blob: 86480480895d86a09b7bc78b5ecdb30bd52dca27 [file] [log] [blame]
Will Deacon48ec83b2015-05-27 17:25:59 +01001/*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23#include <linux/delay.h>
24#include <linux/err.h>
25#include <linux/interrupt.h>
26#include <linux/iommu.h>
27#include <linux/iopoll.h>
28#include <linux/module.h>
Marc Zyngier166bdbd2015-10-13 18:32:30 +010029#include <linux/msi.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010030#include <linux/of.h>
31#include <linux/of_address.h>
Will Deacon941a8022015-08-11 16:25:10 +010032#include <linux/of_platform.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010033#include <linux/pci.h>
34#include <linux/platform_device.h>
35
36#include "io-pgtable.h"
37
38/* MMIO registers */
39#define ARM_SMMU_IDR0 0x0
40#define IDR0_ST_LVL_SHIFT 27
41#define IDR0_ST_LVL_MASK 0x3
42#define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
43#define IDR0_STALL_MODEL (3 << 24)
44#define IDR0_TTENDIAN_SHIFT 21
45#define IDR0_TTENDIAN_MASK 0x3
46#define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
47#define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
48#define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
49#define IDR0_CD2L (1 << 19)
50#define IDR0_VMID16 (1 << 18)
51#define IDR0_PRI (1 << 16)
52#define IDR0_SEV (1 << 14)
53#define IDR0_MSI (1 << 13)
54#define IDR0_ASID16 (1 << 12)
55#define IDR0_ATS (1 << 10)
56#define IDR0_HYP (1 << 9)
57#define IDR0_COHACC (1 << 4)
58#define IDR0_TTF_SHIFT 2
59#define IDR0_TTF_MASK 0x3
60#define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
Will Deaconf0c453d2015-08-20 12:12:32 +010061#define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +010062#define IDR0_S1P (1 << 1)
63#define IDR0_S2P (1 << 0)
64
65#define ARM_SMMU_IDR1 0x4
66#define IDR1_TABLES_PRESET (1 << 30)
67#define IDR1_QUEUES_PRESET (1 << 29)
68#define IDR1_REL (1 << 28)
69#define IDR1_CMDQ_SHIFT 21
70#define IDR1_CMDQ_MASK 0x1f
71#define IDR1_EVTQ_SHIFT 16
72#define IDR1_EVTQ_MASK 0x1f
73#define IDR1_PRIQ_SHIFT 11
74#define IDR1_PRIQ_MASK 0x1f
75#define IDR1_SSID_SHIFT 6
76#define IDR1_SSID_MASK 0x1f
77#define IDR1_SID_SHIFT 0
78#define IDR1_SID_MASK 0x3f
79
80#define ARM_SMMU_IDR5 0x14
81#define IDR5_STALL_MAX_SHIFT 16
82#define IDR5_STALL_MAX_MASK 0xffff
83#define IDR5_GRAN64K (1 << 6)
84#define IDR5_GRAN16K (1 << 5)
85#define IDR5_GRAN4K (1 << 4)
86#define IDR5_OAS_SHIFT 0
87#define IDR5_OAS_MASK 0x7
88#define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
89#define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
90#define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
91#define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
92#define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
93#define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
94
95#define ARM_SMMU_CR0 0x20
96#define CR0_CMDQEN (1 << 3)
97#define CR0_EVTQEN (1 << 2)
98#define CR0_PRIQEN (1 << 1)
99#define CR0_SMMUEN (1 << 0)
100
101#define ARM_SMMU_CR0ACK 0x24
102
103#define ARM_SMMU_CR1 0x28
104#define CR1_SH_NSH 0
105#define CR1_SH_OSH 2
106#define CR1_SH_ISH 3
107#define CR1_CACHE_NC 0
108#define CR1_CACHE_WB 1
109#define CR1_CACHE_WT 2
110#define CR1_TABLE_SH_SHIFT 10
111#define CR1_TABLE_OC_SHIFT 8
112#define CR1_TABLE_IC_SHIFT 6
113#define CR1_QUEUE_SH_SHIFT 4
114#define CR1_QUEUE_OC_SHIFT 2
115#define CR1_QUEUE_IC_SHIFT 0
116
117#define ARM_SMMU_CR2 0x2c
118#define CR2_PTM (1 << 2)
119#define CR2_RECINVSID (1 << 1)
120#define CR2_E2H (1 << 0)
121
122#define ARM_SMMU_IRQ_CTRL 0x50
123#define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
Marc Zyngierccd63852015-07-15 11:55:18 +0100124#define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
Will Deacon48ec83b2015-05-27 17:25:59 +0100125#define IRQ_CTRL_GERROR_IRQEN (1 << 0)
126
127#define ARM_SMMU_IRQ_CTRLACK 0x54
128
129#define ARM_SMMU_GERROR 0x60
130#define GERROR_SFM_ERR (1 << 8)
131#define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
132#define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
133#define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
134#define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
135#define GERROR_PRIQ_ABT_ERR (1 << 3)
136#define GERROR_EVTQ_ABT_ERR (1 << 2)
137#define GERROR_CMDQ_ERR (1 << 0)
138#define GERROR_ERR_MASK 0xfd
139
140#define ARM_SMMU_GERRORN 0x64
141
142#define ARM_SMMU_GERROR_IRQ_CFG0 0x68
143#define ARM_SMMU_GERROR_IRQ_CFG1 0x70
144#define ARM_SMMU_GERROR_IRQ_CFG2 0x74
145
146#define ARM_SMMU_STRTAB_BASE 0x80
147#define STRTAB_BASE_RA (1UL << 62)
148#define STRTAB_BASE_ADDR_SHIFT 6
149#define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
150
151#define ARM_SMMU_STRTAB_BASE_CFG 0x88
152#define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
153#define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
154#define STRTAB_BASE_CFG_SPLIT_SHIFT 6
155#define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
156#define STRTAB_BASE_CFG_FMT_SHIFT 16
157#define STRTAB_BASE_CFG_FMT_MASK 0x3
158#define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
159#define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
160
161#define ARM_SMMU_CMDQ_BASE 0x90
162#define ARM_SMMU_CMDQ_PROD 0x98
163#define ARM_SMMU_CMDQ_CONS 0x9c
164
165#define ARM_SMMU_EVTQ_BASE 0xa0
166#define ARM_SMMU_EVTQ_PROD 0x100a8
167#define ARM_SMMU_EVTQ_CONS 0x100ac
168#define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
169#define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
170#define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
171
172#define ARM_SMMU_PRIQ_BASE 0xc0
173#define ARM_SMMU_PRIQ_PROD 0x100c8
174#define ARM_SMMU_PRIQ_CONS 0x100cc
175#define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
176#define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
177#define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
178
179/* Common MSI config fields */
Will Deacon48ec83b2015-05-27 17:25:59 +0100180#define MSI_CFG0_ADDR_SHIFT 2
181#define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
Marc Zyngierec11d632015-07-15 11:55:19 +0100182#define MSI_CFG2_SH_SHIFT 4
183#define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
184#define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
185#define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
186#define MSI_CFG2_MEMATTR_SHIFT 0
187#define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +0100188
189#define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
190#define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
191#define Q_OVERFLOW_FLAG (1 << 31)
192#define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
193#define Q_ENT(q, p) ((q)->base + \
194 Q_IDX(q, p) * (q)->ent_dwords)
195
196#define Q_BASE_RWA (1UL << 62)
197#define Q_BASE_ADDR_SHIFT 5
198#define Q_BASE_ADDR_MASK 0xfffffffffffUL
199#define Q_BASE_LOG2SIZE_SHIFT 0
200#define Q_BASE_LOG2SIZE_MASK 0x1fUL
201
202/*
203 * Stream table.
