl_ops;
1518
1519 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1520 if (IS_ERR_VALUE(ret))
1521 free_io_pgtable_ops(pgtbl_ops);
1522
1523 return ret;
1524}
1525
1526static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1527{
1528 struct iommu_group *group;
1529 struct arm_smmu_group *smmu_group;
1530
1531 group = iommu_group_get(dev);
1532 if (!group)
1533 return NULL;
1534
1535 smmu_group = iommu_group_get_iommudata(group);
1536 iommu_group_put(group);
1537 return smmu_group;
1538}
1539
1540static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1541{
1542 __le64 *step;
1543 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1544
1545 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1546 struct arm_smmu_strtab_l1_desc *l1_desc;
1547 int idx;
1548
1549 /* Two-level walk */
1550 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1551 l1_desc = &cfg->l1_desc[idx];
1552 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1553 step = &l1_desc->l2ptr[idx];
1554 } else {
1555 /* Simple linear lookup */
1556 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1557 }
1558
1559 return step;
1560}
1561
1562static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1563{
1564 int i;
1565 struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1566 struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1567 struct arm_smmu_device *smmu = smmu_group->smmu;
1568
1569 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1570 ste->s1_cfg = &smmu_domain->s1_cfg;
1571 ste->s2_cfg = NULL;
1572 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1573 } else {
1574 ste->s1_cfg = NULL;
1575 ste->s2_cfg = &smmu_domain->s2_cfg;
1576 }
1577
1578 for (i = 0; i < smmu_group->num_sids; ++i) {
1579 u32 sid = smmu_group->sids[i];
1580 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1581
1582 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1583 }
1584
1585 return 0;
1586}
1587
1588static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1589{
1590 int ret = 0;
1591 struct arm_smmu_device *smmu;
1592 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1593 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1594
1595 if (!smmu_group)
1596 return -ENOENT;
1597
1598 /* Already attached to a different domain? */
1599 if (smmu_group->domain && smmu_group->domain != smmu_domain)
1600 return -EEXIST;
1601
1602 smmu = smmu_group->smmu;
1603 mutex_lock(&smmu_domain->init_mutex);
1604
1605 if (!smmu_domain->smmu) {
1606 smmu_domain->smmu = smmu;
1607 ret = arm_smmu_domain_finalise(domain);
1608 if (ret) {
1609 smmu_domain->smmu = NULL;
1610 goto out_unlock;
1611 }
1612 } else if (smmu_domain->smmu != smmu) {
1613 dev_err(dev,
1614 "cannot attach to SMMU %s (upstream of %s)\n",
1615 dev_name(smmu_domain->smmu->dev),
1616 dev_name(smmu->dev));
1617 ret = -ENXIO;
1618 goto out_unlock;
1619 }
1620
1621 /* Group already attached to this domain? */
1622 if (smmu_group->domain)
1623 goto out_unlock;
1624
1625 smmu_group->domain = smmu_domain;
1626 smmu_group->ste.bypass = false;
1627
1628 ret = arm_smmu_install_ste_for_group(smmu_group);
1629 if (IS_ERR_VALUE(ret))
1630 smmu_group->domain = NULL;
1631
1632out_unlock:
1633 mutex_unlock(&smmu_domain->init_mutex);
1634 return ret;
1635}
1636
1637static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1638{
1639 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1640 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1641
1642 BUG_ON(!smmu_domain);
1643 BUG_ON(!smmu_group);
1644
1645 mutex_lock(&smmu_domain->init_mutex);
1646 BUG_ON(smmu_group->domain != smmu_domain);
1647
1648 smmu_group->ste.bypass = true;
1649 if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1650 dev_warn(dev, "failed to install bypass STE\n");
1651
1652 smmu_group->domain = NULL;
1653 mutex_unlock(&smmu_domain->init_mutex);
1654}
1655
1656static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1657 phys_addr_t paddr, size_t size, int prot)
1658{
1659 int ret;
1660 unsigned long flags;
1661 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1662 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1663
1664 if (!ops)
1665 return -ENODEV;
1666
1667 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1668 ret = ops->map(ops, iova, paddr, size, prot);
