blob: 5f6b3bcab0782be2d29d465390b1b4bd179bf433 [file] [log] [blame]
Will Deacon48ec83b2015-05-27 17:25:59 +01001/*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23#include <linux/delay.h>
Robin Murphy9adb9592016-01-26 18:06:36 +000024#include <linux/dma-iommu.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010025#include <linux/err.h>
26#include <linux/interrupt.h>
27#include <linux/iommu.h>
28#include <linux/iopoll.h>
29#include <linux/module.h>
Marc Zyngier166bdbd2015-10-13 18:32:30 +010030#include <linux/msi.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010031#include <linux/of.h>
32#include <linux/of_address.h>
Will Deacon941a8022015-08-11 16:25:10 +010033#include <linux/of_platform.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010034#include <linux/pci.h>
35#include <linux/platform_device.h>
36
37#include "io-pgtable.h"
38
39/* MMIO registers */
40#define ARM_SMMU_IDR0 0x0
41#define IDR0_ST_LVL_SHIFT 27
42#define IDR0_ST_LVL_MASK 0x3
43#define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
Prem Mallappa6380be02015-12-14 22:01:23 +053044#define IDR0_STALL_MODEL_SHIFT 24
45#define IDR0_STALL_MODEL_MASK 0x3
46#define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
47#define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +010048#define IDR0_TTENDIAN_SHIFT 21
49#define IDR0_TTENDIAN_MASK 0x3
50#define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
51#define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
52#define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
53#define IDR0_CD2L (1 << 19)
54#define IDR0_VMID16 (1 << 18)
55#define IDR0_PRI (1 << 16)
56#define IDR0_SEV (1 << 14)
57#define IDR0_MSI (1 << 13)
58#define IDR0_ASID16 (1 << 12)
59#define IDR0_ATS (1 << 10)
60#define IDR0_HYP (1 << 9)
61#define IDR0_COHACC (1 << 4)
62#define IDR0_TTF_SHIFT 2
63#define IDR0_TTF_MASK 0x3
64#define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
Will Deaconf0c453d2015-08-20 12:12:32 +010065#define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +010066#define IDR0_S1P (1 << 1)
67#define IDR0_S2P (1 << 0)
68
69#define ARM_SMMU_IDR1 0x4
70#define IDR1_TABLES_PRESET (1 << 30)
71#define IDR1_QUEUES_PRESET (1 << 29)
72#define IDR1_REL (1 << 28)
73#define IDR1_CMDQ_SHIFT 21
74#define IDR1_CMDQ_MASK 0x1f
75#define IDR1_EVTQ_SHIFT 16
76#define IDR1_EVTQ_MASK 0x1f
77#define IDR1_PRIQ_SHIFT 11
78#define IDR1_PRIQ_MASK 0x1f
79#define IDR1_SSID_SHIFT 6
80#define IDR1_SSID_MASK 0x1f
81#define IDR1_SID_SHIFT 0
82#define IDR1_SID_MASK 0x3f
83
84#define ARM_SMMU_IDR5 0x14
85#define IDR5_STALL_MAX_SHIFT 16
86#define IDR5_STALL_MAX_MASK 0xffff
87#define IDR5_GRAN64K (1 << 6)
88#define IDR5_GRAN16K (1 << 5)
89#define IDR5_GRAN4K (1 << 4)
90#define IDR5_OAS_SHIFT 0
91#define IDR5_OAS_MASK 0x7
92#define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
93#define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
94#define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
95#define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
96#define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
97#define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
98
99#define ARM_SMMU_CR0 0x20
100#define CR0_CMDQEN (1 << 3)
101#define CR0_EVTQEN (1 << 2)
102#define CR0_PRIQEN (1 << 1)
103#define CR0_SMMUEN (1 << 0)
104
105#define ARM_SMMU_CR0ACK 0x24
106
107#define ARM_SMMU_CR1 0x28
108#define CR1_SH_NSH 0
109#define CR1_SH_OSH 2
110#define CR1_SH_ISH 3
111#define CR1_CACHE_NC 0
112#define CR1_CACHE_WB 1
113#define CR1_CACHE_WT 2
114#define CR1_TABLE_SH_SHIFT 10
115#define CR1_TABLE_OC_SHIFT 8
116#define CR1_TABLE_IC_SHIFT 6
117#define CR1_QUEUE_SH_SHIFT 4
118#define CR1_QUEUE_OC_SHIFT 2
119#define CR1_QUEUE_IC_SHIFT 0
120
121#define ARM_SMMU_CR2 0x2c
122#define CR2_PTM (1 << 2)
123#define CR2_RECINVSID (1 << 1)
124#define CR2_E2H (1 << 0)
125
126#define ARM_SMMU_IRQ_CTRL 0x50
127#define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
Marc Zyngierccd63852015-07-15 11:55:18 +0100128#define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
Will Deacon48ec83b2015-05-27 17:25:59 +0100129#define IRQ_CTRL_GERROR_IRQEN (1 << 0)
130
131#define ARM_SMMU_IRQ_CTRLACK 0x54
132
133#define ARM_SMMU_GERROR 0x60
134#define GERROR_SFM_ERR (1 << 8)
135#define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
136#define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
137#define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
138#define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
139#define GERROR_PRIQ_ABT_ERR (1 << 3)
140#define GERROR_EVTQ_ABT_ERR (1 << 2)
141#define GERROR_CMDQ_ERR (1 << 0)
142#define GERROR_ERR_MASK 0xfd
143
144#define ARM_SMMU_GERRORN 0x64
145
146#define ARM_SMMU_GERROR_IRQ_CFG0 0x68
147#define ARM_SMMU_GERROR_IRQ_CFG1 0x70
148#define ARM_SMMU_GERROR_IRQ_CFG2 0x74
149
150#define ARM_SMMU_STRTAB_BASE 0x80
151#define STRTAB_BASE_RA (1UL << 62)
152#define STRTAB_BASE_ADDR_SHIFT 6
153#define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
154
155#define ARM_SMMU_STRTAB_BASE_CFG 0x88
156#define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
157#define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
158#define STRTAB_BASE_CFG_SPLIT_SHIFT 6
159#define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
160#define STRTAB_BASE_CFG_FMT_SHIFT 16
161#define STRTAB_BASE_CFG_FMT_MASK 0x3
162#define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
163#define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
164
165#define ARM_SMMU_CMDQ_BASE 0x90
166#define ARM_SMMU_CMDQ_PROD 0x98
167#define ARM_SMMU_CMDQ_CONS 0x9c
168
169#define ARM_SMMU_EVTQ_BASE 0xa0
170#define ARM_SMMU_EVTQ_PROD 0x100a8
171#define ARM_SMMU_EVTQ_CONS 0x100ac
172#define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
173#define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
174#define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
175
176#define ARM_SMMU_PRIQ_BASE 0xc0
177#define ARM_SMMU_PRIQ_PROD 0x100c8
178#define ARM_SMMU_PRIQ_CONS 0x100cc
179#define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
180#define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
181#define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
182
183/* Common MSI config fields */
Will Deacon48ec83b2015-05-27 17:25:59 +0100184#define MSI_CFG0_ADDR_SHIFT 2
185#define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
Marc Zyngierec11d632015-07-15 11:55:19 +0100186#define MSI_CFG2_SH_SHIFT 4
187#define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
188#define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
189#define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
190#define MSI_CFG2_MEMATTR_SHIFT 0
191#define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +0100192
193#define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
194#define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
195#define Q_OVERFLOW_FLAG (1 << 31)
196#define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
197#define Q_ENT(q, p) ((q)->base + \
198 Q_IDX(q, p) * (q)->ent_dwords)
199
200#define Q_BASE_RWA (1UL << 62)
201#define Q_BASE_ADDR_SHIFT 5
202#define Q_BASE_ADDR_MASK 0xfffffffffffUL
203#define Q_BASE_LOG2SIZE_SHIFT 0
204#define Q_BASE_LOG2SIZE_MASK 0x1fUL
205
206/*
207 * Stream table.