204 *
205 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
Zhen Leie2f4c232015-07-07 04:30:17 +0100206 * 2lvl: 128k L1 entries,
207 * 256 lazy entries per table (each table covers a PCI bus)
Will Deacon48ec83b2015-05-27 17:25:59 +0100208 */
Zhen Leie2f4c232015-07-07 04:30:17 +0100209#define STRTAB_L1_SZ_SHIFT 20
Will Deacon48ec83b2015-05-27 17:25:59 +0100210#define STRTAB_SPLIT 8
211
212#define STRTAB_L1_DESC_DWORDS 1
213#define STRTAB_L1_DESC_SPAN_SHIFT 0
214#define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
215#define STRTAB_L1_DESC_L2PTR_SHIFT 6
216#define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
217
218#define STRTAB_STE_DWORDS 8
219#define STRTAB_STE_0_V (1UL << 0)
220#define STRTAB_STE_0_CFG_SHIFT 1
221#define STRTAB_STE_0_CFG_MASK 0x7UL
222#define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
223#define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
224#define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
225#define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
226
227#define STRTAB_STE_0_S1FMT_SHIFT 4
228#define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
229#define STRTAB_STE_0_S1CTXPTR_SHIFT 6
230#define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
231#define STRTAB_STE_0_S1CDMAX_SHIFT 59
232#define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
233
234#define STRTAB_STE_1_S1C_CACHE_NC 0UL
235#define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
236#define STRTAB_STE_1_S1C_CACHE_WT 2UL
237#define STRTAB_STE_1_S1C_CACHE_WB 3UL
238#define STRTAB_STE_1_S1C_SH_NSH 0UL
239#define STRTAB_STE_1_S1C_SH_OSH 2UL
240#define STRTAB_STE_1_S1C_SH_ISH 3UL
241#define STRTAB_STE_1_S1CIR_SHIFT 2
242#define STRTAB_STE_1_S1COR_SHIFT 4
243#define STRTAB_STE_1_S1CSH_SHIFT 6
244
245#define STRTAB_STE_1_S1STALLD (1UL << 27)
246
247#define STRTAB_STE_1_EATS_ABT 0UL
248#define STRTAB_STE_1_EATS_TRANS 1UL
249#define STRTAB_STE_1_EATS_S1CHK 2UL
250#define STRTAB_STE_1_EATS_SHIFT 28
251
252#define STRTAB_STE_1_STRW_NSEL1 0UL
253#define STRTAB_STE_1_STRW_EL2 2UL
254#define STRTAB_STE_1_STRW_SHIFT 30
255
256#define STRTAB_STE_2_S2VMID_SHIFT 0
257#define STRTAB_STE_2_S2VMID_MASK 0xffffUL
258#define STRTAB_STE_2_VTCR_SHIFT 32
259#define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
260#define STRTAB_STE_2_S2AA64 (1UL << 51)
261#define STRTAB_STE_2_S2ENDI (1UL << 52)
262#define STRTAB_STE_2_S2PTW (1UL << 54)
263#define STRTAB_STE_2_S2R (1UL << 58)
264
265#define STRTAB_STE_3_S2TTB_SHIFT 4
266#define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
267
268/* Context descriptor (stage-1 only) */
269#define CTXDESC_CD_DWORDS 8
270#define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
271#define ARM64_TCR_T0SZ_SHIFT 0
272#define ARM64_TCR_T0SZ_MASK 0x1fUL
273#define CTXDESC_CD_0_TCR_TG0_SHIFT 6
274#define ARM64_TCR_TG0_SHIFT 14
275#define ARM64_TCR_TG0_MASK 0x3UL
276#define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
Zhen Lei5d58c622015-06-26 09:32:59 +0100277#define ARM64_TCR_IRGN0_SHIFT 8
Will Deacon48ec83b2015-05-27 17:25:59 +0100278#define ARM64_TCR_IRGN0_MASK 0x3UL
279#define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
Zhen Lei5d58c622015-06-26 09:32:59 +0100280#define ARM64_TCR_ORGN0_SHIFT 10
Will Deacon48ec83b2015-05-27 17:25:59 +0100281#define ARM64_TCR_ORGN0_MASK 0x3UL
282#define CTXDESC_CD_0_TCR_SH0_SHIFT 12
283#define ARM64_TCR_SH0_SHIFT 12
284#define ARM64_TCR_SH0_MASK 0x3UL
285#define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
286#define ARM64_TCR_EPD0_SHIFT 7
287#define ARM64_TCR_EPD0_MASK 0x1UL
288#define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
289#define ARM64_TCR_EPD1_SHIFT 23
290#define ARM64_TCR_EPD1_MASK 0x1UL
291
292#define CTXDESC_CD_0_ENDI (1UL << 15)
293#define CTXDESC_CD_0_V (1UL << 31)
294
295#define CTXDESC_CD_0_TCR_IPS_SHIFT 32
296#define ARM64_TCR_IPS_SHIFT 32
297#define ARM64_TCR_IPS_MASK 0x7UL
298#define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
299#define ARM64_TCR_TBI0_SHIFT 37
300#define ARM64_TCR_TBI0_MASK 0x1UL
301
302#define CTXDESC_CD_0_AA64 (1UL << 41)
303#define CTXDESC_CD_0_R (1UL << 45)
304#define CTXDESC_CD_0_A (1UL << 46)
305#define CTXDESC_CD_0_ASET_SHIFT 47
306#define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
307#define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
308#define CTXDESC_CD_0_ASID_SHIFT 48
309#define CTXDESC_CD_0_ASID_MASK 0xffffUL
310
311#define CTXDESC_CD_1_TTB0_SHIFT 4
312#define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
313
314#define CTXDESC_CD_3_MAIR_SHIFT 0
315
316/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
317#define ARM_SMMU_TCR2CD(tcr, fld) \
318 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
319 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
320
321/* Command queue */
322#define CMDQ_ENT_DWORDS 2
323#define CMDQ_MAX_SZ_SHIFT 8
324
325#define CMDQ_ERR_SHIFT 24
326#define CMDQ_ERR_MASK 0x7f
327#define CMDQ_ERR_CERROR_NONE_IDX 0
328#define CMDQ_ERR_CERROR_ILL_IDX 1
329#define CMDQ_ERR_CERROR_ABT_IDX 2
330
331#define CMDQ_0_OP_SHIFT 0
332#define CMDQ_0_OP_MASK 0xffUL
333#define CMDQ_0_SSV (1UL << 11)
334
335#define CMDQ_PREFETCH_0_SID_SHIFT 32
336#define CMDQ_PREFETCH_1_SIZE_SHIFT 0
337#define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
338
339#define CMDQ_CFGI_0_SID_SHIFT 32
340#define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
341#define CMDQ_CFGI_1_LEAF (1UL << 0)
342#define CMDQ_CFGI_1_RANGE_SHIFT 0
343#define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
344
345#define CMDQ_TLBI_0_VMID_SHIFT 32
346#define CMDQ_TLBI_0_ASID_SHIFT 48
347#define CMDQ_TLBI_1_LEAF (1UL << 0)
Will Deacon1c27df12015-09-18 16:12:56 +0100348#define CMDQ_TLBI_1_VA_MASK ~0xfffUL
349#define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
Will Deacon48ec83b2015-05-27 17:25:59 +0100350
351#define CMDQ_PRI_0_SSID_SHIFT 12
352#define CMDQ_PRI_0_SSID_MASK 0xfffffUL
353#define CMDQ_PRI_0_SID_SHIFT 32
354#define CMDQ_PRI_0_SID_MASK 0xffffffffUL
355#define CMDQ_PRI_1_GRPID_SHIFT 0
356#define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
357#define CMDQ_PRI_1_RESP_SHIFT 12
358#define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
359#define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
360#define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
361
362#define CMDQ_SYNC_0_CS_SHIFT 12
363#define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
364#define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
365
366/* Event queue */
367#define EVTQ_ENT_DWORDS 4
368#define EVTQ_MAX_SZ_SHIFT 7
369
370#define EVTQ_0_ID_SHIFT 0
371#define EVTQ_0_ID_MASK 0xffUL
372
373/* PRI queue */
374#define PRIQ_ENT_DWORDS 2
375#define PRIQ_MAX_SZ_SHIFT 8
376
377#define PRIQ_0_SID_SHIFT 0
378#define PRIQ_0_SID_MASK 0xffffffffUL
379#define PRIQ_0_SSID_SHIFT 32
380#define PRIQ_0_SSID_MASK 0xfffffUL
Will Deacon48ec83b2015-05-27 17:25:59 +0100381#define PRIQ_0_PERM_PRIV (1UL << 58)
382#define PRIQ_0_PERM_EXEC (1UL << 59)
383#define PRIQ_0_PERM_READ (1UL << 60)
384#define PRIQ_0_PERM_WRITE (1UL << 61)
385#define PRIQ_0_PRG_LAST (1UL << 62)
386#define PRIQ_0_SSID_V (1UL << 63)
387
388#define PRIQ_1_PRG_IDX_SHIFT 0
389#define PRIQ_1_PRG_IDX_MASK 0x1ffUL
390#define PRIQ_1_ADDR_SHIFT 12
391#define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
392
393/* High-level queue structures */
394#define ARM_SMMU_POLL_TIMEOUT_US 100
395
396static bool disable_bypass;
397module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
398MODULE_PARM_DESC(disable_bypass,
399 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
400
401enum pri_resp {
402 PRI_RESP_DENY,
403 PRI_RESP_FAIL,
404 PRI_RESP_SUCC,
405};
406
Marc Zyngier166bdbd2015-10-13 18:32:30 +0100407enum arm_smmu_msi_index {
408 EVTQ_MSI_INDEX,
409 GERROR_MSI_INDEX,
410 PRIQ_MSI_INDEX,
411 ARM_SMMU_MAX_MSIS,
412};
413
414static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
415 [EVTQ_MSI_INDEX] = {
416 ARM_SMMU_EVTQ_IRQ_CFG0,
417 ARM_SMMU_EVTQ_IRQ_CFG1,
418 ARM_SMMU_EVTQ_IRQ_CFG2,
419 },
420 [GERROR_MSI_INDEX] = {
421 ARM_SMMU_GERROR_IRQ_CFG0,
422 ARM_SMMU_GERROR_IRQ_CFG1,
423 ARM_SMMU_GERROR_IRQ_CFG2,
424 },
425 [PRIQ_MSI_INDEX] = {
426 ARM_SMMU_PRIQ_IRQ_CFG0,
427 ARM_SMMU_PRIQ_IRQ_CFG1,
428 ARM_SMMU_PRIQ_IRQ_CFG2,
429 },
430};
431
Will Deacon48ec83b2015-05-27 17:25:59 +0100432struct arm_smmu_cmdq_ent {
433 /* Common fields */
434 u8 opcode;
435 bool substream_valid;
436
437 /* Command-specific fields */
438 union {
439 #define CMDQ_OP_PREFETCH_CFG 0x1
440 struct {
441 u32 sid;
442 u8 size;
443 u64 addr;
444 } prefetch;
445
446 #define CMDQ_OP_CFGI_STE 0x3
447 #define CMDQ_OP_CFGI_ALL 0x4
448 struct {
449 u32 sid;
450 union {
451 bool leaf;
452 u8 span;
453 };
454 } cfgi;
455
456 #define CMDQ_OP_TLBI_NH_ASID 0x11
457 #define CMDQ_OP_TLBI_NH_VA 0x12
458 #define CMDQ_OP_TLBI_EL2_ALL 0x20
459 #define CMDQ_OP_TLBI_S12_VMALL 0x28
460 #define CMDQ_OP_TLBI_S2_IPA 0x2a
461 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
462 struct {
463 u16 asid;
464 u16 vmid;
465 bool leaf;
466 u64 addr;
467 } tlbi;
468
469 #define CMDQ_OP_PRI_RESP 0x41
470 struct {
471 u32 sid;
472 u32 ssid;
473 u16 grpid;
474 enum pri_resp resp;
475 } pri;
476
477 #define CMDQ_OP_CMD_SYNC 0x46
478 };
479};
480
481struct arm_smmu_queue {
482 int irq; /* Wired interrupt */
483
484 __le64 *base;
485 dma_addr_t base_dma;
486 u64 q_base;
487
488 size_t ent_dwords;
489 u32 max_n_shift;
490 u32 prod;
491 u32 cons;
492
493 u32 __iomem *prod_reg;
494 u32 __iomem *cons_reg;
495};
496
497struct arm_smmu_cmdq {
498 struct arm_smmu_queue q;
499 spinlock_t lock;
500};
501
502struct arm_smmu_evtq {
503 struct arm_smmu_queue q;
504 u32 max_stalls;
505};
506
507struct arm_smmu_priq {
508 struct arm_smmu_queue q;
509};
510
511/* High-level stream table and context descriptor structures */
512struct arm_smmu_strtab_l1_desc {
513 u8 span;
514
515 __le64 *l2ptr;
516 dma_addr_t l2ptr_dma;
517};
518
519struct arm_smmu_s1_cfg {
520 __le64 *cdptr;
521 dma_addr_t cdptr_dma;
522
523 struct arm_smmu_ctx_desc {
524 u16 asid;
525 u64 ttbr;
526 u64 tcr;
527 u64 mair;
528 } cd;
529};
530
531struct arm_smmu_s2_cfg {
532 u16 vmid;
533 u64 vttbr;
534 u64 vtcr;
535};
536
537struct arm_smmu_strtab_ent {
538 bool valid;
539
540 bool bypass; /* Overrides s1/s2 config */
541 struct arm_smmu_s1_cfg *s1_cfg;
542 struct arm_smmu_s2_cfg *s2_cfg;
543};
544
545struct arm_smmu_strtab_cfg {
546 __le64 *strtab;
547 dma_addr_t strtab_dma;