1669 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1670 return ret;
1671}
1672
1673static size_t
1674arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1675{
1676 size_t ret;
1677 unsigned long flags;
1678 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1679 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1680
1681 if (!ops)
1682 return 0;
1683
1684 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1685 ret = ops->unmap(ops, iova, size);
1686 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1687 return ret;
1688}
1689
1690static phys_addr_t
1691arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1692{
1693 phys_addr_t ret;
1694 unsigned long flags;
1695 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1696 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1697
1698 if (!ops)
1699 return 0;
1700
1701 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1702 ret = ops->iova_to_phys(ops, iova);
1703 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1704
1705 return ret;
1706}
1707
1708static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1709{
1710 *(u32 *)sidp = alias;
1711 return 0; /* Continue walking */
1712}
1713
1714static void __arm_smmu_release_pci_iommudata(void *data)
1715{
1716 kfree(data);
1717}
1718
1719static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1720{
1721 struct device_node *of_node;
Will Deacon941a8022015-08-11 16:25:10 +01001722 struct platform_device *smmu_pdev;
1723 struct arm_smmu_device *smmu = NULL;
Will Deacon48ec83b2015-05-27 17:25:59 +01001724 struct pci_bus *bus = pdev->bus;
1725
1726 /* Walk up to the root bus */
1727 while (!pci_is_root_bus(bus))
1728 bus = bus->parent;
1729
1730 /* Follow the "iommus" phandle from the host controller */
1731 of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1732 if (!of_node)
1733 return NULL;
1734
1735 /* See if we can find an SMMU corresponding to the phandle */
Will Deacon941a8022015-08-11 16:25:10 +01001736 smmu_pdev = of_find_device_by_node(of_node);
1737 if (smmu_pdev)
1738 smmu = platform_get_drvdata(smmu_pdev);
1739
Will Deacon48ec83b2015-05-27 17:25:59 +01001740 of_node_put(of_node);
1741 return smmu;
1742}
1743
1744static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1745{
1746 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1747
1748 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1749 limit *= 1UL << STRTAB_SPLIT;
1750
1751 return sid < limit;
1752}
1753
1754static int arm_smmu_add_device(struct device *dev)
1755{
1756 int i, ret;
1757 u32 sid, *sids;
1758 struct pci_dev *pdev;
1759 struct iommu_group *group;
1760 struct arm_smmu_group *smmu_group;
1761 struct arm_smmu_device *smmu;
1762
1763 /* We only support PCI, for now */
1764 if (!dev_is_pci(dev))
1765 return -ENODEV;
1766
1767 pdev = to_pci_dev(dev);
1768 group = iommu_group_get_for_dev(dev);
1769 if (IS_ERR(group))
1770 return PTR_ERR(group);
1771
1772 smmu_group = iommu_group_get_iommudata(group);
1773 if (!smmu_group) {
1774 smmu = arm_smmu_get_for_pci_dev(pdev);
1775 if (!smmu) {
1776 ret = -ENOENT;
1777 goto out_put_group;
1778 }
1779
1780 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1781 if (!smmu_group) {
1782 ret = -ENOMEM;
1783 goto out_put_group;
1784 }
1785
1786 smmu_group->ste.valid = true;
1787 smmu_group->smmu = smmu;
1788 iommu_group_set_iommudata(group, smmu_group,
1789 __arm_smmu_release_pci_iommudata);
1790 } else {
1791 smmu = smmu_group->smmu;
1792 }
1793
1794 /* Assume SID == RID until firmware tells us otherwise */
1795 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1796 for (i = 0; i < smmu_group->num_sids; ++i) {
1797 /* If we already know about this SID, then we're done */
1798 if (smmu_group->sids[i] == sid)
1799 return 0;
1800 }
1801
1802 /* Check the SID is in range of the SMMU and our stream table */
1803 if (!arm_smmu_sid_in_range(smmu, sid)) {
1804 ret = -ERANGE;
1805 goto out_put_group;
1806 }
1807
1808 /* Ensure l2 strtab is initialised */
1809 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1810 ret = arm_smmu_init_l2_strtab(smmu, sid);
1811 if (ret)
1812 goto out_put_group;
1813 }
1814
1815 /* Resize the SID array for the group */
1816 smmu_group->num_sids++;
1817 sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1818 GFP_KERNEL);
1819 if (!sids) {
1820 smmu_group->num_sids--;