208 *
209 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
Zhen Leie2f4c232015-07-07 04:30:17 +0100210 * 2lvl: 128k L1 entries,
211 * 256 lazy entries per table (each table covers a PCI bus)
Will Deacon48ec83b2015-05-27 17:25:59 +0100212 */
Zhen Leie2f4c232015-07-07 04:30:17 +0100213#define STRTAB_L1_SZ_SHIFT 20
Will Deacon48ec83b2015-05-27 17:25:59 +0100214#define STRTAB_SPLIT 8
215
216#define STRTAB_L1_DESC_DWORDS 1
217#define STRTAB_L1_DESC_SPAN_SHIFT 0
218#define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
219#define STRTAB_L1_DESC_L2PTR_SHIFT 6
220#define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
221
222#define STRTAB_STE_DWORDS 8
223#define STRTAB_STE_0_V (1UL << 0)
224#define STRTAB_STE_0_CFG_SHIFT 1
225#define STRTAB_STE_0_CFG_MASK 0x7UL
226#define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
227#define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
228#define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
229#define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
230
231#define STRTAB_STE_0_S1FMT_SHIFT 4
232#define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
233#define STRTAB_STE_0_S1CTXPTR_SHIFT 6
234#define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
235#define STRTAB_STE_0_S1CDMAX_SHIFT 59
236#define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
237
238#define STRTAB_STE_1_S1C_CACHE_NC 0UL
239#define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
240#define STRTAB_STE_1_S1C_CACHE_WT 2UL
241#define STRTAB_STE_1_S1C_CACHE_WB 3UL
242#define STRTAB_STE_1_S1C_SH_NSH 0UL
243#define STRTAB_STE_1_S1C_SH_OSH 2UL
244#define STRTAB_STE_1_S1C_SH_ISH 3UL
245#define STRTAB_STE_1_S1CIR_SHIFT 2
246#define STRTAB_STE_1_S1COR_SHIFT 4
247#define STRTAB_STE_1_S1CSH_SHIFT 6
248
249#define STRTAB_STE_1_S1STALLD (1UL << 27)
250
251#define STRTAB_STE_1_EATS_ABT 0UL
252#define STRTAB_STE_1_EATS_TRANS 1UL
253#define STRTAB_STE_1_EATS_S1CHK 2UL
254#define STRTAB_STE_1_EATS_SHIFT 28
255
256#define STRTAB_STE_1_STRW_NSEL1 0UL
257#define STRTAB_STE_1_STRW_EL2 2UL
258#define STRTAB_STE_1_STRW_SHIFT 30
259
Will Deacona0eacd82015-11-18 18:15:51 +0000260#define STRTAB_STE_1_SHCFG_INCOMING 1UL
261#define STRTAB_STE_1_SHCFG_SHIFT 44
262
Will Deacon48ec83b2015-05-27 17:25:59 +0100263#define STRTAB_STE_2_S2VMID_SHIFT 0
264#define STRTAB_STE_2_S2VMID_MASK 0xffffUL
265#define STRTAB_STE_2_VTCR_SHIFT 32
266#define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
267#define STRTAB_STE_2_S2AA64 (1UL << 51)
268#define STRTAB_STE_2_S2ENDI (1UL << 52)
269#define STRTAB_STE_2_S2PTW (1UL << 54)
270#define STRTAB_STE_2_S2R (1UL << 58)
271
272#define STRTAB_STE_3_S2TTB_SHIFT 4
273#define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
274
275/* Context descriptor (stage-1 only) */
276#define CTXDESC_CD_DWORDS 8
277#define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
278#define ARM64_TCR_T0SZ_SHIFT 0
279#define ARM64_TCR_T0SZ_MASK 0x1fUL
280#define CTXDESC_CD_0_TCR_TG0_SHIFT 6
281#define ARM64_TCR_TG0_SHIFT 14
282#define ARM64_TCR_TG0_MASK 0x3UL
283#define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
Zhen Lei5d58c622015-06-26 09:32:59 +0100284#define ARM64_TCR_IRGN0_SHIFT 8
Will Deacon48ec83b2015-05-27 17:25:59 +0100285#define ARM64_TCR_IRGN0_MASK 0x3UL
286#define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
Zhen Lei5d58c622015-06-26 09:32:59 +0100287#define ARM64_TCR_ORGN0_SHIFT 10
Will Deacon48ec83b2015-05-27 17:25:59 +0100288#define ARM64_TCR_ORGN0_MASK 0x3UL
289#define CTXDESC_CD_0_TCR_SH0_SHIFT 12
290#define ARM64_TCR_SH0_SHIFT 12
291#define ARM64_TCR_SH0_MASK 0x3UL
292#define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
293#define ARM64_TCR_EPD0_SHIFT 7
294#define ARM64_TCR_EPD0_MASK 0x1UL
295#define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
296#define ARM64_TCR_EPD1_SHIFT 23
297#define ARM64_TCR_EPD1_MASK 0x1UL
298
299#define CTXDESC_CD_0_ENDI (1UL << 15)
300#define CTXDESC_CD_0_V (1UL << 31)
301
302#define CTXDESC_CD_0_TCR_IPS_SHIFT 32
303#define ARM64_TCR_IPS_SHIFT 32
304#define ARM64_TCR_IPS_MASK 0x7UL
305#define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
306#define ARM64_TCR_TBI0_SHIFT 37
307#define ARM64_TCR_TBI0_MASK 0x1UL
308
309#define CTXDESC_CD_0_AA64 (1UL << 41)
310#define CTXDESC_CD_0_R (1UL << 45)
311#define CTXDESC_CD_0_A (1UL << 46)
312#define CTXDESC_CD_0_ASET_SHIFT 47
313#define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
314#define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
315#define CTXDESC_CD_0_ASID_SHIFT 48
316#define CTXDESC_CD_0_ASID_MASK 0xffffUL
317
318#define CTXDESC_CD_1_TTB0_SHIFT 4
319#define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
320
321#define CTXDESC_CD_3_MAIR_SHIFT 0
322
323/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
324#define ARM_SMMU_TCR2CD(tcr, fld) \
325 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
326 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
327
328/* Command queue */
329#define CMDQ_ENT_DWORDS 2
330#define CMDQ_MAX_SZ_SHIFT 8
331
332#define CMDQ_ERR_SHIFT 24
333#define CMDQ_ERR_MASK 0x7f
334#define CMDQ_ERR_CERROR_NONE_IDX 0
335#define CMDQ_ERR_CERROR_ILL_IDX 1
336#define CMDQ_ERR_CERROR_ABT_IDX 2
337
338#define CMDQ_0_OP_SHIFT 0
339#define CMDQ_0_OP_MASK 0xffUL
340#define CMDQ_0_SSV (1UL << 11)
341
342#define CMDQ_PREFETCH_0_SID_SHIFT 32
343#define CMDQ_PREFETCH_1_SIZE_SHIFT 0
344#define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
345
346#define CMDQ_CFGI_0_SID_SHIFT 32
347#define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
348#define CMDQ_CFGI_1_LEAF (1UL << 0)
349#define CMDQ_CFGI_1_RANGE_SHIFT 0
350#define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
351
352#define CMDQ_TLBI_0_VMID_SHIFT 32
353#define CMDQ_TLBI_0_ASID_SHIFT 48
354#define CMDQ_TLBI_1_LEAF (1UL << 0)
Will Deacon1c27df12015-09-18 16:12:56 +0100355#define CMDQ_TLBI_1_VA_MASK ~0xfffUL
356#define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
Will Deacon48ec83b2015-05-27 17:25:59 +0100357
358#define CMDQ_PRI_0_SSID_SHIFT 12
359#define CMDQ_PRI_0_SSID_MASK 0xfffffUL
360#define CMDQ_PRI_0_SID_SHIFT 32
361#define CMDQ_PRI_0_SID_MASK 0xffffffffUL
362#define CMDQ_PRI_1_GRPID_SHIFT 0
363#define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
364#define CMDQ_PRI_1_RESP_SHIFT 12
365#define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
366#define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
367#define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
368
369#define CMDQ_SYNC_0_CS_SHIFT 12
370#define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
371#define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
372
373/* Event queue */
374#define EVTQ_ENT_DWORDS 4
375#define EVTQ_MAX_SZ_SHIFT 7
376
377#define EVTQ_0_ID_SHIFT 0
378#define EVTQ_0_ID_MASK 0xffUL
379
380/* PRI queue */
381#define PRIQ_ENT_DWORDS 2
382#define PRIQ_MAX_SZ_SHIFT 8
383
384#define PRIQ_0_SID_SHIFT 0
385#define PRIQ_0_SID_MASK 0xffffffffUL
386#define PRIQ_0_SSID_SHIFT 32
387#define PRIQ_0_SSID_MASK 0xfffffUL
Will Deacon48ec83b2015-05-27 17:25:59 +0100388#define PRIQ_0_PERM_PRIV (1UL << 58)
389#define PRIQ_0_PERM_EXEC (1UL << 59)
390#define PRIQ_0_PERM_READ (1UL << 60)
391#define PRIQ_0_PERM_WRITE (1UL << 61)
392#define PRIQ_0_PRG_LAST (1UL << 62)
393#define PRIQ_0_SSID_V (1UL << 63)
394
395#define PRIQ_1_PRG_IDX_SHIFT 0
396#define PRIQ_1_PRG_IDX_MASK 0x1ffUL
397#define PRIQ_1_ADDR_SHIFT 12
398#define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
399
400/* High-level queue structures */
401#define ARM_SMMU_POLL_TIMEOUT_US 100
402
403static bool disable_bypass;
404module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
405MODULE_PARM_DESC(disable_bypass,
406 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
407
408enum pri_resp {
409 PRI_RESP_DENY,
410 PRI_RESP_FAIL,
411 PRI_RESP_SUCC,
412};
413
Marc Zyngier166bdbd2015-10-13 18:32:30 +0100414enum arm_smmu_msi_index {
415 EVTQ_MSI_INDEX,
416 GERROR_MSI_INDEX,
417 PRIQ_MSI_INDEX,
418 ARM_SMMU_MAX_MSIS,
419};
420
421static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
422 [EVTQ_MSI_INDEX] = {
423 ARM_SMMU_EVTQ_IRQ_CFG0,
424 ARM_SMMU_EVTQ_IRQ_CFG1,
425 ARM_SMMU_EVTQ_IRQ_CFG2,
426 },
427 [GERROR_MSI_INDEX] = {
428 ARM_SMMU_GERROR_IRQ_CFG0,
429 ARM_SMMU_GERROR_IRQ_CFG1,
430 ARM_SMMU_GERROR_IRQ_CFG2,
431 },
432 [PRIQ_MSI_INDEX] = {
433 ARM_SMMU_PRIQ_IRQ_CFG0,
434 ARM_SMMU_PRIQ_IRQ_CFG1,
435 ARM_SMMU_PRIQ_IRQ_CFG2,
436 },
437};
438
Will Deacon48ec83b2015-05-27 17:25:59 +0100439struct arm_smmu_cmdq_ent {
440 /* Common fields */
441 u8 opcode;
442 bool substream_valid;
443
444 /* Command-specific fields */
445 union {
446 #define CMDQ_OP_PREFETCH_CFG 0x1
447 struct {
448 u32 sid;
449 u8 size;
450 u64 addr;
451 } prefetch;
452
453 #define CMDQ_OP_CFGI_STE 0x3
454 #define CMDQ_OP_CFGI_ALL 0x4
455 struct {
456 u32 sid;
457 union {
458 bool leaf;
459 u8 span;
460 };
461 } cfgi;
462
463 #define CMDQ_OP_TLBI_NH_ASID 0x11
464 #define CMDQ_OP_TLBI_NH_VA 0x12
465 #define CMDQ_OP_TLBI_EL2_ALL 0x20
466 #define CMDQ_OP_TLBI_S12_VMALL 0x28
467 #define CMDQ_OP_TLBI_S2_IPA 0x2a
468 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
469 struct {
470 u16 asid;
471 u16 vmid;
472 bool leaf;
473 u64 addr;
474 } tlbi;
475
476 #define CMDQ_OP_PRI_RESP 0x41
477 struct {
478 u32 sid;
479 u32 ssid;
480 u16 grpid;
481 enum pri_resp resp;
482 } pri;
483
484 #define CMDQ_OP_CMD_SYNC 0x46
485 };
486};
487
488struct arm_smmu_queue {
489 int irq; /* Wired interrupt */
490
491 __le64 *base;
492 dma_addr_t base_dma;
493 u64 q_base;
494
495 size_t ent_dwords;
496 u32 max_n_shift;
497 u32 prod;
498 u32 cons;
499
500 u32 __iomem *prod_reg;
501 u32 __iomem *cons_reg;
502};
503
504struct arm_smmu_cmdq {
505 struct arm_smmu_queue q;
506 spinlock_t lock;
507};
508
509struct arm_smmu_evtq {
510 struct arm_smmu_queue q;
511 u32 max_stalls;
512};
513
514struct arm_smmu_priq {
515 struct arm_smmu_queue q;
516};
517
518/* High-level stream table and context descriptor structures */
519struct arm_smmu_strtab_l1_desc {
520 u8 span;
521
522 __le64 *l2ptr;
523 dma_addr_t l2ptr_dma;
524};
525
526struct arm_smmu_s1_cfg {
527 __le64 *cdptr;
528 dma_addr_t cdptr_dma;
529
530 struct arm_smmu_ctx_desc {
531 u16 asid;
532 u64 ttbr;
533 u64 tcr;
534 u64 mair;
535 } cd;
536};
537
538struct arm_smmu_s2_cfg {
539 u16 vmid;
540 u64 vttbr;
541 u64 vtcr;
542};
543
544struct arm_smmu_strtab_ent {
545 bool valid;
546
547 bool bypass; /* Overrides s1/s2 config */
548 struct arm_smmu_s1_cfg *s1_cfg;
549 struct arm_smmu_s2_cfg *s2_cfg;
550};
551
552struct arm_smmu_strtab_cfg {
553 __le64 *strtab;
554 dma_addr_t strtab_dma;
555 struct arm_smmu_strtab_l1_desc *l1_desc;
556 unsigned int num_l1_ents;
557
558 u64 strtab_base;
559 u32 strtab_base_cfg;
560};
561
562/* An SMMUv3 instance */
563struct arm_smmu_device {
564 struct device *dev;
565 void __iomem *base;
566
567#define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
568#define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
569#define ARM_SMMU_FEAT_TT_LE (1 << 2)
570#define ARM_SMMU_FEAT_TT_BE (1 << 3)
571#define ARM_SMMU_FEAT_PRI (1 << 4)
572#define ARM_SMMU_FEAT_ATS (1 << 5)
573#define ARM_SMMU_FEAT_SEV (1 << 6)
574#define ARM_SMMU_FEAT_MSI (1 << 7)
575#define ARM_SMMU_FEAT_COHERENCY (1 << 8)
576#define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