548 struct arm_smmu_strtab_l1_desc *l1_desc;
549 unsigned int num_l1_ents;
550
551 u64 strtab_base;
552 u32 strtab_base_cfg;
553};
554
555/* An SMMUv3 instance */
556struct arm_smmu_device {
557 struct device *dev;
558 void __iomem *base;
559
560#define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
561#define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
562#define ARM_SMMU_FEAT_TT_LE (1 << 2)
563#define ARM_SMMU_FEAT_TT_BE (1 << 3)
564#define ARM_SMMU_FEAT_PRI (1 << 4)
565#define ARM_SMMU_FEAT_ATS (1 << 5)
566#define ARM_SMMU_FEAT_SEV (1 << 6)
567#define ARM_SMMU_FEAT_MSI (1 << 7)
568#define ARM_SMMU_FEAT_COHERENCY (1 << 8)
569#define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
570#define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
571#define ARM_SMMU_FEAT_STALLS (1 << 11)
572#define ARM_SMMU_FEAT_HYP (1 << 12)
573 u32 features;
574
Zhen Lei5e929462015-07-07 04:30:18 +0100575#define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
576 u32 options;
577
Will Deacon48ec83b2015-05-27 17:25:59 +0100578 struct arm_smmu_cmdq cmdq;
579 struct arm_smmu_evtq evtq;
580 struct arm_smmu_priq priq;
581
582 int gerr_irq;
583
584 unsigned long ias; /* IPA */
585 unsigned long oas; /* PA */
586
587#define ARM_SMMU_MAX_ASIDS (1 << 16)
588 unsigned int asid_bits;
589 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
590
591#define ARM_SMMU_MAX_VMIDS (1 << 16)
592 unsigned int vmid_bits;
593 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
594
595 unsigned int ssid_bits;
596 unsigned int sid_bits;
597
598 struct arm_smmu_strtab_cfg strtab_cfg;
Will Deacon48ec83b2015-05-27 17:25:59 +0100599};
600
601/* SMMU private data for an IOMMU group */
602struct arm_smmu_group {
603 struct arm_smmu_device *smmu;
604 struct arm_smmu_domain *domain;
605 int num_sids;
606 u32 *sids;
607 struct arm_smmu_strtab_ent ste;
608};
609
610/* SMMU private data for an IOMMU domain */
611enum arm_smmu_domain_stage {
612 ARM_SMMU_DOMAIN_S1 = 0,
613 ARM_SMMU_DOMAIN_S2,
614 ARM_SMMU_DOMAIN_NESTED,
615};
616
617struct arm_smmu_domain {
618 struct arm_smmu_device *smmu;
619 struct mutex init_mutex; /* Protects smmu pointer */
620
621 struct io_pgtable_ops *pgtbl_ops;
622 spinlock_t pgtbl_lock;
623
624 enum arm_smmu_domain_stage stage;
625 union {
626 struct arm_smmu_s1_cfg s1_cfg;
627 struct arm_smmu_s2_cfg s2_cfg;
628 };
629
630 struct iommu_domain domain;
631};
632
Zhen Lei5e929462015-07-07 04:30:18 +0100633struct arm_smmu_option_prop {
634 u32 opt;
635 const char *prop;
636};
637
638static struct arm_smmu_option_prop arm_smmu_options[] = {
639 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
640 { 0, NULL},
641};
642
Will Deacon48ec83b2015-05-27 17:25:59 +0100643static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
644{
645 return container_of(dom, struct arm_smmu_domain, domain);
646}
647
Zhen Lei5e929462015-07-07 04:30:18 +0100648static void parse_driver_options(struct arm_smmu_device *smmu)
649{
650 int i = 0;
651
652 do {
653 if (of_property_read_bool(smmu->dev->of_node,
654 arm_smmu_options[i].prop)) {
655 smmu->options |= arm_smmu_options[i].opt;
656 dev_notice(smmu->dev, "option %s\n",
657 arm_smmu_options[i].prop);
658 }
659 } while (arm_smmu_options[++i].opt);
660}
661
Will Deacon48ec83b2015-05-27 17:25:59 +0100662/* Low-level queue manipulation functions */
663static bool queue_full(struct arm_smmu_queue *q)
664{
665 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
666 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
667}
668
669static bool queue_empty(struct arm_smmu_queue *q)
670{
671 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
672 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
673}
674
675static void queue_sync_cons(struct arm_smmu_queue *q)
676{
677 q->cons = readl_relaxed(q->cons_reg);
678}
679
680static void queue_inc_cons(struct arm_smmu_queue *q)
681{
682 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
683
684 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
685 writel(q->cons, q->cons_reg);
686}
687
688static int queue_sync_prod(struct arm_smmu_queue *q)
689{
690 int ret = 0;
691 u32 prod = readl_relaxed(q->prod_reg);
692
693 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
694 ret = -EOVERFLOW;
695
696 q->prod = prod;
697 return ret;
698}
699
700static void queue_inc_prod(struct arm_smmu_queue *q)
701{
702 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
703
704 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
705 writel(q->prod, q->prod_reg);
706}
707
708static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
709{
710 if (Q_WRP(q, q->cons) == Q_WRP(q, until))
711 return Q_IDX(q, q->cons) < Q_IDX(q, until);
712
713 return Q_IDX(q, q->cons) >= Q_IDX(q, until);
714}
715
716static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
717{
718 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
719
720 while (queue_sync_cons(q), __queue_cons_before(q, until)) {
721 if (ktime_compare(ktime_get(), timeout) > 0)
722 return -ETIMEDOUT;
723
724 if (wfe) {
725 wfe();
726 } else {
727 cpu_relax();
728 udelay(1);
729 }
730 }
731
732 return 0;
733}
734
735static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
736{
737 int i;
738
739 for (i = 0; i < n_dwords; ++i)
740 *dst++ = cpu_to_le64(*src++);
741}
742
743static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
744{
745 if (queue_full(q))
746 return -ENOSPC;
747
748 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
749 queue_inc_prod(q);
750 return 0;
751}
752
753static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
754{
755 int i;
756
757 for (i = 0; i < n_dwords; ++i)
758 *dst++ = le64_to_cpu(*src++);
759}
760
761static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
762{
763 if (queue_empty(q))
764 return -EAGAIN;
765
766 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
767 queue_inc_cons(q);
768 return 0;
769}
770
771/* High-level queue accessors */
772static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
773{
774 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
775 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
776
777 switch (ent->opcode) {
778 case CMDQ_OP_TLBI_EL2_ALL:
779 case CMDQ_OP_TLBI_NSNH_ALL:
780 break;
781 case CMDQ_OP_PREFETCH_CFG:
782 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
783 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
784 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
785 break;
786 case CMDQ_OP_CFGI_STE:
787 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
788 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
789 break;
790 case CMDQ_OP_CFGI_ALL:
791 /* Cover the entire SID range */
792 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
793 break;
794 case CMDQ_OP_TLBI_NH_VA:
795 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
Will Deacon1c27df12015-09-18 16:12:56 +0100796 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
797 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
798 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100799 case CMDQ_OP_TLBI_S2_IPA:
800 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
801 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
Will Deacon1c27df12015-09-18 16:12:56 +0100802 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
Will Deacon48ec83b2015-05-27 17:25:59 +0100803 break;
804 case CMDQ_OP_TLBI_NH_ASID:
805 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
806 /* Fallthrough */
807 case CMDQ_OP_TLBI_S12_VMALL:
808 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
809 break;
810 case CMDQ_OP_PRI_RESP:
811 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
812 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
813 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
814 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
815 switch (ent->pri.resp) {
816 case PRI_RESP_DENY:
817 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
818 break;
819 case PRI_RESP_FAIL:
820 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
821 break;
822 case PRI_RESP_SUCC:
823 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
824 break;
825 default:
826 return -EINVAL;
827 }
828 break;
829 case CMDQ_OP_CMD_SYNC:
830 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
831 break;
832 default:
833 return -ENOENT;
834 }
835
836 return 0;
837}
838
839static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
840{
841 static const char *cerror_str[] = {
842 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
843 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
844 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
845 };
846
847 int i;
848 u64 cmd[CMDQ_ENT_DWORDS];
849 struct arm_smmu_queue *q = &smmu->cmdq.q;
850 u32 cons = readl_relaxed(q->cons_reg);
851 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
852 struct arm_smmu_cmdq_ent cmd_sync = {
853 .opcode = CMDQ_OP_CMD_SYNC,
854 };
855
856 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
857 cerror_str[idx]);
858
859 switch (idx) {
860 case CMDQ_ERR_CERROR_ILL_IDX:
861 break;
862 case CMDQ_ERR_CERROR_ABT_IDX:
863 dev_err(smmu->dev, "retrying command fetch\n");
864 case CMDQ_ERR_CERROR_NONE_IDX:
865 return;
866 }
867
868 /*
869 * We may have concurrent producers, so we need to be careful
870 * not to touch any of the shadow cmdq state.
871 */
872 queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
873 dev_err(smmu->dev, "skipping command in error state:\n");
874 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
875 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
876
877 /* Convert the erroneous command into a CMD_SYNC */
878 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
879 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
880 return;
881 }
882
883 queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
884}
885
886static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
887 struct arm_smmu_cmdq_ent *ent)
888{
889 u32 until;
890 u64 cmd[CMDQ_ENT_DWORDS];
891 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
892 struct arm_smmu_queue *q = &smmu->cmdq.q;
893
894 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
895 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
896 ent->opcode);
897 return;
898 }
899
900 spin_lock(&smmu->cmdq.lock);
901 while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
902 /*
903 * Keep the queue locked, otherwise the producer could wrap
904 * twice and we could see a future consumer pointer that looks
905 * like it's behind us.