1821 ret = -ENOMEM;
1822 goto out_put_group;
1823 }
1824
1825 /* Add the new SID */
1826 sids[smmu_group->num_sids - 1] = sid;
1827 smmu_group->sids = sids;
1828 return 0;
1829
1830out_put_group:
1831 iommu_group_put(group);
1832 return ret;
1833}
1834
1835static void arm_smmu_remove_device(struct device *dev)
1836{
1837 iommu_group_remove_device(dev);
1838}
1839
1840static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1841 enum iommu_attr attr, void *data)
1842{
1843 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1844
1845 switch (attr) {
1846 case DOMAIN_ATTR_NESTING:
1847 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1848 return 0;
1849 default:
1850 return -ENODEV;
1851 }
1852}
1853
1854static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1855 enum iommu_attr attr, void *data)
1856{
1857 int ret = 0;
1858 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1859
1860 mutex_lock(&smmu_domain->init_mutex);
1861
1862 switch (attr) {
1863 case DOMAIN_ATTR_NESTING:
1864 if (smmu_domain->smmu) {
1865 ret = -EPERM;
1866 goto out_unlock;
1867 }
1868
1869 if (*(int *)data)
1870 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1871 else
1872 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1873
1874 break;
1875 default:
1876 ret = -ENODEV;
1877 }
1878
1879out_unlock:
1880 mutex_unlock(&smmu_domain->init_mutex);
1881 return ret;
1882}
1883
1884static struct iommu_ops arm_smmu_ops = {
1885 .capable = arm_smmu_capable,
1886 .domain_alloc = arm_smmu_domain_alloc,
1887 .domain_free = arm_smmu_domain_free,
1888 .attach_dev = arm_smmu_attach_dev,
1889 .detach_dev = arm_smmu_detach_dev,
1890 .map = arm_smmu_map,
1891 .unmap = arm_smmu_unmap,
1892 .iova_to_phys = arm_smmu_iova_to_phys,
1893 .add_device = arm_smmu_add_device,
1894 .remove_device = arm_smmu_remove_device,
1895 .domain_get_attr = arm_smmu_domain_get_attr,
1896 .domain_set_attr = arm_smmu_domain_set_attr,
1897 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1898};
1899
1900/* Probing and initialisation functions */
1901static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1902 struct arm_smmu_queue *q,
1903 unsigned long prod_off,
1904 unsigned long cons_off,
1905 size_t dwords)
1906{
1907 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1908
1909 q->base = dma_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1910 if (!q->base) {
1911 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1912 qsz);
1913 return -ENOMEM;
1914 }
1915
1916 q->prod_reg = smmu->base + prod_off;
1917 q->cons_reg = smmu->base + cons_off;
1918 q->ent_dwords = dwords;
1919
1920 q->q_base = Q_BASE_RWA;
1921 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1922 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1923 << Q_BASE_LOG2SIZE_SHIFT;
1924
1925 q->prod = q->cons = 0;
1926 return 0;
1927}
1928
1929static void arm_smmu_free_one_queue(struct arm_smmu_device *smmu,
1930 struct arm_smmu_queue *q)
1931{
1932 size_t qsz = ((1 << q->max_n_shift) * q->ent_dwords) << 3;
1933
1934 dma_free_coherent(smmu->dev, qsz, q->base, q->base_dma);
1935}
1936
1937static void arm_smmu_free_queues(struct arm_smmu_device *smmu)
1938{
1939 arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
1940 arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
1941
1942 if (smmu->features & ARM_SMMU_FEAT_PRI)
1943 arm_smmu_free_one_queue(smmu, &smmu->priq.q);
1944}
1945
1946static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1947{
1948 int ret;
1949
1950 /* cmdq */
1951 spin_lock_init(&smmu->cmdq.lock);
1952 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1953 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1954 if (ret)
1955 goto out;
1956
1957 /* evtq */
1958 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1959 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1960 if (ret)
1961 goto out_free_cmdq;
1962
1963 /* priq */
1964 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1965 return 0;
1966
1967 ret = arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1968 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1969 if (ret)
1970 goto out_free_evtq;
1971
1972 return 0;
1973
1974out_free_evtq:
1975 arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
1976out_free_cmdq:
1977 arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