577#define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
578#define ARM_SMMU_FEAT_STALLS (1 << 11)
579#define ARM_SMMU_FEAT_HYP (1 << 12)
580 u32 features;
581
Zhen Lei5e929462015-07-07 04:30:18 +0100582#define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
583 u32 options;
584
Will Deacon48ec83b2015-05-27 17:25:59 +0100585 struct arm_smmu_cmdq cmdq;
586 struct arm_smmu_evtq evtq;
587 struct arm_smmu_priq priq;
588
589 int gerr_irq;
590
591 unsigned long ias; /* IPA */
592 unsigned long oas; /* PA */
Robin Murphyd5466352016-05-09 17:20:09 +0100593 unsigned long pgsize_bitmap;
Will Deacon48ec83b2015-05-27 17:25:59 +0100594
595#define ARM_SMMU_MAX_ASIDS (1 << 16)
596 unsigned int asid_bits;
597 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
598
599#define ARM_SMMU_MAX_VMIDS (1 << 16)
600 unsigned int vmid_bits;
601 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
602
603 unsigned int ssid_bits;
604 unsigned int sid_bits;
605
606 struct arm_smmu_strtab_cfg strtab_cfg;
Will Deacon48ec83b2015-05-27 17:25:59 +0100607};
608
609/* SMMU private data for an IOMMU group */
610struct arm_smmu_group {
611 struct arm_smmu_device *smmu;
612 struct arm_smmu_domain *domain;
613 int num_sids;
614 u32 *sids;
615 struct arm_smmu_strtab_ent ste;
616};
617
618/* SMMU private data for an IOMMU domain */
619enum arm_smmu_domain_stage {
620 ARM_SMMU_DOMAIN_S1 = 0,
621 ARM_SMMU_DOMAIN_S2,
622 ARM_SMMU_DOMAIN_NESTED,
623};
624
625struct arm_smmu_domain {
626 struct arm_smmu_device *smmu;
627 struct mutex init_mutex; /* Protects smmu pointer */
628
629 struct io_pgtable_ops *pgtbl_ops;
630 spinlock_t pgtbl_lock;
631
632 enum arm_smmu_domain_stage stage;
633 union {
634 struct arm_smmu_s1_cfg s1_cfg;
635 struct arm_smmu_s2_cfg s2_cfg;
636 };
637
638 struct iommu_domain domain;
639};
640
Zhen Lei5e929462015-07-07 04:30:18 +0100641struct arm_smmu_option_prop {
642 u32 opt;
643 const char *prop;
644};
645
646static struct arm_smmu_option_prop arm_smmu_options[] = {
647 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
648 { 0, NULL},
649};
650
Will Deacon48ec83b2015-05-27 17:25:59 +0100651static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
652{
653 return container_of(dom, struct arm_smmu_domain, domain);
654}
655
Zhen Lei5e929462015-07-07 04:30:18 +0100656static void parse_driver_options(struct arm_smmu_device *smmu)
657{
658 int i = 0;
659
660 do {
661 if (of_property_read_bool(smmu->dev->of_node,
662 arm_smmu_options[i].prop)) {
663 smmu->options |= arm_smmu_options[i].opt;
664 dev_notice(smmu->dev, "option %s\n",
665 arm_smmu_options[i].prop);
666 }
667 } while (arm_smmu_options[++i].opt);
668}
669
Will Deacon48ec83b2015-05-27 17:25:59 +0100670/* Low-level queue manipulation functions */
671static bool queue_full(struct arm_smmu_queue *q)
672{
673 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
674 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
675}
676
677static bool queue_empty(struct arm_smmu_queue *q)
678{
679 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
680 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
681}
682
683static void queue_sync_cons(struct arm_smmu_queue *q)
684{
685 q->cons = readl_relaxed(q->cons_reg);
686}
687
688static void queue_inc_cons(struct arm_smmu_queue *q)
689{
690 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
691
692 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
693 writel(q->cons, q->cons_reg);
694}
695
696static int queue_sync_prod(struct arm_smmu_queue *q)
697{
698 int ret = 0;
699 u32 prod = readl_relaxed(q->prod_reg);
700
701 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
702 ret = -EOVERFLOW;
703
704 q->prod = prod;
705 return ret;
706}
707
708static void queue_inc_prod(struct arm_smmu_queue *q)
709{
710 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
711
712 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
713 writel(q->prod, q->prod_reg);
714}
715
716static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
717{
718 if (Q_WRP(q, q->cons) == Q_WRP(q, until))
719 return Q_IDX(q, q->cons) < Q_IDX(q, until);
720
721 return Q_IDX(q, q->cons) >= Q_IDX(q, until);
722}
723
724static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
725{
726 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
727
728 while (queue_sync_cons(q), __queue_cons_before(q, until)) {
729 if (ktime_compare(ktime_get(), timeout) > 0)
730 return -ETIMEDOUT;
731
732 if (wfe) {
733 wfe();
734 } else {
735 cpu_relax();
736 udelay(1);
737 }
738 }
739
740 return 0;
741}
742
743static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
744{
745 int i;
746
747 for (i = 0; i < n_dwords; ++i)
748 *dst++ = cpu_to_le64(*src++);
749}
750
751static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
752{
753 if (queue_full(q))
754 return -ENOSPC;
755
756 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
757 queue_inc_prod(q);
758 return 0;
759}
760
761static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
762{
763 int i;
764
765 for (i = 0; i < n_dwords; ++i)
766 *dst++ = le64_to_cpu(*src++);
767}
768
769static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
770{
771 if (queue_empty(q))
772 return -EAGAIN;
773
774 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
775 queue_inc_cons(q);
776 return 0;
777}
778
779/* High-level queue accessors */
780static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
781{
782 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
783 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
784
785 switch (ent->opcode) {
786 case CMDQ_OP_TLBI_EL2_ALL:
787 case CMDQ_OP_TLBI_NSNH_ALL:
788 break;
789 case CMDQ_OP_PREFETCH_CFG:
790 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
791 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
792 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
793 break;
794 case CMDQ_OP_CFGI_STE:
795 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
796 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
797 break;
798 case CMDQ_OP_CFGI_ALL:
799 /* Cover the entire SID range */
800 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
801 break;
802 case CMDQ_OP_TLBI_NH_VA:
803 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
Will Deacon1c27df12015-09-18 16:12:56 +0100804 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
805 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
806 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100807 case CMDQ_OP_TLBI_S2_IPA:
808 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
809 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
Will Deacon1c27df12015-09-18 16:12:56 +0100810 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
Will Deacon48ec83b2015-05-27 17:25:59 +0100811 break;
812 case CMDQ_OP_TLBI_NH_ASID:
813 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
814 /* Fallthrough */
815 case CMDQ_OP_TLBI_S12_VMALL:
816 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
817 break;
818 case CMDQ_OP_PRI_RESP:
819 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
820 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
821 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
822 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
823 switch (ent->pri.resp) {
824 case PRI_RESP_DENY:
825 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
826 break;
827 case PRI_RESP_FAIL:
828 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
829 break;
830 case PRI_RESP_SUCC:
831 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
832 break;
833 default:
834 return -EINVAL;
835 }
836 break;
837 case CMDQ_OP_CMD_SYNC:
838 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
839 break;
840 default:
841 return -ENOENT;
842 }
843
844 return 0;
845}
846
847static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
848{
849 static const char *cerror_str[] = {
850 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
851 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
852 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
853 };
854
855 int i;
856 u64 cmd[CMDQ_ENT_DWORDS];
857 struct arm_smmu_queue *q = &smmu->cmdq.q;
858 u32 cons = readl_relaxed(q->cons_reg);
859 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
860 struct arm_smmu_cmdq_ent cmd_sync = {
861 .opcode = CMDQ_OP_CMD_SYNC,
862 };
863
864 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
Will Deacona0d5c042015-12-04 12:00:29 +0000865 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
Will Deacon48ec83b2015-05-27 17:25:59 +0100866
867 switch (idx) {
Will Deacon48ec83b2015-05-27 17:25:59 +0100868 case CMDQ_ERR_CERROR_ABT_IDX:
869 dev_err(smmu->dev, "retrying command fetch\n");
870 case CMDQ_ERR_CERROR_NONE_IDX:
871 return;
Will Deacona0d5c042015-12-04 12:00:29 +0000872 case CMDQ_ERR_CERROR_ILL_IDX:
873 /* Fallthrough */
874 default:
875 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100876 }
877
878 /*
879 * We may have concurrent producers, so we need to be careful
880 * not to touch any of the shadow cmdq state.
881 */
882 queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
883 dev_err(smmu->dev, "skipping command in error state:\n");
884 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
885 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
886
887 /* Convert the erroneous command into a CMD_SYNC */
888 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
889 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
890 return;
891 }
892
893 queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
894}
895
896static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
897 struct arm_smmu_cmdq_ent *ent)
898{
899 u32 until;
900 u64 cmd[CMDQ_ENT_DWORDS];
901 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
902 struct arm_smmu_queue *q = &smmu->cmdq.q;
903
904 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
905 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
906 ent->opcode);
907 return;
908 }
909
910 spin_lock(&smmu->cmdq.lock);
911 while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
912 /*
913 * Keep the queue locked, otherwise the producer could wrap
914 * twice and we could see a future consumer pointer that looks
915 * like it's behind us.
916 */
917 if (queue_poll_cons(q, until, wfe))
918 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
919 }
920
921 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
922 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
923 spin_unlock(&smmu->cmdq.lock);
924}
925
926/* Context descriptor manipulation functions */
927static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
928{
929 u64 val = 0;
930
931 /* Repack the TCR. Just care about TTBR0 for now */
932 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
933 val |= ARM_SMMU_TCR2CD(tcr, TG0);
934 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
935 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
936 val |= ARM_SMMU_TCR2CD(tcr, SH0);
937 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
938 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
939 val |= ARM_SMMU_TCR2CD(tcr, IPS);
940 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
941
942 return val;
943}
944
945static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
946 struct arm_smmu_s1_cfg *cfg)
947{
948 u64 val;
949
950 /*
951 * We don't need to issue any invalidation here, as we'll invalidate
952 * the STE when installing the new entry anyway.