906 */
907 if (queue_poll_cons(q, until, wfe))
908 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
909 }
910
911 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
912 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
913 spin_unlock(&smmu->cmdq.lock);
914}
915
916/* Context descriptor manipulation functions */
917static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
918{
919 u64 val = 0;
920
921 /* Repack the TCR. Just care about TTBR0 for now */
922 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
923 val |= ARM_SMMU_TCR2CD(tcr, TG0);
924 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
925 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
926 val |= ARM_SMMU_TCR2CD(tcr, SH0);
927 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
928 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
929 val |= ARM_SMMU_TCR2CD(tcr, IPS);
930 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
931
932 return val;
933}
934
935static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
936 struct arm_smmu_s1_cfg *cfg)
937{
938 u64 val;
939
940 /*
941 * We don't need to issue any invalidation here, as we'll invalidate
942 * the STE when installing the new entry anyway.
943 */
944 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
945#ifdef __BIG_ENDIAN
946 CTXDESC_CD_0_ENDI |
947#endif
948 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
949 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
950 CTXDESC_CD_0_V;
951 cfg->cdptr[0] = cpu_to_le64(val);
952
953 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
954 cfg->cdptr[1] = cpu_to_le64(val);
955
956 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
957}
958
959/* Stream table manipulation functions */
960static void
961arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
962{
963 u64 val = 0;
964
965 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
966 << STRTAB_L1_DESC_SPAN_SHIFT;
967 val |= desc->l2ptr_dma &
968 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
969
970 *dst = cpu_to_le64(val);
971}
972
973static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
974{
975 struct arm_smmu_cmdq_ent cmd = {
976 .opcode = CMDQ_OP_CFGI_STE,
977 .cfgi = {
978 .sid = sid,
979 .leaf = true,
980 },
981 };
982
983 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
984 cmd.opcode = CMDQ_OP_CMD_SYNC;
985 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
986}
987
988static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
989 __le64 *dst, struct arm_smmu_strtab_ent *ste)
990{
991 /*
992 * This is hideously complicated, but we only really care about
993 * three cases at the moment:
994 *
995 * 1. Invalid (all zero) -> bypass (init)
996 * 2. Bypass -> translation (attach)
997 * 3. Translation -> bypass (detach)
998 *
999 * Given that we can't update the STE atomically and the SMMU
1000 * doesn't read the thing in a defined order, that leaves us
1001 * with the following maintenance requirements:
1002 *
1003 * 1. Update Config, return (init time STEs aren't live)
1004 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1005 * 3. Update Config, sync
1006 */
1007 u64 val = le64_to_cpu(dst[0]);
1008 bool ste_live = false;
1009 struct arm_smmu_cmdq_ent prefetch_cmd = {
1010 .opcode = CMDQ_OP_PREFETCH_CFG,
1011 .prefetch = {
1012 .sid = sid,
1013 },
1014 };
1015
1016 if (val & STRTAB_STE_0_V) {
1017 u64 cfg;
1018
1019 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1020 switch (cfg) {
1021 case STRTAB_STE_0_CFG_BYPASS:
1022 break;
1023 case STRTAB_STE_0_CFG_S1_TRANS:
1024 case STRTAB_STE_0_CFG_S2_TRANS:
1025 ste_live = true;
1026 break;
1027 default:
1028 BUG(); /* STE corruption */
1029 }
1030 }
1031
1032 /* Nuke the existing Config, as we're going to rewrite it */
1033 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1034
1035 if (ste->valid)
1036 val |= STRTAB_STE_0_V;
1037 else
1038 val &= ~STRTAB_STE_0_V;
1039
1040 if (ste->bypass) {
1041 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1042 : STRTAB_STE_0_CFG_BYPASS;
1043 dst[0] = cpu_to_le64(val);
1044 dst[2] = 0; /* Nuke the VMID */
1045 if (ste_live)
1046 arm_smmu_sync_ste_for_sid(smmu, sid);
1047 return;
1048 }
1049
1050 if (ste->s1_cfg) {
1051 BUG_ON(ste_live);
1052 dst[1] = cpu_to_le64(
1053 STRTAB_STE_1_S1C_CACHE_WBRA
1054 << STRTAB_STE_1_S1CIR_SHIFT |
1055 STRTAB_STE_1_S1C_CACHE_WBRA
1056 << STRTAB_STE_1_S1COR_SHIFT |
1057 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1058 STRTAB_STE_1_S1STALLD |
1059#ifdef CONFIG_PCI_ATS
1060 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1061#endif
1062 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1063
1064 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1065 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1066 STRTAB_STE_0_CFG_S1_TRANS;
1067
1068 }
1069
1070 if (ste->s2_cfg) {
1071 BUG_ON(ste_live);
1072 dst[2] = cpu_to_le64(
1073 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1074 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1075 << STRTAB_STE_2_VTCR_SHIFT |
1076#ifdef __BIG_ENDIAN
1077 STRTAB_STE_2_S2ENDI |
1078#endif
1079 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1080 STRTAB_STE_2_S2R);
1081
1082 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1083 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1084
1085 val |= STRTAB_STE_0_CFG_S2_TRANS;
1086 }
1087
1088 arm_smmu_sync_ste_for_sid(smmu, sid);
1089 dst[0] = cpu_to_le64(val);
1090 arm_smmu_sync_ste_for_sid(smmu, sid);
1091
1092 /* It's likely that we'll want to use the new STE soon */
Zhen Lei5e929462015-07-07 04:30:18 +01001093 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1094 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
Will Deacon48ec83b2015-05-27 17:25:59 +01001095}
1096
1097static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1098{
1099 unsigned int i;
1100 struct arm_smmu_strtab_ent ste = {
1101 .valid = true,
1102 .bypass = true,
1103 };
1104
1105 for (i = 0; i < nent; ++i) {
1106 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1107 strtab += STRTAB_STE_DWORDS;
1108 }
1109}
1110
1111static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1112{
1113 size_t size;
1114 void *strtab;
1115 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1116 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1117
1118 if (desc->l2ptr)
1119 return 0;
1120
1121 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
Zhen Lei69146e72015-06-26 09:32:58 +01001122 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
Will Deacon48ec83b2015-05-27 17:25:59 +01001123
1124 desc->span = STRTAB_SPLIT + 1;
Will Deacon04fa26c2015-10-30 18:12:41 +00001125 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1126 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001127 if (!desc->l2ptr) {
1128 dev_err(smmu->dev,
1129 "failed to allocate l2 stream table for SID %u\n",
1130 sid);
1131 return -ENOMEM;
1132 }
1133
1134 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1135 arm_smmu_write_strtab_l1_desc(strtab, desc);
1136 return 0;
1137}
1138
1139/* IRQ and event handlers */
1140static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1141{
1142 int i;
1143 struct arm_smmu_device *smmu = dev;
1144 struct arm_smmu_queue *q = &smmu->evtq.q;
1145 u64 evt[EVTQ_ENT_DWORDS];
1146
1147 while (!queue_remove_raw(q, evt)) {
1148 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1149
1150 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1151 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1152 dev_info(smmu->dev, "\t0x%016llx\n",
1153 (unsigned long long)evt[i]);
1154 }
1155
1156 /* Sync our overflow flag, as we believe we're up to speed */
1157 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1158 return IRQ_HANDLED;
1159}
1160
1161static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1162{
1163 irqreturn_t ret = IRQ_WAKE_THREAD;
1164 struct arm_smmu_device *smmu = dev;
1165 struct arm_smmu_queue *q = &smmu->evtq.q;
1166
1167 /*
1168 * Not much we can do on overflow, so scream and pretend we're
1169 * trying harder.