1978out:
1979 return ret;
1980}
1981
1982static void arm_smmu_free_l2_strtab(struct arm_smmu_device *smmu)
1983{
1984 int i;
1985 size_t size;
1986 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1987
1988 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1989 for (i = 0; i < cfg->num_l1_ents; ++i) {
1990 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[i];
1991
1992 if (!desc->l2ptr)
1993 continue;
1994
1995 dma_free_coherent(smmu->dev, size, desc->l2ptr,
1996 desc->l2ptr_dma);
1997 }
1998}
1999
2000static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2001{
2002 unsigned int i;
2003 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2004 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2005 void *strtab = smmu->strtab_cfg.strtab;
2006
2007 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2008 if (!cfg->l1_desc) {
2009 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2010 return -ENOMEM;
2011 }
2012
2013 for (i = 0; i < cfg->num_l1_ents; ++i) {
2014 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2015 strtab += STRTAB_L1_DESC_DWORDS << 3;
2016 }
2017
2018 return 0;
2019}
2020
2021static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2022{
2023 void *strtab;
2024 u64 reg;
Will Deacond2e88e72015-06-30 10:02:28 +01002025 u32 size, l1size;
Will Deacon48ec83b2015-05-27 17:25:59 +01002026 int ret;
2027 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2028
Will Deacon28c8b402015-07-16 17:50:12 +01002029 /*
2030 * If we can resolve everything with a single L2 table, then we
2031 * just need a single L1 descriptor. Otherwise, calculate the L1
2032 * size, capped to the SIDSIZE.
2033 */
2034 if (smmu->sid_bits < STRTAB_SPLIT) {
2035 size = 0;
2036 } else {
2037 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2038 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2039 }
Will Deacond2e88e72015-06-30 10:02:28 +01002040 cfg->num_l1_ents = 1 << size;
2041
2042 size += STRTAB_SPLIT;
2043 if (size < smmu->sid_bits)
Will Deacon48ec83b2015-05-27 17:25:59 +01002044 dev_warn(smmu->dev,
2045 "2-level strtab only covers %u/%u bits of SID\n",
Will Deacond2e88e72015-06-30 10:02:28 +01002046 size, smmu->sid_bits);
Will Deacon48ec83b2015-05-27 17:25:59 +01002047
Will Deacond2e88e72015-06-30 10:02:28 +01002048 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2049 strtab = dma_zalloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
Will Deacon48ec83b2015-05-27 17:25:59 +01002050 GFP_KERNEL);
2051 if (!strtab) {
2052 dev_err(smmu->dev,
2053 "failed to allocate l1 stream table (%u bytes)\n",
2054 size);
2055 return -ENOMEM;
2056 }
2057 cfg->strtab = strtab;
2058
2059 /* Configure strtab_base_cfg for 2 levels */
2060 reg = STRTAB_BASE_CFG_FMT_2LVL;
2061 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2062 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2063 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2064 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2065 cfg->strtab_base_cfg = reg;
2066
2067 ret = arm_smmu_init_l1_strtab(smmu);
2068 if (ret)
2069 dma_free_coherent(smmu->dev,
Will Deacond2e88e72015-06-30 10:02:28 +01002070 l1size,
Will Deacon48ec83b2015-05-27 17:25:59 +01002071 strtab,
2072 cfg->strtab_dma);
2073 return ret;
2074}
2075
2076static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2077{
2078 void *strtab;
2079 u64 reg;
2080 u32 size;
2081 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2082
2083 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2084 strtab = dma_zalloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2085 GFP_KERNEL);
2086 if (!strtab) {
2087 dev_err(smmu->dev,
2088 "failed to allocate linear stream table (%u bytes)\n",
2089 size);
2090 return -ENOMEM;
2091 }
2092 cfg->strtab = strtab;
2093 cfg->num_l1_ents = 1 << smmu->sid_bits;
2094
2095 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2096 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2097 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2098 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2099 cfg->strtab_base_cfg = reg;
2100
2101 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2102 return 0;
2103}
2104
2105static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2106{
2107 u64 reg;
2108 int ret;
2109