953 */
954 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
955#ifdef __BIG_ENDIAN
956 CTXDESC_CD_0_ENDI |
957#endif
958 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
959 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
960 CTXDESC_CD_0_V;
961 cfg->cdptr[0] = cpu_to_le64(val);
962
963 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
964 cfg->cdptr[1] = cpu_to_le64(val);
965
966 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
967}
968
969/* Stream table manipulation functions */
970static void
971arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
972{
973 u64 val = 0;
974
975 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
976 << STRTAB_L1_DESC_SPAN_SHIFT;
977 val |= desc->l2ptr_dma &
978 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
979
980 *dst = cpu_to_le64(val);
981}
982
983static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
984{
985 struct arm_smmu_cmdq_ent cmd = {
986 .opcode = CMDQ_OP_CFGI_STE,
987 .cfgi = {
988 .sid = sid,
989 .leaf = true,
990 },
991 };
992
993 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
994 cmd.opcode = CMDQ_OP_CMD_SYNC;
995 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
996}
997
998static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
999 __le64 *dst, struct arm_smmu_strtab_ent *ste)
1000{
1001 /*
1002 * This is hideously complicated, but we only really care about
1003 * three cases at the moment:
1004 *
1005 * 1. Invalid (all zero) -> bypass (init)
1006 * 2. Bypass -> translation (attach)
1007 * 3. Translation -> bypass (detach)
1008 *
1009 * Given that we can't update the STE atomically and the SMMU
1010 * doesn't read the thing in a defined order, that leaves us
1011 * with the following maintenance requirements:
1012 *
1013 * 1. Update Config, return (init time STEs aren't live)
1014 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1015 * 3. Update Config, sync
1016 */
1017 u64 val = le64_to_cpu(dst[0]);
1018 bool ste_live = false;
1019 struct arm_smmu_cmdq_ent prefetch_cmd = {
1020 .opcode = CMDQ_OP_PREFETCH_CFG,
1021 .prefetch = {
1022 .sid = sid,
1023 },
1024 };
1025
1026 if (val & STRTAB_STE_0_V) {
1027 u64 cfg;
1028
1029 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1030 switch (cfg) {
1031 case STRTAB_STE_0_CFG_BYPASS:
1032 break;
1033 case STRTAB_STE_0_CFG_S1_TRANS:
1034 case STRTAB_STE_0_CFG_S2_TRANS:
1035 ste_live = true;
1036 break;
1037 default:
1038 BUG(); /* STE corruption */
1039 }
1040 }
1041
1042 /* Nuke the existing Config, as we're going to rewrite it */
1043 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1044
1045 if (ste->valid)
1046 val |= STRTAB_STE_0_V;
1047 else
1048 val &= ~STRTAB_STE_0_V;
1049
1050 if (ste->bypass) {
1051 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1052 : STRTAB_STE_0_CFG_BYPASS;
1053 dst[0] = cpu_to_le64(val);
Will Deacona0eacd82015-11-18 18:15:51 +00001054 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1055 << STRTAB_STE_1_SHCFG_SHIFT);
Will Deacon48ec83b2015-05-27 17:25:59 +01001056 dst[2] = 0; /* Nuke the VMID */
1057 if (ste_live)
1058 arm_smmu_sync_ste_for_sid(smmu, sid);
1059 return;
1060 }
1061
1062 if (ste->s1_cfg) {
1063 BUG_ON(ste_live);
1064 dst[1] = cpu_to_le64(
1065 STRTAB_STE_1_S1C_CACHE_WBRA
1066 << STRTAB_STE_1_S1CIR_SHIFT |
1067 STRTAB_STE_1_S1C_CACHE_WBRA
1068 << STRTAB_STE_1_S1COR_SHIFT |
1069 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
Will Deacon48ec83b2015-05-27 17:25:59 +01001070#ifdef CONFIG_PCI_ATS
1071 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1072#endif
1073 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1074
Prem Mallappa6380be02015-12-14 22:01:23 +05301075 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1076 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1077
Will Deacon48ec83b2015-05-27 17:25:59 +01001078 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1079 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1080 STRTAB_STE_0_CFG_S1_TRANS;
1081
1082 }
1083
1084 if (ste->s2_cfg) {
1085 BUG_ON(ste_live);
1086 dst[2] = cpu_to_le64(
1087 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1088 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1089 << STRTAB_STE_2_VTCR_SHIFT |
1090#ifdef __BIG_ENDIAN
1091 STRTAB_STE_2_S2ENDI |
1092#endif
1093 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1094 STRTAB_STE_2_S2R);
1095
1096 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1097 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1098
1099 val |= STRTAB_STE_0_CFG_S2_TRANS;
1100 }
1101
1102 arm_smmu_sync_ste_for_sid(smmu, sid);
1103 dst[0] = cpu_to_le64(val);
1104 arm_smmu_sync_ste_for_sid(smmu, sid);
1105
1106 /* It's likely that we'll want to use the new STE soon */
Zhen Lei5e929462015-07-07 04:30:18 +01001107 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1108 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
Will Deacon48ec83b2015-05-27 17:25:59 +01001109}
1110
1111static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1112{
1113 unsigned int i;
1114 struct arm_smmu_strtab_ent ste = {
1115 .valid = true,
1116 .bypass = true,
1117 };
1118
1119 for (i = 0; i < nent; ++i) {
1120 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1121 strtab += STRTAB_STE_DWORDS;
1122 }
1123}
1124
1125static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1126{
1127 size_t size;
1128 void *strtab;
1129 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1130 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1131
1132 if (desc->l2ptr)
1133 return 0;
1134
1135 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
Zhen Lei69146e72015-06-26 09:32:58 +01001136 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
Will Deacon48ec83b2015-05-27 17:25:59 +01001137
1138 desc->span = STRTAB_SPLIT + 1;
Will Deacon04fa26c2015-10-30 18:12:41 +00001139 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1140 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001141 if (!desc->l2ptr) {
1142 dev_err(smmu->dev,
1143 "failed to allocate l2 stream table for SID %u\n",
1144 sid);
1145 return -ENOMEM;
1146 }
1147
1148 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1149 arm_smmu_write_strtab_l1_desc(strtab, desc);
1150 return 0;
1151}
1152
1153/* IRQ and event handlers */
1154static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1155{
1156 int i;
1157 struct arm_smmu_device *smmu = dev;
1158 struct arm_smmu_queue *q = &smmu->evtq.q;
1159 u64 evt[EVTQ_ENT_DWORDS];
1160
1161 while (!queue_remove_raw(q, evt)) {
1162 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1163
1164 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1165 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1166 dev_info(smmu->dev, "\t0x%016llx\n",
1167 (unsigned long long)evt[i]);
1168 }
1169
1170 /* Sync our overflow flag, as we believe we're up to speed */
1171 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1172 return IRQ_HANDLED;
1173}
1174
1175static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1176{
1177 irqreturn_t ret = IRQ_WAKE_THREAD;
1178 struct arm_smmu_device *smmu = dev;
1179 struct arm_smmu_queue *q = &smmu->evtq.q;
1180
1181 /*
1182 * Not much we can do on overflow, so scream and pretend we're
1183 * trying harder.
1184 */
1185 if (queue_sync_prod(q) == -EOVERFLOW)
1186 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1187 else if (queue_empty(q))
1188 ret = IRQ_NONE;
1189
1190 return ret;
1191}
1192
1193static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1194{
1195 struct arm_smmu_device *smmu = dev;
1196 struct arm_smmu_queue *q = &smmu->priq.q;
1197 u64 evt[PRIQ_ENT_DWORDS];
1198
1199 while (!queue_remove_raw(q, evt)) {
1200 u32 sid, ssid;
1201 u16 grpid;
1202 bool ssv, last;
1203
1204 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1205 ssv = evt[0] & PRIQ_0_SSID_V;
1206 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1207 last = evt[0] & PRIQ_0_PRG_LAST;
1208 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1209
1210 dev_info(smmu->dev, "unexpected PRI request received:\n");
1211 dev_info(smmu->dev,
1212 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1213 sid, ssid, grpid, last ? "L" : "",
1214 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1215 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1216 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1217 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1218 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1219
1220 if (last) {
1221 struct arm_smmu_cmdq_ent cmd = {
1222 .opcode = CMDQ_OP_PRI_RESP,
1223 .substream_valid = ssv,
1224 .pri = {
1225 .sid = sid,
1226 .ssid = ssid,
1227 .grpid = grpid,
1228 .resp = PRI_RESP_DENY,
1229 },
1230 };
1231
1232 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1233 }
1234 }
1235
1236 /* Sync our overflow flag, as we believe we're up to speed */
1237 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1238 return IRQ_HANDLED;
1239}
1240
1241static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1242{
1243 irqreturn_t ret = IRQ_WAKE_THREAD;
1244 struct arm_smmu_device *smmu = dev;
1245 struct arm_smmu_queue *q = &smmu->priq.q;
1246
1247 /* PRIQ overflow indicates a programming error */
1248 if (queue_sync_prod(q) == -EOVERFLOW)
1249 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1250 else if (queue_empty(q))
1251 ret = IRQ_NONE;
1252
1253 return ret;
1254}
1255
1256static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1257{
1258 /* We don't actually use CMD_SYNC interrupts for anything */
1259 return IRQ_HANDLED;
1260}
1261
1262static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1263
1264static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1265{
Prem Mallappa324ba102015-12-14 22:01:14 +05301266 u32 gerror, gerrorn, active;
Will Deacon48ec83b2015-05-27 17:25:59 +01001267 struct arm_smmu_device *smmu = dev;
1268
1269 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1270 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1271
Prem Mallappa324ba102015-12-14 22:01:14 +05301272 active = gerror ^ gerrorn;
1273 if (!(active & GERROR_ERR_MASK))
Will Deacon48ec83b2015-05-27 17:25:59 +01001274 return IRQ_NONE; /* No errors pending */
1275
1276 dev_warn(smmu->dev,
1277 "unexpected global error reported (0x%08x), this could be serious\n",
Prem Mallappa324ba102015-12-14 22:01:14 +05301278 active);
Will Deacon48ec83b2015-05-27 17:25:59 +01001279
Prem Mallappa324ba102015-12-14 22:01:14 +05301280 if (active & GERROR_SFM_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001281 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1282 arm_smmu_device_disable(smmu);
1283 }
1284
Prem Mallappa324ba102015-12-14 22:01:14 +05301285 if (active & GERROR_MSI_GERROR_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001286 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1287
Prem Mallappa324ba102015-12-14 22:01:14 +05301288 if (active & GERROR_MSI_PRIQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001289 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1290 arm_smmu_priq_handler(irq, smmu->dev);
1291 }
1292
Prem Mallappa324ba102015-12-14 22:01:14 +05301293 if (active & GERROR_MSI_EVTQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001294 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1295 arm_smmu_evtq_handler(irq, smmu->dev);
1296 }
1297
Prem Mallappa324ba102015-12-14 22:01:14 +05301298 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001299 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1300 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1301 }
1302
Prem Mallappa324ba102015-12-14 22:01:14 +05301303 if (active & GERROR_PRIQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001304 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1305
Prem Mallappa324ba102015-12-14 22:01:14 +05301306 if (active & GERROR_EVTQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001307 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1308
Prem Mallappa324ba102015-12-14 22:01:14 +05301309 if (active & GERROR_CMDQ_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001310 arm_smmu_cmdq_skip_err(smmu);
1311
1312 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1313 return IRQ_HANDLED;
1314}
1315
1316/* IO_PGTABLE API */
1317static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1318{
1319 struct arm_smmu_cmdq_ent cmd;
1320
1321 cmd.opcode = CMDQ_OP_CMD_SYNC;
1322 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1323}
1324
1325static void arm_smmu_tlb_sync(void *cookie)
1326{