1170 */
1171 if (queue_sync_prod(q) == -EOVERFLOW)
1172 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1173 else if (queue_empty(q))
1174 ret = IRQ_NONE;
1175
1176 return ret;
1177}
1178
1179static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1180{
1181 struct arm_smmu_device *smmu = dev;
1182 struct arm_smmu_queue *q = &smmu->priq.q;
1183 u64 evt[PRIQ_ENT_DWORDS];
1184
1185 while (!queue_remove_raw(q, evt)) {
1186 u32 sid, ssid;
1187 u16 grpid;
1188 bool ssv, last;
1189
1190 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1191 ssv = evt[0] & PRIQ_0_SSID_V;
1192 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1193 last = evt[0] & PRIQ_0_PRG_LAST;
1194 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1195
1196 dev_info(smmu->dev, "unexpected PRI request received:\n");
1197 dev_info(smmu->dev,
1198 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1199 sid, ssid, grpid, last ? "L" : "",
1200 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1201 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1202 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1203 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1204 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1205
1206 if (last) {
1207 struct arm_smmu_cmdq_ent cmd = {
1208 .opcode = CMDQ_OP_PRI_RESP,
1209 .substream_valid = ssv,
1210 .pri = {
1211 .sid = sid,
1212 .ssid = ssid,
1213 .grpid = grpid,
1214 .resp = PRI_RESP_DENY,
1215 },
1216 };
1217
1218 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1219 }
1220 }
1221
1222 /* Sync our overflow flag, as we believe we're up to speed */
1223 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1224 return IRQ_HANDLED;
1225}
1226
1227static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1228{
1229 irqreturn_t ret = IRQ_WAKE_THREAD;
1230 struct arm_smmu_device *smmu = dev;
1231 struct arm_smmu_queue *q = &smmu->priq.q;
1232
1233 /* PRIQ overflow indicates a programming error */
1234 if (queue_sync_prod(q) == -EOVERFLOW)
1235 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1236 else if (queue_empty(q))
1237 ret = IRQ_NONE;
1238
1239 return ret;
1240}
1241
1242static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1243{
1244 /* We don't actually use CMD_SYNC interrupts for anything */
1245 return IRQ_HANDLED;
1246}
1247
1248static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1249
1250static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1251{
1252 u32 gerror, gerrorn;
1253 struct arm_smmu_device *smmu = dev;
1254
1255 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1256 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1257
1258 gerror ^= gerrorn;
1259 if (!(gerror & GERROR_ERR_MASK))
1260 return IRQ_NONE; /* No errors pending */
1261
1262 dev_warn(smmu->dev,
1263 "unexpected global error reported (0x%08x), this could be serious\n",
1264 gerror);
1265
1266 if (gerror & GERROR_SFM_ERR) {
1267 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1268 arm_smmu_device_disable(smmu);
1269 }
1270
1271 if (gerror & GERROR_MSI_GERROR_ABT_ERR)
1272 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1273
1274 if (gerror & GERROR_MSI_PRIQ_ABT_ERR) {
1275 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1276 arm_smmu_priq_handler(irq, smmu->dev);
1277 }
1278
1279 if (gerror & GERROR_MSI_EVTQ_ABT_ERR) {
1280 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1281 arm_smmu_evtq_handler(irq, smmu->dev);
1282 }
1283
1284 if (gerror & GERROR_MSI_CMDQ_ABT_ERR) {
1285 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1286 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1287 }
1288
1289 if (gerror & GERROR_PRIQ_ABT_ERR)
1290 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1291
1292 if (gerror & GERROR_EVTQ_ABT_ERR)
1293 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1294
1295 if (gerror & GERROR_CMDQ_ERR)
1296 arm_smmu_cmdq_skip_err(smmu);
1297
1298 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1299 return IRQ_HANDLED;
1300}
1301
1302/* IO_PGTABLE API */
1303static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1304{
1305 struct arm_smmu_cmdq_ent cmd;
1306
1307 cmd.opcode = CMDQ_OP_CMD_SYNC;
1308 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1309}
1310
1311static void arm_smmu_tlb_sync(void *cookie)
1312{
1313 struct arm_smmu_domain *smmu_domain = cookie;
1314 __arm_smmu_tlb_sync(smmu_domain->smmu);
1315}
1316
1317static void arm_smmu_tlb_inv_context(void *cookie)
1318{
1319 struct arm_smmu_domain *smmu_domain = cookie;
1320 struct arm_smmu_device *smmu = smmu_domain->smmu;
1321 struct arm_smmu_cmdq_ent cmd;
1322
1323 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1324 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1325 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1326 cmd.tlbi.vmid = 0;
1327 } else {
1328 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1329 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1330 }
1331
1332 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1333 __arm_smmu_tlb_sync(smmu);
1334}
1335
1336static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1337 bool leaf, void *cookie)
1338{
1339 struct arm_smmu_domain *smmu_domain = cookie;
1340 struct arm_smmu_device *smmu = smmu_domain->smmu;
1341 struct arm_smmu_cmdq_ent cmd = {
1342 .tlbi = {
1343 .leaf = leaf,
1344 .addr = iova,
1345 },
1346 };
1347
1348 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1349 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1350 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1351 } else {
1352 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1353 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1354 }
1355
1356 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1357}
1358
Will Deacon48ec83b2015-05-27 17:25:59 +01001359static struct iommu_gather_ops arm_smmu_gather_ops = {
1360 .tlb_flush_all = arm_smmu_tlb_inv_context,
1361 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1362 .tlb_sync = arm_smmu_tlb_sync,
Will Deacon48ec83b2015-05-27 17:25:59 +01001363};
1364
1365/* IOMMU API */
1366static bool arm_smmu_capable(enum iommu_cap cap)
1367{
1368 switch (cap) {
1369 case IOMMU_CAP_CACHE_COHERENCY:
1370 return true;
1371 case IOMMU_CAP_INTR_REMAP:
1372 return true; /* MSIs are just memory writes */
1373 case IOMMU_CAP_NOEXEC:
1374 return true;
1375 default:
1376 return false;
1377 }
1378}
1379
1380static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1381{
1382 struct arm_smmu_domain *smmu_domain;
1383
1384 if (type != IOMMU_DOMAIN_UNMANAGED)
1385 return NULL;
1386
1387 /*
1388 * Allocate the domain and initialise some of its data structures.
1389 * We can't really do anything meaningful until we've added a
1390 * master.
1391 */
1392 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1393 if (!smmu_domain)
1394 return NULL;
1395
1396 mutex_init(&smmu_domain->init_mutex);
1397 spin_lock_init(&smmu_domain->pgtbl_lock);
1398 return &smmu_domain->domain;
1399}
1400
1401static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1402{
1403 int idx, size = 1 << span;
1404
1405 do {
1406 idx = find_first_zero_bit(map, size);
1407 if (idx == size)
1408 return -ENOSPC;
1409 } while (test_and_set_bit(idx, map));
1410
1411 return idx;
1412}
1413
1414static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1415{
1416 clear_bit(idx, map);
1417}
1418
1419static void arm_smmu_domain_free(struct iommu_domain *domain)
1420{
1421 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1422 struct arm_smmu_device *smmu = smmu_domain->smmu;
1423
Markus Elfringa6e08fb2015-06-29 17:47:43 +01001424 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
Will Deacon48ec83b2015-05-27 17:25:59 +01001425
1426 /* Free the CD and ASID, if we allocated them */
1427 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1428 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1429
1430 if (cfg->cdptr) {
Will Deacon04fa26c2015-10-30 18:12:41 +00001431 dmam_free_coherent(smmu_domain->smmu->dev,
1432 CTXDESC_CD_DWORDS << 3,
1433 cfg->cdptr,
1434 cfg->cdptr_dma);
Will Deacon48ec83b2015-05-27 17:25:59 +01001435
1436 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1437 }
1438 } else {
1439 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1440 if (cfg->vmid)
1441 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1442 }
1443
1444 kfree(smmu_domain);
1445}
1446
1447static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1448 struct io_pgtable_cfg *pgtbl_cfg)
1449{
1450 int ret;
Will Deaconc0733a22015-10-13 17:51:14 +01001451 int asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001452 struct arm_smmu_device *smmu = smmu_domain->smmu;
1453 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1454
1455 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1456 if (IS_ERR_VALUE(asid))
1457 return asid;
1458
Will Deacon04fa26c2015-10-30 18:12:41 +00001459 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1460 &cfg->cdptr_dma,
1461 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001462 if (!cfg->cdptr) {
1463 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
Will Deaconc0733a22015-10-13 17:51:14 +01001464 ret = -ENOMEM;
Will Deacon48ec83b2015-05-27 17:25:59 +01001465 goto out_free_asid;
1466 }
1467
Will Deaconc0733a22015-10-13 17:51:14 +01001468 cfg->cd.asid = (u16)asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001469 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1470 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1471 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1472 return 0;
1473
1474out_free_asid:
1475 arm_smmu_bitmap_free(smmu->asid_map, asid);
1476 return ret;
1477}
1478
1479static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1480 struct io_pgtable_cfg *pgtbl_cfg)
1481{
Will Deaconc0733a22015-10-13 17:51:14 +01001482 int vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001483 struct arm_smmu_device *smmu = smmu_domain->smmu;
1484 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1485
1486 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1487 if (IS_ERR_VALUE(vmid))
1488 return vmid;
1489
Will Deaconc0733a22015-10-13 17:51:14 +01001490 cfg->vmid = (u16)vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001491 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1492 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1493 return 0;
1494}
1495
1496static struct iommu_ops arm_smmu_ops;
1497
1498static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1499{
1500 int ret;
1501 unsigned long ias, oas;
1502 enum io_pgtable_fmt fmt;
1503 struct io_pgtable_cfg pgtbl_cfg;
1504 struct io_pgtable_ops *pgtbl_ops;
1505 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1506 struct io_pgtable_cfg *);
1507 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1508 struct arm_smmu_device *smmu = smmu_domain->smmu;
1509
1510 /* Restrict the stage to what we can actually support */
1511 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1512 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1513 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1514 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1515
1516 switch (smmu_domain->stage) {
1517 case ARM_SMMU_DOMAIN_S1:
1518 ias = VA_BITS;
1519 oas = smmu->ias;
1520 fmt = ARM_64_LPAE_S1;
1521 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1522 break;
1523 case ARM_SMMU_DOMAIN_NESTED:
1524 case ARM_SMMU_DOMAIN_S2:
1525 ias = smmu->ias;
1526 oas = smmu->oas;
1527 fmt = ARM_64_LPAE_S2;
1528 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1529 break;
1530 default:
1531 return -EINVAL;
1532 }
1533
1534 pgtbl_cfg = (struct io_pgtable_cfg) {
1535 .pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
1536 .ias = ias,
1537 .oas = oas,
1538 .tlb = &arm_smmu_gather_ops,
Robin Murphybdc6d972015-07-29 19:46:07 +01001539 .iommu_dev = smmu->dev,
Will Deacon48ec83b2015-05-27 17:25:59 +01001540 };
1541
1542 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1543 if (!pgtbl_ops)
1544 return -ENOMEM;
1545
1546 arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1547 smmu_domain->pgtbl_ops = pgtbl_ops;
1548
1549 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1550 if (IS_ERR_VALUE(ret))
1551 free_io_pgtable_ops(pgtbl_ops);
1552
1553 return ret;
1554}
1555
1556static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1557{
1558 struct iommu_group *group;
1559 struct arm_smmu_group *smmu_group;
1560
1561 group = iommu_group_get(dev);
1562 if (!group)
1563 return NULL;
1564
1565 smmu_group = iommu_group_get_iommudata(group);
1566 iommu_group_put(group);
1567 return smmu_group;
1568}
1569
1570static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1571{
1572 __le64 *step;
1573 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1574
1575 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1576 struct arm_smmu_strtab_l1_desc *l1_desc;
1577 int idx;
1578
1579 /* Two-level walk */