2110 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2111 ret = arm_smmu_init_strtab_2lvl(smmu);
2112 else
2113 ret = arm_smmu_init_strtab_linear(smmu);
2114
2115 if (ret)
2116 return ret;
2117
2118 /* Set the strtab base address */
2119 reg = smmu->strtab_cfg.strtab_dma &
2120 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2121 reg |= STRTAB_BASE_RA;
2122 smmu->strtab_cfg.strtab_base = reg;
2123
2124 /* Allocate the first VMID for stage-2 bypass STEs */
2125 set_bit(0, smmu->vmid_map);
2126 return 0;
2127}
2128
2129static void arm_smmu_free_strtab(struct arm_smmu_device *smmu)
2130{
2131 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2132 u32 size = cfg->num_l1_ents;
2133
2134 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2135 arm_smmu_free_l2_strtab(smmu);
2136 size *= STRTAB_L1_DESC_DWORDS << 3;
2137 } else {
2138 size *= STRTAB_STE_DWORDS * 3;
2139 }
2140
2141 dma_free_coherent(smmu->dev, size, cfg->strtab, cfg->strtab_dma);
2142}
2143
2144static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2145{
2146 int ret;
2147
2148 ret = arm_smmu_init_queues(smmu);
2149 if (ret)
2150 return ret;
2151
2152 ret = arm_smmu_init_strtab(smmu);
2153 if (ret)
2154 goto out_free_queues;
2155
2156 return 0;
2157
2158out_free_queues:
2159 arm_smmu_free_queues(smmu);
2160 return ret;
2161}
2162
2163static void arm_smmu_free_structures(struct arm_smmu_device *smmu)
2164{
2165 arm_smmu_free_strtab(smmu);
2166 arm_smmu_free_queues(smmu);
2167}
2168
2169static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2170 unsigned int reg_off, unsigned int ack_off)
2171{
2172 u32 reg;
2173
2174 writel_relaxed(val, smmu->base + reg_off);
2175 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2176 1, ARM_SMMU_POLL_TIMEOUT_US);
2177}
2178
2179static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2180{
2181 int ret, irq;
Marc Zyngierccd63852015-07-15 11:55:18 +01002182 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002183
2184 /* Disable IRQs first */
2185 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2186 ARM_SMMU_IRQ_CTRLACK);
2187 if (ret) {
2188 dev_err(smmu->dev, "failed to disable irqs\n");
2189 return ret;
2190 }
2191
2192 /* Clear the MSI address regs */
2193 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2194 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2195
2196 /* Request wired interrupt lines */
2197 irq = smmu->evtq.q.irq;
2198 if (irq) {
2199 ret = devm_request_threaded_irq(smmu->dev, irq,
2200 arm_smmu_evtq_handler,
2201 arm_smmu_evtq_thread,
2202 0, "arm-smmu-v3-evtq", smmu);
2203 if (IS_ERR_VALUE(ret))
2204 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2205 }
2206
2207 irq = smmu->cmdq.q.irq;
2208 if (irq) {
2209 ret = devm_request_irq(smmu->dev, irq,
2210 arm_smmu_cmdq_sync_handler, 0,
2211 "arm-smmu-v3-cmdq-sync", smmu);
2212 if (IS_ERR_VALUE(ret))
2213 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2214 }
2215
2216 irq = smmu->gerr_irq;
2217 if (irq) {
2218 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2219 0, "arm-smmu-v3-gerror", smmu);
2220 if (IS_ERR_VALUE(ret))
2221 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2222 }
2223
2224 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2225 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2226
2227 irq = smmu->priq.q.irq;
2228 if (irq) {
2229 ret = devm_request_threaded_irq(smmu->dev, irq,
2230 arm_smmu_priq_handler,
2231 arm_smmu_priq_thread,
2232 0, "arm-smmu-v3-priq",
2233 smmu);
2234 if (IS_ERR_VALUE(ret))
2235 dev_warn(smmu->dev,
2236 "failed to enable priq irq\n");
Marc Zyngierccd63852015-07-15 11:55:18 +01002237 else
2238 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002239 }
2240 }
2241
2242 /* Enable interrupt generation on the SMMU */
Marc Zyngierccd63852015-07-15 11:55:18 +01002243 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
Will Deacon48ec83b2015-05-27 17:25:59 +01002244 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2245 if (ret)
2246 dev_warn(smmu->dev, "failed to enable irqs\n");
2247
2248 return 0;
2249}
2250
2251static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2252{
2253 int ret;
2254
2255 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2256 if (ret)
2257 dev_err(smmu->dev, "failed to clear cr0\n");
2258
2259 return ret;