1327 struct arm_smmu_domain *smmu_domain = cookie;
1328 __arm_smmu_tlb_sync(smmu_domain->smmu);
1329}
1330
1331static void arm_smmu_tlb_inv_context(void *cookie)
1332{
1333 struct arm_smmu_domain *smmu_domain = cookie;
1334 struct arm_smmu_device *smmu = smmu_domain->smmu;
1335 struct arm_smmu_cmdq_ent cmd;
1336
1337 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1338 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1339 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1340 cmd.tlbi.vmid = 0;
1341 } else {
1342 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1343 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1344 }
1345
1346 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1347 __arm_smmu_tlb_sync(smmu);
1348}
1349
1350static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
Robin Murphy06c610e2015-12-07 18:18:53 +00001351 size_t granule, bool leaf, void *cookie)
Will Deacon48ec83b2015-05-27 17:25:59 +01001352{
1353 struct arm_smmu_domain *smmu_domain = cookie;
1354 struct arm_smmu_device *smmu = smmu_domain->smmu;
1355 struct arm_smmu_cmdq_ent cmd = {
1356 .tlbi = {
1357 .leaf = leaf,
1358 .addr = iova,
1359 },
1360 };
1361
1362 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1363 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1364 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1365 } else {
1366 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1367 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1368 }
1369
Robin Murphy75df1382015-12-07 18:18:52 +00001370 do {
1371 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1372 cmd.tlbi.addr += granule;
1373 } while (size -= granule);
Will Deacon48ec83b2015-05-27 17:25:59 +01001374}
1375
Will Deacon48ec83b2015-05-27 17:25:59 +01001376static struct iommu_gather_ops arm_smmu_gather_ops = {
1377 .tlb_flush_all = arm_smmu_tlb_inv_context,
1378 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1379 .tlb_sync = arm_smmu_tlb_sync,
Will Deacon48ec83b2015-05-27 17:25:59 +01001380};
1381
1382/* IOMMU API */
1383static bool arm_smmu_capable(enum iommu_cap cap)
1384{
1385 switch (cap) {
1386 case IOMMU_CAP_CACHE_COHERENCY:
1387 return true;
1388 case IOMMU_CAP_INTR_REMAP:
1389 return true; /* MSIs are just memory writes */
1390 case IOMMU_CAP_NOEXEC:
1391 return true;
1392 default:
1393 return false;
1394 }
1395}
1396
1397static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1398{
1399 struct arm_smmu_domain *smmu_domain;
1400
Robin Murphy9adb9592016-01-26 18:06:36 +00001401 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
Will Deacon48ec83b2015-05-27 17:25:59 +01001402 return NULL;
1403
1404 /*
1405 * Allocate the domain and initialise some of its data structures.
1406 * We can't really do anything meaningful until we've added a
1407 * master.
1408 */
1409 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1410 if (!smmu_domain)
1411 return NULL;
1412
Robin Murphy9adb9592016-01-26 18:06:36 +00001413 if (type == IOMMU_DOMAIN_DMA &&
1414 iommu_get_dma_cookie(&smmu_domain->domain)) {
1415 kfree(smmu_domain);
1416 return NULL;
1417 }
1418
Will Deacon48ec83b2015-05-27 17:25:59 +01001419 mutex_init(&smmu_domain->init_mutex);
1420 spin_lock_init(&smmu_domain->pgtbl_lock);
1421 return &smmu_domain->domain;
1422}
1423
1424static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1425{
1426 int idx, size = 1 << span;
1427
1428 do {
1429 idx = find_first_zero_bit(map, size);
1430 if (idx == size)
1431 return -ENOSPC;
1432 } while (test_and_set_bit(idx, map));
1433
1434 return idx;
1435}
1436
1437static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1438{
1439 clear_bit(idx, map);
1440}
1441
1442static void arm_smmu_domain_free(struct iommu_domain *domain)
1443{
1444 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1445 struct arm_smmu_device *smmu = smmu_domain->smmu;
1446
Robin Murphy9adb9592016-01-26 18:06:36 +00001447 iommu_put_dma_cookie(domain);
Markus Elfringa6e08fb2015-06-29 17:47:43 +01001448 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
Will Deacon48ec83b2015-05-27 17:25:59 +01001449
1450 /* Free the CD and ASID, if we allocated them */
1451 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1452 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1453
1454 if (cfg->cdptr) {
Will Deacon04fa26c2015-10-30 18:12:41 +00001455 dmam_free_coherent(smmu_domain->smmu->dev,
1456 CTXDESC_CD_DWORDS << 3,
1457 cfg->cdptr,
1458 cfg->cdptr_dma);
Will Deacon48ec83b2015-05-27 17:25:59 +01001459
1460 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1461 }
1462 } else {
1463 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1464 if (cfg->vmid)
1465 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1466 }
1467
1468 kfree(smmu_domain);
1469}
1470
1471static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1472 struct io_pgtable_cfg *pgtbl_cfg)
1473{
1474 int ret;
Will Deaconc0733a22015-10-13 17:51:14 +01001475 int asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001476 struct arm_smmu_device *smmu = smmu_domain->smmu;
1477 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1478
1479 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001480 if (asid < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001481 return asid;
1482
Will Deacon04fa26c2015-10-30 18:12:41 +00001483 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1484 &cfg->cdptr_dma,
1485 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001486 if (!cfg->cdptr) {
1487 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
Will Deaconc0733a22015-10-13 17:51:14 +01001488 ret = -ENOMEM;
Will Deacon48ec83b2015-05-27 17:25:59 +01001489 goto out_free_asid;
1490 }
1491
Will Deaconc0733a22015-10-13 17:51:14 +01001492 cfg->cd.asid = (u16)asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001493 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1494 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1495 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1496 return 0;
1497
1498out_free_asid:
1499 arm_smmu_bitmap_free(smmu->asid_map, asid);
1500 return ret;
1501}
1502
1503static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1504 struct io_pgtable_cfg *pgtbl_cfg)
1505{
Will Deaconc0733a22015-10-13 17:51:14 +01001506 int vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001507 struct arm_smmu_device *smmu = smmu_domain->smmu;
1508 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1509
1510 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001511 if (vmid < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001512 return vmid;
1513
Will Deaconc0733a22015-10-13 17:51:14 +01001514 cfg->vmid = (u16)vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001515 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1516 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1517 return 0;
1518}
1519
Will Deacon48ec83b2015-05-27 17:25:59 +01001520static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1521{
1522 int ret;
1523 unsigned long ias, oas;
1524 enum io_pgtable_fmt fmt;
1525 struct io_pgtable_cfg pgtbl_cfg;
1526 struct io_pgtable_ops *pgtbl_ops;
1527 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1528 struct io_pgtable_cfg *);
1529 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1530 struct arm_smmu_device *smmu = smmu_domain->smmu;
1531
1532 /* Restrict the stage to what we can actually support */
1533 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1534 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1535 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1536 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1537
1538 switch (smmu_domain->stage) {
1539 case ARM_SMMU_DOMAIN_S1:
1540 ias = VA_BITS;
1541 oas = smmu->ias;
1542 fmt = ARM_64_LPAE_S1;
1543 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1544 break;
1545 case ARM_SMMU_DOMAIN_NESTED:
1546 case ARM_SMMU_DOMAIN_S2:
1547 ias = smmu->ias;
1548 oas = smmu->oas;
1549 fmt = ARM_64_LPAE_S2;
1550 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1551 break;
1552 default:
1553 return -EINVAL;
1554 }
1555
1556 pgtbl_cfg = (struct io_pgtable_cfg) {
Robin Murphyd5466352016-05-09 17:20:09 +01001557 .pgsize_bitmap = smmu->pgsize_bitmap,
Will Deacon48ec83b2015-05-27 17:25:59 +01001558 .ias = ias,
1559 .oas = oas,
1560 .tlb = &arm_smmu_gather_ops,
Robin Murphybdc6d972015-07-29 19:46:07 +01001561 .iommu_dev = smmu->dev,
Will Deacon48ec83b2015-05-27 17:25:59 +01001562 };
1563
1564 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1565 if (!pgtbl_ops)
1566 return -ENOMEM;
1567
Robin Murphyd5466352016-05-09 17:20:09 +01001568 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
Will Deacon48ec83b2015-05-27 17:25:59 +01001569 smmu_domain->pgtbl_ops = pgtbl_ops;
1570
1571 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001572 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001573 free_io_pgtable_ops(pgtbl_ops);
1574
1575 return ret;
1576}
1577
1578static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1579{
1580 struct iommu_group *group;
1581 struct arm_smmu_group *smmu_group;
1582
1583 group = iommu_group_get(dev);
1584 if (!group)
1585 return NULL;
1586
1587 smmu_group = iommu_group_get_iommudata(group);
1588 iommu_group_put(group);
1589 return smmu_group;
1590}
1591
1592static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1593{
1594 __le64 *step;
1595 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1596
1597 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1598 struct arm_smmu_strtab_l1_desc *l1_desc;
1599 int idx;
1600
1601 /* Two-level walk */
1602 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1603 l1_desc = &cfg->l1_desc[idx];
1604 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1605 step = &l1_desc->l2ptr[idx];
1606 } else {
1607 /* Simple linear lookup */
1608 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1609 }
1610
1611 return step;
1612}
1613
1614static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1615{
1616 int i;
1617 struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1618 struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1619 struct arm_smmu_device *smmu = smmu_group->smmu;
1620
1621 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1622 ste->s1_cfg = &smmu_domain->s1_cfg;
1623 ste->s2_cfg = NULL;
1624 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1625 } else {
1626 ste->s1_cfg = NULL;
1627 ste->s2_cfg = &smmu_domain->s2_cfg;
1628 }
1629
1630 for (i = 0; i < smmu_group->num_sids; ++i) {
1631 u32 sid = smmu_group->sids[i];
1632 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1633
1634 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1635 }
1636
1637 return 0;
1638}
1639
Will Deaconbc7f2ce2016-02-17 17:41:57 +00001640static void arm_smmu_detach_dev(struct device *dev)
1641{
1642 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1643
1644 smmu_group->ste.bypass = true;
Arnd Bergmann287980e2016-05-27 23:23:25 +02001645 if (arm_smmu_install_ste_for_group(smmu_group) < 0)
Will Deaconbc7f2ce2016-02-17 17:41:57 +00001646 dev_warn(dev, "failed to install bypass STE\n");
1647
1648 smmu_group->domain = NULL;
1649}
1650
Will Deacon48ec83b2015-05-27 17:25:59 +01001651static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1652{
1653 int ret = 0;
1654 struct arm_smmu_device *smmu;
1655 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1656 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1657
1658 if (!smmu_group)
1659 return -ENOENT;
1660
1661 /* Already attached to a different domain? */
1662 if (smmu_group->domain && smmu_group->domain != smmu_domain)
Will Deaconbc7f2ce2016-02-17 17:41:57 +00001663 arm_smmu_detach_dev(dev);
Will Deacon48ec83b2015-05-27 17:25:59 +01001664
1665 smmu = smmu_group->smmu;
1666 mutex_lock(&smmu_domain->init_mutex);
1667
1668 if (!smmu_domain->smmu) {
1669 smmu_domain->smmu = smmu;
1670 ret = arm_smmu_domain_finalise(domain);
1671 if (ret) {
1672 smmu_domain->smmu = NULL;
1673 goto out_unlock;
1674 }
1675 } else if (smmu_domain->smmu != smmu) {
1676 dev_err(dev,
1677 "cannot attach to SMMU %s (upstream of %s)\n",
1678 dev_name(smmu_domain->smmu->dev),
1679 dev_name(smmu->dev));
1680 ret = -ENXIO;
1681 goto out_unlock;
1682 }
1683
1684 /* Group already attached to this domain? */
1685 if (smmu_group->domain)
1686 goto out_unlock;
1687
1688 smmu_group->domain = smmu_domain;
Will Deaconcbf82772016-02-18 12:05:57 +00001689
1690 /*
1691 * FIXME: This should always be "false" once we have IOMMU-backed
1692 * DMA ops for all devices behind the SMMU.