1580 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1581 l1_desc = &cfg->l1_desc[idx];
1582 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1583 step = &l1_desc->l2ptr[idx];
1584 } else {
1585 /* Simple linear lookup */
1586 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1587 }
1588
1589 return step;
1590}
1591
1592static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1593{
1594 int i;
1595 struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1596 struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1597 struct arm_smmu_device *smmu = smmu_group->smmu;
1598
1599 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1600 ste->s1_cfg = &smmu_domain->s1_cfg;
1601 ste->s2_cfg = NULL;
1602 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1603 } else {
1604 ste->s1_cfg = NULL;
1605 ste->s2_cfg = &smmu_domain->s2_cfg;
1606 }
1607
1608 for (i = 0; i < smmu_group->num_sids; ++i) {
1609 u32 sid = smmu_group->sids[i];
1610 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1611
1612 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1613 }
1614
1615 return 0;
1616}
1617
1618static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1619{
1620 int ret = 0;
1621 struct arm_smmu_device *smmu;
1622 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1623 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1624
1625 if (!smmu_group)
1626 return -ENOENT;
1627
1628 /* Already attached to a different domain? */
1629 if (smmu_group->domain && smmu_group->domain != smmu_domain)
1630 return -EEXIST;
1631
1632 smmu = smmu_group->smmu;
1633 mutex_lock(&smmu_domain->init_mutex);
1634
1635 if (!smmu_domain->smmu) {
1636 smmu_domain->smmu = smmu;
1637 ret = arm_smmu_domain_finalise(domain);
1638 if (ret) {
1639 smmu_domain->smmu = NULL;
1640 goto out_unlock;
1641 }
1642 } else if (smmu_domain->smmu != smmu) {
1643 dev_err(dev,
1644 "cannot attach to SMMU %s (upstream of %s)\n",
1645 dev_name(smmu_domain->smmu->dev),
1646 dev_name(smmu->dev));
1647 ret = -ENXIO;
1648 goto out_unlock;
1649 }
1650
1651 /* Group already attached to this domain? */
1652 if (smmu_group->domain)
1653 goto out_unlock;
1654
1655 smmu_group->domain = smmu_domain;
1656 smmu_group->ste.bypass = false;
1657
1658 ret = arm_smmu_install_ste_for_group(smmu_group);
1659 if (IS_ERR_VALUE(ret))
1660 smmu_group->domain = NULL;
1661
1662out_unlock:
1663 mutex_unlock(&smmu_domain->init_mutex);
1664 return ret;
1665}
1666
1667static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1668{
1669 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1670 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1671
1672 BUG_ON(!smmu_domain);
1673 BUG_ON(!smmu_group);
1674
1675 mutex_lock(&smmu_domain->init_mutex);
1676 BUG_ON(smmu_group->domain != smmu_domain);
1677
1678 smmu_group->ste.bypass = true;
1679 if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1680 dev_warn(dev, "failed to install bypass STE\n");
1681
1682 smmu_group->domain = NULL;
1683 mutex_unlock(&smmu_domain->init_mutex);
1684}
1685
1686static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1687 phys_addr_t paddr, size_t size, int prot)
1688{
1689 int ret;
1690 unsigned long flags;
1691 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1692 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1693
1694 if (!ops)
1695 return -ENODEV;
1696
1697 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1698 ret = ops->map(ops, iova, paddr, size, prot);
1699 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1700 return ret;
1701}
1702
1703static size_t
1704arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1705{
1706 size_t ret;
1707 unsigned long flags;
1708 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1709 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1710
1711 if (!ops)
1712 return 0;
1713
1714 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1715 ret = ops->unmap(ops, iova, size);
1716 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1717 return ret;
1718}
1719
1720static phys_addr_t
1721arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1722{
1723 phys_addr_t ret;
1724 unsigned long flags;
1725 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1726 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1727
1728 if (!ops)
1729 return 0;
1730
1731 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1732 ret = ops->iova_to_phys(ops, iova);
1733 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1734
1735 return ret;
1736}
1737
1738static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1739{
1740 *(u32 *)sidp = alias;
1741 return 0; /* Continue walking */
1742}
1743
1744static void __arm_smmu_release_pci_iommudata(void *data)
1745{
1746 kfree(data);
1747}
1748
1749static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1750{
1751 struct device_node *of_node;
Will Deacon941a8022015-08-11 16:25:10 +01001752 struct platform_device *smmu_pdev;
1753 struct arm_smmu_device *smmu = NULL;
Will Deacon48ec83b2015-05-27 17:25:59 +01001754 struct pci_bus *bus = pdev->bus;
1755
1756 /* Walk up to the root bus */
1757 while (!pci_is_root_bus(bus))
1758 bus = bus->parent;
1759
1760 /* Follow the "iommus" phandle from the host controller */
1761 of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1762 if (!of_node)
1763 return NULL;
1764
1765 /* See if we can find an SMMU corresponding to the phandle */
Will Deacon941a8022015-08-11 16:25:10 +01001766 smmu_pdev = of_find_device_by_node(of_node);
1767 if (smmu_pdev)
1768 smmu = platform_get_drvdata(smmu_pdev);
1769
Will Deacon48ec83b2015-05-27 17:25:59 +01001770 of_node_put(of_node);
1771 return smmu;
1772}
1773
1774static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1775{
1776 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1777
1778 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1779 limit *= 1UL << STRTAB_SPLIT;
1780
1781 return sid < limit;
1782}
1783
1784static int arm_smmu_add_device(struct device *dev)
1785{
1786 int i, ret;
1787 u32 sid, *sids;
1788 struct pci_dev *pdev;
1789 struct iommu_group *group;
1790 struct arm_smmu_group *smmu_group;
1791 struct arm_smmu_device *smmu;
1792
1793 /* We only support PCI, for now */
1794 if (!dev_is_pci(dev))
1795 return -ENODEV;
1796
1797 pdev = to_pci_dev(dev);
1798 group = iommu_group_get_for_dev(dev);
1799 if (IS_ERR(group))
1800 return PTR_ERR(group);
1801
1802 smmu_group = iommu_group_get_iommudata(group);
1803 if (!smmu_group) {
1804 smmu = arm_smmu_get_for_pci_dev(pdev);
1805 if (!smmu) {
1806 ret = -ENOENT;
1807 goto out_put_group;
1808 }
1809
1810 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1811 if (!smmu_group) {
1812 ret = -ENOMEM;
1813 goto out_put_group;
1814 }
1815
1816 smmu_group->ste.valid = true;
1817 smmu_group->smmu = smmu;
1818 iommu_group_set_iommudata(group, smmu_group,
1819 __arm_smmu_release_pci_iommudata);
1820 } else {
1821 smmu = smmu_group->smmu;
1822 }
1823
1824 /* Assume SID == RID until firmware tells us otherwise */
1825 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1826 for (i = 0; i < smmu_group->num_sids; ++i) {
1827 /* If we already know about this SID, then we're done */
1828 if (smmu_group->sids[i] == sid)
1829 return 0;
1830 }
1831
1832 /* Check the SID is in range of the SMMU and our stream table */
1833 if (!arm_smmu_sid_in_range(smmu, sid)) {
1834 ret = -ERANGE;
1835 goto out_put_group;
1836 }
1837
1838 /* Ensure l2 strtab is initialised */
1839 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1840 ret = arm_smmu_init_l2_strtab(smmu, sid);
1841 if (ret)
1842 goto out_put_group;
1843 }
1844
1845 /* Resize the SID array for the group */
1846 smmu_group->num_sids++;
1847 sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1848 GFP_KERNEL);
1849 if (!sids) {
1850 smmu_group->num_sids--;
1851 ret = -ENOMEM;
1852 goto out_put_group;
1853 }
1854
1855 /* Add the new SID */
1856 sids[smmu_group->num_sids - 1] = sid;
1857 smmu_group->sids = sids;
1858 return 0;
1859
1860out_put_group:
1861 iommu_group_put(group);
1862 return ret;
1863}
1864
1865static void arm_smmu_remove_device(struct device *dev)
1866{
1867 iommu_group_remove_device(dev);
1868}
1869
1870static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1871 enum iommu_attr attr, void *data)
1872{
1873 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1874
1875 switch (attr) {
1876 case DOMAIN_ATTR_NESTING:
1877 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1878 return 0;
1879 default:
1880 return -ENODEV;
1881 }
1882}
1883
1884static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1885 enum iommu_attr attr, void *data)
1886{
1887 int ret = 0;
1888 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1889
1890 mutex_lock(&smmu_domain->init_mutex);
1891
1892 switch (attr) {
1893 case DOMAIN_ATTR_NESTING:
1894 if (smmu_domain->smmu) {
1895 ret = -EPERM;
1896 goto out_unlock;
1897 }
1898
1899 if (*(int *)data)
1900 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1901 else
1902 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1903
1904 break;
1905 default:
1906 ret = -ENODEV;
1907 }
1908
1909out_unlock:
1910 mutex_unlock(&smmu_domain->init_mutex);
1911 return ret;
1912}
1913
1914static struct iommu_ops arm_smmu_ops = {
1915 .capable = arm_smmu_capable,
1916 .domain_alloc = arm_smmu_domain_alloc,
1917 .domain_free = arm_smmu_domain_free,
1918 .attach_dev = arm_smmu_attach_dev,
1919 .detach_dev = arm_smmu_detach_dev,
1920 .map = arm_smmu_map,
1921 .unmap = arm_smmu_unmap,
1922 .iova_to_phys = arm_smmu_iova_to_phys,
1923 .add_device = arm_smmu_add_device,
1924 .remove_device = arm_smmu_remove_device,
Joerg Roedelaf659932015-10-21 23:51:41 +02001925 .device_group = pci_device_group,
Will Deacon48ec83b2015-05-27 17:25:59 +01001926 .domain_get_attr = arm_smmu_domain_get_attr,
1927 .domain_set_attr = arm_smmu_domain_set_attr,
1928 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1929};
1930
1931/* Probing and initialisation functions */
1932static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1933 struct arm_smmu_queue *q,
1934 unsigned long prod_off,
1935 unsigned long cons_off,
1936 size_t dwords)
1937{
1938 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1939
Will Deacon04fa26c2015-10-30 18:12:41 +00001940 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
Will Deacon48ec83b2015-05-27 17:25:59 +01001941 if (!q->base) {
1942 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1943 qsz);
1944 return -ENOMEM;
1945 }
1946
1947 q->prod_reg = smmu->base + prod_off;
1948 q->cons_reg = smmu->base + cons_off;
1949 q->ent_dwords = dwords;
1950
1951 q->q_base = Q_BASE_RWA;
1952 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1953 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1954 << Q_BASE_LOG2SIZE_SHIFT;
1955
1956 q->prod = q->cons = 0;
1957 return 0;
1958}
1959
Will Deacon48ec83b2015-05-27 17:25:59 +01001960static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1961{
1962 int ret;
1963
1964 /* cmdq */
1965 spin_lock_init(&smmu->cmdq.lock);
1966 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1967 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1968 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00001969 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01001970
1971 /* evtq */
1972 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1973 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1974 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00001975 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01001976
1977 /* priq */
1978 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1979 return 0;
1980
Will Deacon04fa26c2015-10-30 18:12:41 +00001981 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1982 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
Will Deacon48ec83b2015-05-27 17:25:59 +01001983}
1984
1985static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1986{
1987 unsigned int i;
1988 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1989 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1990 void *strtab = smmu->strtab_cfg.strtab;
1991
1992 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1993 if (!cfg->l1_desc) {
1994 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1995 return -ENOMEM;
1996 }
1997
1998 for (i = 0; i < cfg->num_l1_ents; ++i) {
1999 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2000 strtab += STRTAB_L1_DESC_DWORDS << 3;
2001 }
2002
2003 return 0;
2004}
2005
2006static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2007{
2008 void *strtab;
2009 u64 reg;
Will Deacond2e88e72015-06-30 10:02:28 +01002010 u32 size, l1size;
Will Deacon48ec83b2015-05-27 17:25:59 +01002011 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2012
Will Deacon28c8b402015-07-16 17:50:12 +01002013 /*
2014 * If we can resolve everything with a single L2 table, then we
2015 * just need a single L1 descriptor. Otherwise, calculate the L1
2016 * size, capped to the SIDSIZE.