2260}
2261
2262static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2263{
2264 int ret;
2265 u32 reg, enables;
2266 struct arm_smmu_cmdq_ent cmd;
2267
2268 /* Clear CR0 and sync (disables SMMU and queue processing) */
2269 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2270 if (reg & CR0_SMMUEN)
2271 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2272
2273 ret = arm_smmu_device_disable(smmu);
2274 if (ret)
2275 return ret;
2276
2277 /* CR1 (table and queue memory attributes) */
2278 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2279 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2280 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2281 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2282 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2283 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2284 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2285
2286 /* CR2 (random crap) */
2287 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2288 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2289
2290 /* Stream table */
2291 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2292 smmu->base + ARM_SMMU_STRTAB_BASE);
2293 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2294 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2295
2296 /* Command queue */
2297 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2298 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2299 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2300
2301 enables = CR0_CMDQEN;
2302 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2303 ARM_SMMU_CR0ACK);
2304 if (ret) {
2305 dev_err(smmu->dev, "failed to enable command queue\n");
2306 return ret;
2307 }
2308
2309 /* Invalidate any cached configuration */
2310 cmd.opcode = CMDQ_OP_CFGI_ALL;
2311 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2312 cmd.opcode = CMDQ_OP_CMD_SYNC;
2313 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2314
2315 /* Invalidate any stale TLB entries */
2316 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2317 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2318 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2319 }
2320
2321 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2322 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2323 cmd.opcode = CMDQ_OP_CMD_SYNC;
2324 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2325
2326 /* Event queue */
2327 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2328 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2329 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2330
2331 enables |= CR0_EVTQEN;
2332 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2333 ARM_SMMU_CR0ACK);
2334 if (ret) {
2335 dev_err(smmu->dev, "failed to enable event queue\n");
2336 return ret;
2337 }
2338
2339 /* PRI queue */
2340 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2341 writeq_relaxed(smmu->priq.q.q_base,
2342 smmu->base + ARM_SMMU_PRIQ_BASE);
2343 writel_relaxed(smmu->priq.q.prod,
2344 smmu->base + ARM_SMMU_PRIQ_PROD);
2345 writel_relaxed(smmu->priq.q.cons,
2346 smmu->base + ARM_SMMU_PRIQ_CONS);
2347
2348 enables |= CR0_PRIQEN;
2349 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2350 ARM_SMMU_CR0ACK);
2351 if (ret) {
2352 dev_err(smmu->dev, "failed to enable PRI queue\n");
2353 return ret;
2354 }
2355 }
2356
2357 ret = arm_smmu_setup_irqs(smmu);
2358 if (ret) {
2359 dev_err(smmu->dev, "failed to setup irqs\n");
2360 return ret;
2361 }
2362
2363 /* Enable the SMMU interface */
2364 enables |= CR0_SMMUEN;
2365 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2366 ARM_SMMU_CR0ACK);
2367 if (ret) {
2368 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2369 return ret;
2370 }
2371
2372 return 0;
2373}
2374
2375static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2376{
2377 u32 reg;
2378 bool coherent;
2379 unsigned long pgsize_bitmap = 0;
2380
2381 /* IDR0 */
2382 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2383
2384 /* 2-level structures */
2385 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2386 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2387
2388 if (reg & IDR0_CD2L)
2389 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2390
2391 /*
2392 * Translation table endianness.