1693 */
1694 smmu_group->ste.bypass = domain->type == IOMMU_DOMAIN_DMA;
Will Deacon48ec83b2015-05-27 17:25:59 +01001695
1696 ret = arm_smmu_install_ste_for_group(smmu_group);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001697 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001698 smmu_group->domain = NULL;
1699
1700out_unlock:
1701 mutex_unlock(&smmu_domain->init_mutex);
1702 return ret;
1703}
1704
Will Deacon48ec83b2015-05-27 17:25:59 +01001705static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1706 phys_addr_t paddr, size_t size, int prot)
1707{
1708 int ret;
1709 unsigned long flags;
1710 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1711 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1712
1713 if (!ops)
1714 return -ENODEV;
1715
1716 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1717 ret = ops->map(ops, iova, paddr, size, prot);
1718 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1719 return ret;
1720}
1721
1722static size_t
1723arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1724{
1725 size_t ret;
1726 unsigned long flags;
1727 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1728 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1729
1730 if (!ops)
1731 return 0;
1732
1733 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1734 ret = ops->unmap(ops, iova, size);
1735 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1736 return ret;
1737}
1738
1739static phys_addr_t
1740arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1741{
1742 phys_addr_t ret;
1743 unsigned long flags;
1744 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1745 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1746
1747 if (!ops)
1748 return 0;
1749
1750 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1751 ret = ops->iova_to_phys(ops, iova);
1752 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1753
1754 return ret;
1755}
1756
1757static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1758{
1759 *(u32 *)sidp = alias;
1760 return 0; /* Continue walking */
1761}
1762
1763static void __arm_smmu_release_pci_iommudata(void *data)
1764{
1765 kfree(data);
1766}
1767
1768static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1769{
1770 struct device_node *of_node;
Will Deacon941a8022015-08-11 16:25:10 +01001771 struct platform_device *smmu_pdev;
1772 struct arm_smmu_device *smmu = NULL;
Will Deacon48ec83b2015-05-27 17:25:59 +01001773 struct pci_bus *bus = pdev->bus;
1774
1775 /* Walk up to the root bus */
1776 while (!pci_is_root_bus(bus))
1777 bus = bus->parent;
1778
1779 /* Follow the "iommus" phandle from the host controller */
1780 of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1781 if (!of_node)
1782 return NULL;
1783
1784 /* See if we can find an SMMU corresponding to the phandle */
Will Deacon941a8022015-08-11 16:25:10 +01001785 smmu_pdev = of_find_device_by_node(of_node);
1786 if (smmu_pdev)
1787 smmu = platform_get_drvdata(smmu_pdev);
1788
Will Deacon48ec83b2015-05-27 17:25:59 +01001789 of_node_put(of_node);
1790 return smmu;
1791}
1792
1793static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1794{
1795 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1796
1797 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1798 limit *= 1UL << STRTAB_SPLIT;
1799
1800 return sid < limit;
1801}
1802
1803static int arm_smmu_add_device(struct device *dev)
1804{
1805 int i, ret;
1806 u32 sid, *sids;
1807 struct pci_dev *pdev;
1808 struct iommu_group *group;
1809 struct arm_smmu_group *smmu_group;
1810 struct arm_smmu_device *smmu;
1811
1812 /* We only support PCI, for now */
1813 if (!dev_is_pci(dev))
1814 return -ENODEV;
1815
1816 pdev = to_pci_dev(dev);
1817 group = iommu_group_get_for_dev(dev);
1818 if (IS_ERR(group))
1819 return PTR_ERR(group);
1820
1821 smmu_group = iommu_group_get_iommudata(group);
1822 if (!smmu_group) {
1823 smmu = arm_smmu_get_for_pci_dev(pdev);
1824 if (!smmu) {
1825 ret = -ENOENT;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001826 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001827 }
1828
1829 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1830 if (!smmu_group) {
1831 ret = -ENOMEM;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001832 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001833 }
1834
1835 smmu_group->ste.valid = true;
1836 smmu_group->smmu = smmu;
1837 iommu_group_set_iommudata(group, smmu_group,
1838 __arm_smmu_release_pci_iommudata);
1839 } else {
1840 smmu = smmu_group->smmu;
1841 }
1842
1843 /* Assume SID == RID until firmware tells us otherwise */
1844 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1845 for (i = 0; i < smmu_group->num_sids; ++i) {
1846 /* If we already know about this SID, then we're done */
1847 if (smmu_group->sids[i] == sid)
Peng Fan9a4a9d82015-11-20 16:56:18 +08001848 goto out_put_group;
Will Deacon48ec83b2015-05-27 17:25:59 +01001849 }
1850
1851 /* Check the SID is in range of the SMMU and our stream table */
1852 if (!arm_smmu_sid_in_range(smmu, sid)) {
1853 ret = -ERANGE;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001854 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001855 }
1856
1857 /* Ensure l2 strtab is initialised */
1858 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1859 ret = arm_smmu_init_l2_strtab(smmu, sid);
1860 if (ret)
Peng Fan9a4a9d82015-11-20 16:56:18 +08001861 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001862 }
1863
1864 /* Resize the SID array for the group */
1865 smmu_group->num_sids++;
1866 sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1867 GFP_KERNEL);
1868 if (!sids) {
1869 smmu_group->num_sids--;
1870 ret = -ENOMEM;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001871 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001872 }
1873
1874 /* Add the new SID */
1875 sids[smmu_group->num_sids - 1] = sid;
1876 smmu_group->sids = sids;
Will Deacon48ec83b2015-05-27 17:25:59 +01001877
1878out_put_group:
1879 iommu_group_put(group);
Peng Fan9a4a9d82015-11-20 16:56:18 +08001880 return 0;
1881
1882out_remove_dev:
1883 iommu_group_remove_device(dev);
1884 iommu_group_put(group);
Will Deacon48ec83b2015-05-27 17:25:59 +01001885 return ret;
1886}
1887
1888static void arm_smmu_remove_device(struct device *dev)
1889{
1890 iommu_group_remove_device(dev);
1891}
1892
1893static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1894 enum iommu_attr attr, void *data)
1895{
1896 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1897
1898 switch (attr) {
1899 case DOMAIN_ATTR_NESTING:
1900 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1901 return 0;
1902 default:
1903 return -ENODEV;
1904 }
1905}
1906
1907static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1908 enum iommu_attr attr, void *data)
1909{
1910 int ret = 0;
1911 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1912
1913 mutex_lock(&smmu_domain->init_mutex);
1914
1915 switch (attr) {
1916 case DOMAIN_ATTR_NESTING:
1917 if (smmu_domain->smmu) {
1918 ret = -EPERM;
1919 goto out_unlock;
1920 }
1921
1922 if (*(int *)data)
1923 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1924 else
1925 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1926
1927 break;
1928 default:
1929 ret = -ENODEV;
1930 }
1931
1932out_unlock:
1933 mutex_unlock(&smmu_domain->init_mutex);
1934 return ret;
1935}
1936
1937static struct iommu_ops arm_smmu_ops = {
1938 .capable = arm_smmu_capable,
1939 .domain_alloc = arm_smmu_domain_alloc,
1940 .domain_free = arm_smmu_domain_free,
1941 .attach_dev = arm_smmu_attach_dev,
Will Deacon48ec83b2015-05-27 17:25:59 +01001942 .map = arm_smmu_map,
1943 .unmap = arm_smmu_unmap,
Jean-Philippe Brucker9aeb26c2016-06-03 11:50:30 +01001944 .map_sg = default_iommu_map_sg,
Will Deacon48ec83b2015-05-27 17:25:59 +01001945 .iova_to_phys = arm_smmu_iova_to_phys,
1946 .add_device = arm_smmu_add_device,
1947 .remove_device = arm_smmu_remove_device,
Joerg Roedelaf659932015-10-21 23:51:41 +02001948 .device_group = pci_device_group,
Will Deacon48ec83b2015-05-27 17:25:59 +01001949 .domain_get_attr = arm_smmu_domain_get_attr,
1950 .domain_set_attr = arm_smmu_domain_set_attr,
1951 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1952};
1953
1954/* Probing and initialisation functions */
1955static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1956 struct arm_smmu_queue *q,
1957 unsigned long prod_off,
1958 unsigned long cons_off,
1959 size_t dwords)
1960{
1961 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1962
Will Deacon04fa26c2015-10-30 18:12:41 +00001963 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
Will Deacon48ec83b2015-05-27 17:25:59 +01001964 if (!q->base) {
1965 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1966 qsz);
1967 return -ENOMEM;
1968 }
1969
1970 q->prod_reg = smmu->base + prod_off;
1971 q->cons_reg = smmu->base + cons_off;
1972 q->ent_dwords = dwords;
1973
1974 q->q_base = Q_BASE_RWA;
1975 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1976 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1977 << Q_BASE_LOG2SIZE_SHIFT;
1978
1979 q->prod = q->cons = 0;
1980 return 0;
1981}
1982
Will Deacon48ec83b2015-05-27 17:25:59 +01001983static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1984{
1985 int ret;
1986
1987 /* cmdq */
1988 spin_lock_init(&smmu->cmdq.lock);
1989 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1990 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1991 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00001992 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01001993
1994 /* evtq */
1995 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1996 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1997 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00001998 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01001999
2000 /* priq */
2001 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2002 return 0;
2003
Will Deacon04fa26c2015-10-30 18:12:41 +00002004 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2005 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
Will Deacon48ec83b2015-05-27 17:25:59 +01002006}
2007
2008static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2009{
2010 unsigned int i;
2011 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2012 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2013 void *strtab = smmu->strtab_cfg.strtab;
2014
2015 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2016 if (!cfg->l1_desc) {
2017 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2018 return -ENOMEM;
2019 }
2020
2021 for (i = 0; i < cfg->num_l1_ents; ++i) {
2022 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2023 strtab += STRTAB_L1_DESC_DWORDS << 3;
2024 }
2025
2026 return 0;
2027}
2028
2029static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2030{
2031 void *strtab;
2032 u64 reg;
Will Deacond2e88e72015-06-30 10:02:28 +01002033 u32 size, l1size;
Will Deacon48ec83b2015-05-27 17:25:59 +01002034 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2035
Will Deacon28c8b402015-07-16 17:50:12 +01002036 /*
2037 * If we can resolve everything with a single L2 table, then we
2038 * just need a single L1 descriptor. Otherwise, calculate the L1
2039 * size, capped to the SIDSIZE.