2017 */
2018 if (smmu->sid_bits < STRTAB_SPLIT) {
2019 size = 0;
2020 } else {
2021 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2022 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2023 }
Will Deacond2e88e72015-06-30 10:02:28 +01002024 cfg->num_l1_ents = 1 << size;
2025
2026 size += STRTAB_SPLIT;
2027 if (size < smmu->sid_bits)
Will Deacon48ec83b2015-05-27 17:25:59 +01002028 dev_warn(smmu->dev,
2029 "2-level strtab only covers %u/%u bits of SID\n",
Will Deacond2e88e72015-06-30 10:02:28 +01002030 size, smmu->sid_bits);
Will Deacon48ec83b2015-05-27 17:25:59 +01002031
Will Deacond2e88e72015-06-30 10:02:28 +01002032 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002033 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2034 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002035 if (!strtab) {
2036 dev_err(smmu->dev,
2037 "failed to allocate l1 stream table (%u bytes)\n",
2038 size);
2039 return -ENOMEM;
2040 }
2041 cfg->strtab = strtab;
2042
2043 /* Configure strtab_base_cfg for 2 levels */
2044 reg = STRTAB_BASE_CFG_FMT_2LVL;
2045 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2046 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2047 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2048 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2049 cfg->strtab_base_cfg = reg;
2050
Will Deacon04fa26c2015-10-30 18:12:41 +00002051 return arm_smmu_init_l1_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002052}
2053
2054static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2055{
2056 void *strtab;
2057 u64 reg;
2058 u32 size;
2059 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2060
2061 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002062 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2063 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002064 if (!strtab) {
2065 dev_err(smmu->dev,
2066 "failed to allocate linear stream table (%u bytes)\n",
2067 size);
2068 return -ENOMEM;
2069 }
2070 cfg->strtab = strtab;
2071 cfg->num_l1_ents = 1 << smmu->sid_bits;
2072
2073 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2074 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2075 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2076 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2077 cfg->strtab_base_cfg = reg;
2078
2079 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2080 return 0;
2081}
2082
2083static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2084{
2085 u64 reg;
2086 int ret;
2087
2088 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2089 ret = arm_smmu_init_strtab_2lvl(smmu);
2090 else
2091 ret = arm_smmu_init_strtab_linear(smmu);
2092
2093 if (ret)
2094 return ret;
2095
2096 /* Set the strtab base address */
2097 reg = smmu->strtab_cfg.strtab_dma &
2098 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2099 reg |= STRTAB_BASE_RA;
2100 smmu->strtab_cfg.strtab_base = reg;
2101
2102 /* Allocate the first VMID for stage-2 bypass STEs */
2103 set_bit(0, smmu->vmid_map);
2104 return 0;
2105}
2106
Will Deacon48ec83b2015-05-27 17:25:59 +01002107static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2108{
2109 int ret;
2110
2111 ret = arm_smmu_init_queues(smmu);
2112 if (ret)
2113 return ret;
2114
Will Deacon04fa26c2015-10-30 18:12:41 +00002115 return arm_smmu_init_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002116}
2117
2118static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2119 unsigned int reg_off, unsigned int ack_off)
2120{
2121 u32 reg;
2122
2123 writel_relaxed(val, smmu->base + reg_off);
2124 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2125 1, ARM_SMMU_POLL_TIMEOUT_US);
2126}
2127
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002128static void arm_smmu_free_msis(void *data)
2129{
2130 struct device *dev = data;
2131 platform_msi_domain_free_irqs(dev);
2132}
2133
2134static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2135{
2136 phys_addr_t doorbell;
2137 struct device *dev = msi_desc_to_dev(desc);
2138 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2139 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2140
2141 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2142 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2143
2144 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2145 writel_relaxed(msg->data, smmu->base + cfg[1]);
2146 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2147}
2148
2149static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2150{
2151 struct msi_desc *desc;
2152 int ret, nvec = ARM_SMMU_MAX_MSIS;
2153 struct device *dev = smmu->dev;
2154
2155 /* Clear the MSI address regs */
2156 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2157 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2158
2159 if (smmu->features & ARM_SMMU_FEAT_PRI)
2160 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2161 else
2162 nvec--;
2163
2164 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2165 return;
2166
2167 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2168 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2169 if (ret) {
2170 dev_warn(dev, "failed to allocate MSIs\n");
2171 return;
2172 }
2173
2174 for_each_msi_entry(desc, dev) {
2175 switch (desc->platform.msi_index) {
2176 case EVTQ_MSI_INDEX:
2177 smmu->evtq.q.irq = desc->irq;
2178 break;
2179 case GERROR_MSI_INDEX:
2180 smmu->gerr_irq = desc->irq;
2181 break;
2182 case PRIQ_MSI_INDEX:
2183 smmu->priq.q.irq = desc->irq;
2184 break;
2185 default: /* Unknown */
2186 continue;
2187 }
2188 }
2189
2190 /* Add callback to free MSIs on teardown */
2191 devm_add_action(dev, arm_smmu_free_msis, dev);
2192}
2193
Will Deacon48ec83b2015-05-27 17:25:59 +01002194static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2195{
2196 int ret, irq;
Marc Zyngierccd63852015-07-15 11:55:18 +01002197 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002198
2199 /* Disable IRQs first */
2200 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2201 ARM_SMMU_IRQ_CTRLACK);
2202 if (ret) {
2203 dev_err(smmu->dev, "failed to disable irqs\n");
2204 return ret;
2205 }
2206
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002207 arm_smmu_setup_msis(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002208
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002209 /* Request interrupt lines */
Will Deacon48ec83b2015-05-27 17:25:59 +01002210 irq = smmu->evtq.q.irq;
2211 if (irq) {
2212 ret = devm_request_threaded_irq(smmu->dev, irq,
2213 arm_smmu_evtq_handler,
2214 arm_smmu_evtq_thread,
2215 0, "arm-smmu-v3-evtq", smmu);
2216 if (IS_ERR_VALUE(ret))
2217 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2218 }
2219
2220 irq = smmu->cmdq.q.irq;
2221 if (irq) {
2222 ret = devm_request_irq(smmu->dev, irq,
2223 arm_smmu_cmdq_sync_handler, 0,
2224 "arm-smmu-v3-cmdq-sync", smmu);
2225 if (IS_ERR_VALUE(ret))
2226 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2227 }
2228
2229 irq = smmu->gerr_irq;
2230 if (irq) {
2231 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2232 0, "arm-smmu-v3-gerror", smmu);
2233 if (IS_ERR_VALUE(ret))
2234 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2235 }
2236
2237 if (smmu->features & ARM_SMMU_FEAT_PRI) {
Will Deacon48ec83b2015-05-27 17:25:59 +01002238 irq = smmu->priq.q.irq;
2239 if (irq) {
2240 ret = devm_request_threaded_irq(smmu->dev, irq,
2241 arm_smmu_priq_handler,
2242 arm_smmu_priq_thread,
2243 0, "arm-smmu-v3-priq",
2244 smmu);
2245 if (IS_ERR_VALUE(ret))
2246 dev_warn(smmu->dev,
2247 "failed to enable priq irq\n");
Marc Zyngierccd63852015-07-15 11:55:18 +01002248 else
2249 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002250 }
2251 }
2252
2253 /* Enable interrupt generation on the SMMU */
Marc Zyngierccd63852015-07-15 11:55:18 +01002254 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
Will Deacon48ec83b2015-05-27 17:25:59 +01002255 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2256 if (ret)
2257 dev_warn(smmu->dev, "failed to enable irqs\n");
2258
2259 return 0;
2260}
2261
2262static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2263{
2264 int ret;
2265
2266 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2267 if (ret)
2268 dev_err(smmu->dev, "failed to clear cr0\n");
2269
2270 return ret;
2271}
2272
2273static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2274{
2275 int ret;
2276 u32 reg, enables;
2277 struct arm_smmu_cmdq_ent cmd;
2278
2279 /* Clear CR0 and sync (disables SMMU and queue processing) */
2280 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2281 if (reg & CR0_SMMUEN)
2282 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2283
2284 ret = arm_smmu_device_disable(smmu);
2285 if (ret)
2286 return ret;
2287
2288 /* CR1 (table and queue memory attributes) */
2289 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2290 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2291 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2292 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2293 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2294 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2295 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2296
2297 /* CR2 (random crap) */
2298 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2299 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2300
2301 /* Stream table */
2302 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2303 smmu->base + ARM_SMMU_STRTAB_BASE);
2304 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2305 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2306
2307 /* Command queue */
2308 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2309 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2310 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2311
2312 enables = CR0_CMDQEN;
2313 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2314 ARM_SMMU_CR0ACK);
2315 if (ret) {
2316 dev_err(smmu->dev, "failed to enable command queue\n");
2317 return ret;
2318 }
2319
2320 /* Invalidate any cached configuration */
2321 cmd.opcode = CMDQ_OP_CFGI_ALL;
2322 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2323 cmd.opcode = CMDQ_OP_CMD_SYNC;
2324 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2325
2326 /* Invalidate any stale TLB entries */
2327 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2328 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2329 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2330 }
2331
2332 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2333 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2334 cmd.opcode = CMDQ_OP_CMD_SYNC;
2335 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2336
2337 /* Event queue */
2338 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2339 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2340 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2341
2342 enables |= CR0_EVTQEN;
2343 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2344 ARM_SMMU_CR0ACK);
2345 if (ret) {
2346 dev_err(smmu->dev, "failed to enable event queue\n");
2347 return ret;
2348 }
2349
2350 /* PRI queue */
2351 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2352 writeq_relaxed(smmu->priq.q.q_base,
2353 smmu->base + ARM_SMMU_PRIQ_BASE);
2354 writel_relaxed(smmu->priq.q.prod,
2355 smmu->base + ARM_SMMU_PRIQ_PROD);
2356 writel_relaxed(smmu->priq.q.cons,
2357 smmu->base + ARM_SMMU_PRIQ_CONS);
2358
2359 enables |= CR0_PRIQEN;
2360 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2361 ARM_SMMU_CR0ACK);
2362 if (ret) {
2363 dev_err(smmu->dev, "failed to enable PRI queue\n");
2364 return ret;
2365 }
2366 }
2367
2368 ret = arm_smmu_setup_irqs(smmu);
2369 if (ret) {
2370 dev_err(smmu->dev, "failed to setup irqs\n");
2371 return ret;
2372 }
2373
2374 /* Enable the SMMU interface */
2375 enables |= CR0_SMMUEN;
2376 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2377 ARM_SMMU_CR0ACK);
2378 if (ret) {
2379 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2380 return ret;
2381 }
2382
2383 return 0;
2384}
2385
2386static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2387{
2388 u32 reg;
2389 bool coherent;
2390 unsigned long pgsize_bitmap = 0;
2391
2392 /* IDR0 */
2393 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2394
2395 /* 2-level structures */
2396 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2397 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2398
2399 if (reg & IDR0_CD2L)
2400 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2401
2402 /*
2403 * Translation table endianness.