2393 * We currently require the same endianness as the CPU, but this
2394 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2395 */
2396 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2397 case IDR0_TTENDIAN_MIXED:
2398 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2399 break;
2400#ifdef __BIG_ENDIAN
2401 case IDR0_TTENDIAN_BE:
2402 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2403 break;
2404#else
2405 case IDR0_TTENDIAN_LE:
2406 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2407 break;
2408#endif
2409 default:
2410 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2411 return -ENXIO;
2412 }
2413
2414 /* Boolean feature flags */
2415 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2416 smmu->features |= ARM_SMMU_FEAT_PRI;
2417
2418 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2419 smmu->features |= ARM_SMMU_FEAT_ATS;
2420
2421 if (reg & IDR0_SEV)
2422 smmu->features |= ARM_SMMU_FEAT_SEV;
2423
2424 if (reg & IDR0_MSI)
2425 smmu->features |= ARM_SMMU_FEAT_MSI;
2426
2427 if (reg & IDR0_HYP)
2428 smmu->features |= ARM_SMMU_FEAT_HYP;
2429
2430 /*
2431 * The dma-coherent property is used in preference to the ID
2432 * register, but warn on mismatch.
2433 */
2434 coherent = of_dma_is_coherent(smmu->dev->of_node);
2435 if (coherent)
2436 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2437
2438 if (!!(reg & IDR0_COHACC) != coherent)
2439 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2440 coherent ? "true" : "false");
2441
2442 if (reg & IDR0_STALL_MODEL)
2443 smmu->features |= ARM_SMMU_FEAT_STALLS;
2444
2445 if (reg & IDR0_S1P)
2446 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2447
2448 if (reg & IDR0_S2P)
2449 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2450
2451 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2452 dev_err(smmu->dev, "no translation support!\n");
2453 return -ENXIO;
2454 }
2455
2456 /* We only support the AArch64 table format at present */
2457 if ((reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) < IDR0_TTF_AARCH64) {
2458 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2459 return -ENXIO;
2460 }
2461
2462 /* ASID/VMID sizes */
2463 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2464 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2465
2466 /* IDR1 */
2467 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2468 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2469 dev_err(smmu->dev, "embedded implementation not supported\n");
2470 return -ENXIO;
2471 }
2472
2473 /* Queue sizes, capped at 4k */
2474 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2475 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2476 if (!smmu->cmdq.q.max_n_shift) {
2477 /* Odd alignment restrictions on the base, so ignore for now */
2478 dev_err(smmu->dev, "unit-length command queue not supported\n");
2479 return -ENXIO;
2480 }
2481
2482 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2483 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2484 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2485 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2486
2487 /* SID/SSID sizes */
2488 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2489 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2490
2491 /* IDR5 */
2492 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2493
2494 /* Maximum number of outstanding stalls */
2495 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2496 & IDR5_STALL_MAX_MASK;
2497
2498 /* Page sizes */
2499 if (reg & IDR5_GRAN64K)
2500 pgsize_bitmap |= SZ_64K | SZ_512M;
2501 if (reg & IDR5_GRAN16K)
2502 pgsize_bitmap |= SZ_16K | SZ_32M;
2503 if (reg & IDR5_GRAN4K)
2504 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2505
2506 arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2507
2508 /* Output address size */
2509 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2510 case IDR5_OAS_32_BIT:
2511 smmu->oas = 32;
2512 break;
2513 case IDR5_OAS_36_BIT:
2514 smmu->oas = 36;
2515 break;
2516 case IDR5_OAS_40_BIT:
2517 smmu->oas = 40;
2518 break;
2519 case IDR5_OAS_42_BIT:
2520 smmu->oas = 42;
2521 break;