2040 */
2041 if (smmu->sid_bits < STRTAB_SPLIT) {
2042 size = 0;
2043 } else {
2044 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2045 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2046 }
Will Deacond2e88e72015-06-30 10:02:28 +01002047 cfg->num_l1_ents = 1 << size;
2048
2049 size += STRTAB_SPLIT;
2050 if (size < smmu->sid_bits)
Will Deacon48ec83b2015-05-27 17:25:59 +01002051 dev_warn(smmu->dev,
2052 "2-level strtab only covers %u/%u bits of SID\n",
Will Deacond2e88e72015-06-30 10:02:28 +01002053 size, smmu->sid_bits);
Will Deacon48ec83b2015-05-27 17:25:59 +01002054
Will Deacond2e88e72015-06-30 10:02:28 +01002055 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002056 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2057 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002058 if (!strtab) {
2059 dev_err(smmu->dev,
2060 "failed to allocate l1 stream table (%u bytes)\n",
2061 size);
2062 return -ENOMEM;
2063 }
2064 cfg->strtab = strtab;
2065
2066 /* Configure strtab_base_cfg for 2 levels */
2067 reg = STRTAB_BASE_CFG_FMT_2LVL;
2068 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2069 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2070 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2071 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2072 cfg->strtab_base_cfg = reg;
2073
Will Deacon04fa26c2015-10-30 18:12:41 +00002074 return arm_smmu_init_l1_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002075}
2076
2077static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2078{
2079 void *strtab;
2080 u64 reg;
2081 u32 size;
2082 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2083
2084 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002085 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2086 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002087 if (!strtab) {
2088 dev_err(smmu->dev,
2089 "failed to allocate linear stream table (%u bytes)\n",
2090 size);
2091 return -ENOMEM;
2092 }
2093 cfg->strtab = strtab;
2094 cfg->num_l1_ents = 1 << smmu->sid_bits;
2095
2096 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2097 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2098 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2099 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2100 cfg->strtab_base_cfg = reg;
2101
2102 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2103 return 0;
2104}
2105
2106static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2107{
2108 u64 reg;
2109 int ret;
2110
2111 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2112 ret = arm_smmu_init_strtab_2lvl(smmu);
2113 else
2114 ret = arm_smmu_init_strtab_linear(smmu);
2115
2116 if (ret)
2117 return ret;
2118
2119 /* Set the strtab base address */
2120 reg = smmu->strtab_cfg.strtab_dma &
2121 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2122 reg |= STRTAB_BASE_RA;
2123 smmu->strtab_cfg.strtab_base = reg;
2124
2125 /* Allocate the first VMID for stage-2 bypass STEs */
2126 set_bit(0, smmu->vmid_map);
2127 return 0;
2128}
2129
Will Deacon48ec83b2015-05-27 17:25:59 +01002130static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2131{
2132 int ret;
2133
2134 ret = arm_smmu_init_queues(smmu);
2135 if (ret)
2136 return ret;
2137
Will Deacon04fa26c2015-10-30 18:12:41 +00002138 return arm_smmu_init_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002139}
2140
2141static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2142 unsigned int reg_off, unsigned int ack_off)
2143{
2144 u32 reg;
2145
2146 writel_relaxed(val, smmu->base + reg_off);
2147 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2148 1, ARM_SMMU_POLL_TIMEOUT_US);
2149}
2150
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002151static void arm_smmu_free_msis(void *data)
2152{
2153 struct device *dev = data;
2154 platform_msi_domain_free_irqs(dev);
2155}
2156
2157static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2158{
2159 phys_addr_t doorbell;
2160 struct device *dev = msi_desc_to_dev(desc);
2161 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2162 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2163
2164 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2165 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2166
2167 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2168 writel_relaxed(msg->data, smmu->base + cfg[1]);
2169 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2170}
2171
2172static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2173{
2174 struct msi_desc *desc;
2175 int ret, nvec = ARM_SMMU_MAX_MSIS;
2176 struct device *dev = smmu->dev;
2177
2178 /* Clear the MSI address regs */
2179 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2180 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2181
2182 if (smmu->features & ARM_SMMU_FEAT_PRI)
2183 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2184 else
2185 nvec--;
2186
2187 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2188 return;
2189
2190 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2191 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2192 if (ret) {
2193 dev_warn(dev, "failed to allocate MSIs\n");
2194 return;
2195 }
2196
2197 for_each_msi_entry(desc, dev) {
2198 switch (desc->platform.msi_index) {
2199 case EVTQ_MSI_INDEX:
2200 smmu->evtq.q.irq = desc->irq;
2201 break;
2202 case GERROR_MSI_INDEX:
2203 smmu->gerr_irq = desc->irq;
2204 break;
2205 case PRIQ_MSI_INDEX:
2206 smmu->priq.q.irq = desc->irq;
2207 break;
2208 default: /* Unknown */
2209 continue;
2210 }
2211 }
2212
2213 /* Add callback to free MSIs on teardown */
2214 devm_add_action(dev, arm_smmu_free_msis, dev);
2215}
2216
Will Deacon48ec83b2015-05-27 17:25:59 +01002217static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2218{
2219 int ret, irq;
Marc Zyngierccd63852015-07-15 11:55:18 +01002220 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002221
2222 /* Disable IRQs first */
2223 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2224 ARM_SMMU_IRQ_CTRLACK);
2225 if (ret) {
2226 dev_err(smmu->dev, "failed to disable irqs\n");
2227 return ret;
2228 }
2229
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002230 arm_smmu_setup_msis(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002231
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002232 /* Request interrupt lines */
Will Deacon48ec83b2015-05-27 17:25:59 +01002233 irq = smmu->evtq.q.irq;
2234 if (irq) {
2235 ret = devm_request_threaded_irq(smmu->dev, irq,
2236 arm_smmu_evtq_handler,
2237 arm_smmu_evtq_thread,
2238 0, "arm-smmu-v3-evtq", smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002239 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002240 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2241 }
2242
2243 irq = smmu->cmdq.q.irq;
2244 if (irq) {
2245 ret = devm_request_irq(smmu->dev, irq,
2246 arm_smmu_cmdq_sync_handler, 0,
2247 "arm-smmu-v3-cmdq-sync", smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002248 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002249 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2250 }
2251
2252 irq = smmu->gerr_irq;
2253 if (irq) {
2254 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2255 0, "arm-smmu-v3-gerror", smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002256 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002257 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2258 }
2259
2260 if (smmu->features & ARM_SMMU_FEAT_PRI) {
Will Deacon48ec83b2015-05-27 17:25:59 +01002261 irq = smmu->priq.q.irq;
2262 if (irq) {
2263 ret = devm_request_threaded_irq(smmu->dev, irq,
2264 arm_smmu_priq_handler,
2265 arm_smmu_priq_thread,
2266 0, "arm-smmu-v3-priq",
2267 smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002268 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002269 dev_warn(smmu->dev,
2270 "failed to enable priq irq\n");
Marc Zyngierccd63852015-07-15 11:55:18 +01002271 else
2272 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002273 }
2274 }
2275
2276 /* Enable interrupt generation on the SMMU */
Marc Zyngierccd63852015-07-15 11:55:18 +01002277 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
Will Deacon48ec83b2015-05-27 17:25:59 +01002278 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2279 if (ret)
2280 dev_warn(smmu->dev, "failed to enable irqs\n");
2281
2282 return 0;
2283}
2284
2285static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2286{
2287 int ret;
2288
2289 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2290 if (ret)
2291 dev_err(smmu->dev, "failed to clear cr0\n");
2292
2293 return ret;
2294}
2295
2296static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2297{
2298 int ret;
2299 u32 reg, enables;
2300 struct arm_smmu_cmdq_ent cmd;
2301
2302 /* Clear CR0 and sync (disables SMMU and queue processing) */
2303 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2304 if (reg & CR0_SMMUEN)
2305 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2306
2307 ret = arm_smmu_device_disable(smmu);
2308 if (ret)
2309 return ret;
2310
2311 /* CR1 (table and queue memory attributes) */
2312 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2313 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2314 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2315 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2316 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2317 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2318 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2319
2320 /* CR2 (random crap) */
2321 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2322 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2323
2324 /* Stream table */
2325 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2326 smmu->base + ARM_SMMU_STRTAB_BASE);
2327 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2328 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2329
2330 /* Command queue */
2331 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2332 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2333 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2334
2335 enables = CR0_CMDQEN;
2336 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2337 ARM_SMMU_CR0ACK);
2338 if (ret) {
2339 dev_err(smmu->dev, "failed to enable command queue\n");
2340 return ret;
2341 }
2342
2343 /* Invalidate any cached configuration */
2344 cmd.opcode = CMDQ_OP_CFGI_ALL;
2345 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2346 cmd.opcode = CMDQ_OP_CMD_SYNC;
2347 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2348
2349 /* Invalidate any stale TLB entries */
2350 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2351 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2352 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2353 }
2354
2355 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2356 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2357 cmd.opcode = CMDQ_OP_CMD_SYNC;
2358 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2359
2360 /* Event queue */
2361 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2362 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2363 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2364
2365 enables |= CR0_EVTQEN;
2366 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2367 ARM_SMMU_CR0ACK);
2368 if (ret) {
2369 dev_err(smmu->dev, "failed to enable event queue\n");
2370 return ret;
2371 }
2372
2373 /* PRI queue */
2374 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2375 writeq_relaxed(smmu->priq.q.q_base,
2376 smmu->base + ARM_SMMU_PRIQ_BASE);
2377 writel_relaxed(smmu->priq.q.prod,
2378 smmu->base + ARM_SMMU_PRIQ_PROD);
2379 writel_relaxed(smmu->priq.q.cons,
2380 smmu->base + ARM_SMMU_PRIQ_CONS);
2381
2382 enables |= CR0_PRIQEN;
2383 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2384 ARM_SMMU_CR0ACK);
2385 if (ret) {
2386 dev_err(smmu->dev, "failed to enable PRI queue\n");
2387 return ret;
2388 }
2389 }
2390
2391 ret = arm_smmu_setup_irqs(smmu);
2392 if (ret) {
2393 dev_err(smmu->dev, "failed to setup irqs\n");
2394 return ret;
2395 }
2396
2397 /* Enable the SMMU interface */
2398 enables |= CR0_SMMUEN;
2399 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2400 ARM_SMMU_CR0ACK);
2401 if (ret) {
2402 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2403 return ret;
2404 }
2405
2406 return 0;
2407}
2408
2409static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2410{
2411 u32 reg;
2412 bool coherent;
Will Deacon48ec83b2015-05-27 17:25:59 +01002413
2414 /* IDR0 */
2415 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2416
2417 /* 2-level structures */
2418 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2419 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2420
2421 if (reg & IDR0_CD2L)
2422 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2423
2424 /*
2425 * Translation table endianness.