2404 * We currently require the same endianness as the CPU, but this
2405 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2406 */
2407 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2408 case IDR0_TTENDIAN_MIXED:
2409 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2410 break;
2411#ifdef __BIG_ENDIAN
2412 case IDR0_TTENDIAN_BE:
2413 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2414 break;
2415#else
2416 case IDR0_TTENDIAN_LE:
2417 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2418 break;
2419#endif
2420 default:
2421 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2422 return -ENXIO;
2423 }
2424
2425 /* Boolean feature flags */
2426 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2427 smmu->features |= ARM_SMMU_FEAT_PRI;
2428
2429 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2430 smmu->features |= ARM_SMMU_FEAT_ATS;
2431
2432 if (reg & IDR0_SEV)
2433 smmu->features |= ARM_SMMU_FEAT_SEV;
2434
2435 if (reg & IDR0_MSI)
2436 smmu->features |= ARM_SMMU_FEAT_MSI;
2437
2438 if (reg & IDR0_HYP)
2439 smmu->features |= ARM_SMMU_FEAT_HYP;
2440
2441 /*
2442 * The dma-coherent property is used in preference to the ID
2443 * register, but warn on mismatch.
2444 */
2445 coherent = of_dma_is_coherent(smmu->dev->of_node);
2446 if (coherent)
2447 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2448
2449 if (!!(reg & IDR0_COHACC) != coherent)
2450 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2451 coherent ? "true" : "false");
2452
2453 if (reg & IDR0_STALL_MODEL)
2454 smmu->features |= ARM_SMMU_FEAT_STALLS;
2455
2456 if (reg & IDR0_S1P)
2457 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2458
2459 if (reg & IDR0_S2P)
2460 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2461
2462 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2463 dev_err(smmu->dev, "no translation support!\n");
2464 return -ENXIO;
2465 }
2466
2467 /* We only support the AArch64 table format at present */
Will Deaconf0c453d2015-08-20 12:12:32 +01002468 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2469 case IDR0_TTF_AARCH32_64:
2470 smmu->ias = 40;
2471 /* Fallthrough */
2472 case IDR0_TTF_AARCH64:
2473 break;
2474 default:
Will Deacon48ec83b2015-05-27 17:25:59 +01002475 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2476 return -ENXIO;
2477 }
2478
2479 /* ASID/VMID sizes */
2480 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2481 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2482
2483 /* IDR1 */
2484 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2485 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2486 dev_err(smmu->dev, "embedded implementation not supported\n");
2487 return -ENXIO;
2488 }
2489
2490 /* Queue sizes, capped at 4k */
2491 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2492 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2493 if (!smmu->cmdq.q.max_n_shift) {
2494 /* Odd alignment restrictions on the base, so ignore for now */
2495 dev_err(smmu->dev, "unit-length command queue not supported\n");
2496 return -ENXIO;
2497 }
2498
2499 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2500 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2501 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2502 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2503
2504 /* SID/SSID sizes */
2505 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2506 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2507
2508 /* IDR5 */
2509 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2510
2511 /* Maximum number of outstanding stalls */
2512 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2513 & IDR5_STALL_MAX_MASK;
2514
2515 /* Page sizes */
2516 if (reg & IDR5_GRAN64K)
2517 pgsize_bitmap |= SZ_64K | SZ_512M;
2518 if (reg & IDR5_GRAN16K)
2519 pgsize_bitmap |= SZ_16K | SZ_32M;
2520 if (reg & IDR5_GRAN4K)
2521 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2522
2523 arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2524
2525 /* Output address size */
2526 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2527 case IDR5_OAS_32_BIT:
2528 smmu->oas = 32;
2529 break;
2530 case IDR5_OAS_36_BIT:
2531 smmu->oas = 36;
2532 break;
2533 case IDR5_OAS_40_BIT:
2534 smmu->oas = 40;
2535 break;
2536 case IDR5_OAS_42_BIT:
2537 smmu->oas = 42;
2538 break;
2539 case IDR5_OAS_44_BIT:
2540 smmu->oas = 44;
2541 break;
Will Deacon85430962015-08-03 10:35:40 +01002542 default:
2543 dev_info(smmu->dev,
2544 "unknown output address size. Truncating to 48-bit\n");
2545 /* Fallthrough */
Will Deacon48ec83b2015-05-27 17:25:59 +01002546 case IDR5_OAS_48_BIT:
2547 smmu->oas = 48;
Will Deacon48ec83b2015-05-27 17:25:59 +01002548 }
2549
2550 /* Set the DMA mask for our table walker */
2551 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2552 dev_warn(smmu->dev,
2553 "failed to set DMA mask for table walker\n");
2554
Will Deaconf0c453d2015-08-20 12:12:32 +01002555 smmu->ias = max(smmu->ias, smmu->oas);
Will Deacon48ec83b2015-05-27 17:25:59 +01002556
2557 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2558 smmu->ias, smmu->oas, smmu->features);
2559 return 0;
2560}
2561
2562static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2563{
2564 int irq, ret;
2565 struct resource *res;
2566 struct arm_smmu_device *smmu;
2567 struct device *dev = &pdev->dev;
2568
2569 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2570 if (!smmu) {
2571 dev_err(dev, "failed to allocate arm_smmu_device\n");
2572 return -ENOMEM;
2573 }
2574 smmu->dev = dev;
2575
2576 /* Base address */
2577 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2578 if (resource_size(res) + 1 < SZ_128K) {
2579 dev_err(dev, "MMIO region too small (%pr)\n", res);
2580 return -EINVAL;
2581 }
2582
2583 smmu->base = devm_ioremap_resource(dev, res);
2584 if (IS_ERR(smmu->base))
2585 return PTR_ERR(smmu->base);
2586
2587 /* Interrupt lines */
2588 irq = platform_get_irq_byname(pdev, "eventq");
2589 if (irq > 0)
2590 smmu->evtq.q.irq = irq;
2591
2592 irq = platform_get_irq_byname(pdev, "priq");
2593 if (irq > 0)
2594 smmu->priq.q.irq = irq;
2595
2596 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2597 if (irq > 0)
2598 smmu->cmdq.q.irq = irq;
2599
2600 irq = platform_get_irq_byname(pdev, "gerror");
2601 if (irq > 0)
2602 smmu->gerr_irq = irq;
2603
Zhen Lei5e929462015-07-07 04:30:18 +01002604 parse_driver_options(smmu);
2605
Will Deacon48ec83b2015-05-27 17:25:59 +01002606 /* Probe the h/w */
2607 ret = arm_smmu_device_probe(smmu);
2608 if (ret)
2609 return ret;
2610
2611 /* Initialise in-memory data structures */
2612 ret = arm_smmu_init_structures(smmu);
2613 if (ret)
2614 return ret;
2615
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002616 /* Record our private device structure */
2617 platform_set_drvdata(pdev, smmu);
2618
Will Deacon48ec83b2015-05-27 17:25:59 +01002619 /* Reset the device */
Will Deacon04fa26c2015-10-30 18:12:41 +00002620 return arm_smmu_device_reset(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002621}
2622
2623static int arm_smmu_device_remove(struct platform_device *pdev)
2624{
Will Deacon941a8022015-08-11 16:25:10 +01002625 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
Will Deacon48ec83b2015-05-27 17:25:59 +01002626
2627 arm_smmu_device_disable(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002628 return 0;
2629}
2630
2631static struct of_device_id arm_smmu_of_match[] = {
2632 { .compatible = "arm,smmu-v3", },
2633 { },
2634};
2635MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2636
2637static struct platform_driver arm_smmu_driver = {
2638 .driver = {
2639 .name = "arm-smmu-v3",
2640 .of_match_table = of_match_ptr(arm_smmu_of_match),
2641 },
2642 .probe = arm_smmu_device_dt_probe,
2643 .remove = arm_smmu_device_remove,
2644};
2645
2646static int __init arm_smmu_init(void)
2647{
2648 struct device_node *np;
2649 int ret;
2650
2651 np = of_find_matching_node(NULL, arm_smmu_of_match);
2652 if (!np)
2653 return 0;
2654
2655 of_node_put(np);
2656
2657 ret = platform_driver_register(&arm_smmu_driver);
2658 if (ret)
2659 return ret;
2660
2661 return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2662}
2663
2664static void __exit arm_smmu_exit(void)
2665{
2666 return platform_driver_unregister(&arm_smmu_driver);
2667}
2668
2669subsys_initcall(arm_smmu_init);
2670module_exit(arm_smmu_exit);
2671
2672MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2673MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2674MODULE_LICENSE("GPL v2");