2522 case IDR5_OAS_44_BIT:
2523 smmu->oas = 44;
2524 break;
Will Deacon85430962015-08-03 10:35:40 +01002525 default:
2526 dev_info(smmu->dev,
2527 "unknown output address size. Truncating to 48-bit\n");
2528 /* Fallthrough */
Will Deacon48ec83b2015-05-27 17:25:59 +01002529 case IDR5_OAS_48_BIT:
2530 smmu->oas = 48;
Will Deacon48ec83b2015-05-27 17:25:59 +01002531 }
2532
2533 /* Set the DMA mask for our table walker */
2534 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2535 dev_warn(smmu->dev,
2536 "failed to set DMA mask for table walker\n");
2537
2538 if (!smmu->ias)
2539 smmu->ias = smmu->oas;
2540
2541 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2542 smmu->ias, smmu->oas, smmu->features);
2543 return 0;
2544}
2545
2546static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2547{
2548 int irq, ret;
2549 struct resource *res;
2550 struct arm_smmu_device *smmu;
2551 struct device *dev = &pdev->dev;
2552
2553 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2554 if (!smmu) {
2555 dev_err(dev, "failed to allocate arm_smmu_device\n");
2556 return -ENOMEM;
2557 }
2558 smmu->dev = dev;
2559
2560 /* Base address */
2561 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2562 if (resource_size(res) + 1 < SZ_128K) {
2563 dev_err(dev, "MMIO region too small (%pr)\n", res);
2564 return -EINVAL;
2565 }
2566
2567 smmu->base = devm_ioremap_resource(dev, res);
2568 if (IS_ERR(smmu->base))
2569 return PTR_ERR(smmu->base);
2570
2571 /* Interrupt lines */
2572 irq = platform_get_irq_byname(pdev, "eventq");
2573 if (irq > 0)
2574 smmu->evtq.q.irq = irq;
2575
2576 irq = platform_get_irq_byname(pdev, "priq");
2577 if (irq > 0)
2578 smmu->priq.q.irq = irq;
2579
2580 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2581 if (irq > 0)
2582 smmu->cmdq.q.irq = irq;
2583
2584 irq = platform_get_irq_byname(pdev, "gerror");
2585 if (irq > 0)
2586 smmu->gerr_irq = irq;
2587
Zhen Lei5e929462015-07-07 04:30:18 +01002588 parse_driver_options(smmu);
2589
Will Deacon48ec83b2015-05-27 17:25:59 +01002590 /* Probe the h/w */
2591 ret = arm_smmu_device_probe(smmu);
2592 if (ret)
2593 return ret;
2594
2595 /* Initialise in-memory data structures */
2596 ret = arm_smmu_init_structures(smmu);
2597 if (ret)
2598 return ret;
2599
2600 /* Reset the device */
2601 ret = arm_smmu_device_reset(smmu);
2602 if (ret)
2603 goto out_free_structures;
2604
2605 /* Record our private device structure */
Will Deacon941a8022015-08-11 16:25:10 +01002606 platform_set_drvdata(pdev, smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002607 return 0;
2608
2609out_free_structures:
2610 arm_smmu_free_structures(smmu);
2611 return ret;
2612}
2613
2614static int arm_smmu_device_remove(struct platform_device *pdev)
2615{
Will Deacon941a8022015-08-11 16:25:10 +01002616 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
Will Deacon48ec83b2015-05-27 17:25:59 +01002617
2618 arm_smmu_device_disable(smmu);
2619 arm_smmu_free_structures(smmu);
2620 return 0;
2621}
2622
2623static struct of_device_id arm_smmu_of_match[] = {
2624 { .compatible = "arm,smmu-v3", },
2625 { },
2626};
2627MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2628
2629static struct platform_driver arm_smmu_driver = {
2630 .driver = {
2631 .name = "arm-smmu-v3",
2632 .of_match_table = of_match_ptr(arm_smmu_of_match),
2633 },
2634 .probe = arm_smmu_device_dt_probe,
2635 .remove = arm_smmu_device_remove,
2636};
2637
2638static int __init arm_smmu_init(void)
2639{
2640 struct device_node *np;
2641 int ret;
2642
2643 np = of_find_matching_node(NULL, arm_smmu_of_match);
2644 if (!np)
2645 return 0;
2646
2647 of_node_put(np);
2648
2649 ret = platform_driver_register(&arm_smmu_driver);
2650 if (ret)
2651 return ret;
2652
2653 return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2654}
2655
2656static void __exit arm_smmu_exit(void)
2657{
2658 return platform_driver_unregister(&arm_smmu_driver);
2659}
2660
2661subsys_initcall(arm_smmu_init);
2662module_exit(arm_smmu_exit);
2663
2664MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2665MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2666MODULE_LICENSE("GPL v2");