2426 * We currently require the same endianness as the CPU, but this
2427 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2428 */
2429 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2430 case IDR0_TTENDIAN_MIXED:
2431 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2432 break;
2433#ifdef __BIG_ENDIAN
2434 case IDR0_TTENDIAN_BE:
2435 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2436 break;
2437#else
2438 case IDR0_TTENDIAN_LE:
2439 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2440 break;
2441#endif
2442 default:
2443 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2444 return -ENXIO;
2445 }
2446
2447 /* Boolean feature flags */
2448 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2449 smmu->features |= ARM_SMMU_FEAT_PRI;
2450
2451 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2452 smmu->features |= ARM_SMMU_FEAT_ATS;
2453
2454 if (reg & IDR0_SEV)
2455 smmu->features |= ARM_SMMU_FEAT_SEV;
2456
2457 if (reg & IDR0_MSI)
2458 smmu->features |= ARM_SMMU_FEAT_MSI;
2459
2460 if (reg & IDR0_HYP)
2461 smmu->features |= ARM_SMMU_FEAT_HYP;
2462
2463 /*
2464 * The dma-coherent property is used in preference to the ID
2465 * register, but warn on mismatch.
2466 */
2467 coherent = of_dma_is_coherent(smmu->dev->of_node);
2468 if (coherent)
2469 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2470
2471 if (!!(reg & IDR0_COHACC) != coherent)
2472 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2473 coherent ? "true" : "false");
2474
Prem Mallappa6380be02015-12-14 22:01:23 +05302475 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2476 case IDR0_STALL_MODEL_STALL:
2477 /* Fallthrough */
2478 case IDR0_STALL_MODEL_FORCE:
Will Deacon48ec83b2015-05-27 17:25:59 +01002479 smmu->features |= ARM_SMMU_FEAT_STALLS;
Prem Mallappa6380be02015-12-14 22:01:23 +05302480 }
Will Deacon48ec83b2015-05-27 17:25:59 +01002481
2482 if (reg & IDR0_S1P)
2483 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2484
2485 if (reg & IDR0_S2P)
2486 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2487
2488 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2489 dev_err(smmu->dev, "no translation support!\n");
2490 return -ENXIO;
2491 }
2492
2493 /* We only support the AArch64 table format at present */
Will Deaconf0c453d2015-08-20 12:12:32 +01002494 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2495 case IDR0_TTF_AARCH32_64:
2496 smmu->ias = 40;
2497 /* Fallthrough */
2498 case IDR0_TTF_AARCH64:
2499 break;
2500 default:
Will Deacon48ec83b2015-05-27 17:25:59 +01002501 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2502 return -ENXIO;
2503 }
2504
2505 /* ASID/VMID sizes */
2506 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2507 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2508
2509 /* IDR1 */
2510 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2511 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2512 dev_err(smmu->dev, "embedded implementation not supported\n");
2513 return -ENXIO;
2514 }
2515
2516 /* Queue sizes, capped at 4k */
2517 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2518 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2519 if (!smmu->cmdq.q.max_n_shift) {
2520 /* Odd alignment restrictions on the base, so ignore for now */
2521 dev_err(smmu->dev, "unit-length command queue not supported\n");
2522 return -ENXIO;
2523 }
2524
2525 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2526 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2527 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2528 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2529
2530 /* SID/SSID sizes */
2531 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2532 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2533
2534 /* IDR5 */
2535 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2536
2537 /* Maximum number of outstanding stalls */
2538 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2539 & IDR5_STALL_MAX_MASK;
2540
2541 /* Page sizes */
2542 if (reg & IDR5_GRAN64K)
Robin Murphyd5466352016-05-09 17:20:09 +01002543 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
Will Deacon48ec83b2015-05-27 17:25:59 +01002544 if (reg & IDR5_GRAN16K)
Robin Murphyd5466352016-05-09 17:20:09 +01002545 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
Will Deacon48ec83b2015-05-27 17:25:59 +01002546 if (reg & IDR5_GRAN4K)
Robin Murphyd5466352016-05-09 17:20:09 +01002547 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
Will Deacon48ec83b2015-05-27 17:25:59 +01002548
Robin Murphyd5466352016-05-09 17:20:09 +01002549 if (arm_smmu_ops.pgsize_bitmap == -1UL)
2550 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2551 else
2552 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
Will Deacon48ec83b2015-05-27 17:25:59 +01002553
2554 /* Output address size */
2555 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2556 case IDR5_OAS_32_BIT:
2557 smmu->oas = 32;
2558 break;
2559 case IDR5_OAS_36_BIT:
2560 smmu->oas = 36;
2561 break;
2562 case IDR5_OAS_40_BIT:
2563 smmu->oas = 40;
2564 break;
2565 case IDR5_OAS_42_BIT:
2566 smmu->oas = 42;
2567 break;
2568 case IDR5_OAS_44_BIT:
2569 smmu->oas = 44;
2570 break;
Will Deacon85430962015-08-03 10:35:40 +01002571 default:
2572 dev_info(smmu->dev,
2573 "unknown output address size. Truncating to 48-bit\n");
2574 /* Fallthrough */
Will Deacon48ec83b2015-05-27 17:25:59 +01002575 case IDR5_OAS_48_BIT:
2576 smmu->oas = 48;
Will Deacon48ec83b2015-05-27 17:25:59 +01002577 }
2578
2579 /* Set the DMA mask for our table walker */
2580 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2581 dev_warn(smmu->dev,
2582 "failed to set DMA mask for table walker\n");
2583
Will Deaconf0c453d2015-08-20 12:12:32 +01002584 smmu->ias = max(smmu->ias, smmu->oas);
Will Deacon48ec83b2015-05-27 17:25:59 +01002585
2586 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2587 smmu->ias, smmu->oas, smmu->features);
2588 return 0;
2589}
2590
2591static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2592{
2593 int irq, ret;
2594 struct resource *res;
2595 struct arm_smmu_device *smmu;
2596 struct device *dev = &pdev->dev;
2597
2598 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2599 if (!smmu) {
2600 dev_err(dev, "failed to allocate arm_smmu_device\n");
2601 return -ENOMEM;
2602 }
2603 smmu->dev = dev;
2604
2605 /* Base address */
2606 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2607 if (resource_size(res) + 1 < SZ_128K) {
2608 dev_err(dev, "MMIO region too small (%pr)\n", res);
2609 return -EINVAL;
2610 }
2611
2612 smmu->base = devm_ioremap_resource(dev, res);
2613 if (IS_ERR(smmu->base))
2614 return PTR_ERR(smmu->base);
2615
2616 /* Interrupt lines */
2617 irq = platform_get_irq_byname(pdev, "eventq");
2618 if (irq > 0)
2619 smmu->evtq.q.irq = irq;
2620
2621 irq = platform_get_irq_byname(pdev, "priq");
2622 if (irq > 0)
2623 smmu->priq.q.irq = irq;
2624
2625 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2626 if (irq > 0)
2627 smmu->cmdq.q.irq = irq;
2628
2629 irq = platform_get_irq_byname(pdev, "gerror");
2630 if (irq > 0)
2631 smmu->gerr_irq = irq;
2632
Zhen Lei5e929462015-07-07 04:30:18 +01002633 parse_driver_options(smmu);
2634
Will Deacon48ec83b2015-05-27 17:25:59 +01002635 /* Probe the h/w */
2636 ret = arm_smmu_device_probe(smmu);
2637 if (ret)
2638 return ret;
2639
2640 /* Initialise in-memory data structures */
2641 ret = arm_smmu_init_structures(smmu);
2642 if (ret)
2643 return ret;
2644
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002645 /* Record our private device structure */
2646 platform_set_drvdata(pdev, smmu);
2647
Will Deacon48ec83b2015-05-27 17:25:59 +01002648 /* Reset the device */
Will Deacon04fa26c2015-10-30 18:12:41 +00002649 return arm_smmu_device_reset(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002650}
2651
2652static int arm_smmu_device_remove(struct platform_device *pdev)
2653{
Will Deacon941a8022015-08-11 16:25:10 +01002654 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
Will Deacon48ec83b2015-05-27 17:25:59 +01002655
2656 arm_smmu_device_disable(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002657 return 0;
2658}
2659
2660static struct of_device_id arm_smmu_of_match[] = {
2661 { .compatible = "arm,smmu-v3", },
2662 { },
2663};
2664MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2665
2666static struct platform_driver arm_smmu_driver = {
2667 .driver = {
2668 .name = "arm-smmu-v3",
2669 .of_match_table = of_match_ptr(arm_smmu_of_match),
2670 },
2671 .probe = arm_smmu_device_dt_probe,
2672 .remove = arm_smmu_device_remove,
2673};
2674
2675static int __init arm_smmu_init(void)
2676{
2677 struct device_node *np;
2678 int ret;
2679
2680 np = of_find_matching_node(NULL, arm_smmu_of_match);
2681 if (!np)
2682 return 0;
2683
2684 of_node_put(np);
2685
2686 ret = platform_driver_register(&arm_smmu_driver);
2687 if (ret)
2688 return ret;
2689
2690 return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2691}
2692
2693static void __exit arm_smmu_exit(void)
2694{
2695 return platform_driver_unregister(&arm_smmu_driver);
2696}
2697
2698subsys_initcall(arm_smmu_init);
2699module_exit(arm_smmu_exit);
2700
2701MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2702MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2703MODULE_LICENSE("GPL v2");