blob: 641e887613193c76e7afb48a81c82b1fd732cc2d [file] [log] [blame]
Will Deacon48ec83b2015-05-27 17:25:59 +01001/*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23#include <linux/delay.h>
Robin Murphy9adb9592016-01-26 18:06:36 +000024#include <linux/dma-iommu.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010025#include <linux/err.h>
26#include <linux/interrupt.h>
27#include <linux/iommu.h>
28#include <linux/iopoll.h>
29#include <linux/module.h>
Marc Zyngier166bdbd2015-10-13 18:32:30 +010030#include <linux/msi.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010031#include <linux/of.h>
32#include <linux/of_address.h>
Will Deacon941a8022015-08-11 16:25:10 +010033#include <linux/of_platform.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010034#include <linux/pci.h>
35#include <linux/platform_device.h>
36
37#include "io-pgtable.h"
38
39/* MMIO registers */
40#define ARM_SMMU_IDR0 0x0
41#define IDR0_ST_LVL_SHIFT 27
42#define IDR0_ST_LVL_MASK 0x3
43#define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
Prem Mallappa6380be02015-12-14 22:01:23 +053044#define IDR0_STALL_MODEL_SHIFT 24
45#define IDR0_STALL_MODEL_MASK 0x3
46#define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
47#define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +010048#define IDR0_TTENDIAN_SHIFT 21
49#define IDR0_TTENDIAN_MASK 0x3
50#define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
51#define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
52#define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
53#define IDR0_CD2L (1 << 19)
54#define IDR0_VMID16 (1 << 18)
55#define IDR0_PRI (1 << 16)
56#define IDR0_SEV (1 << 14)
57#define IDR0_MSI (1 << 13)
58#define IDR0_ASID16 (1 << 12)
59#define IDR0_ATS (1 << 10)
60#define IDR0_HYP (1 << 9)
61#define IDR0_COHACC (1 << 4)
62#define IDR0_TTF_SHIFT 2
63#define IDR0_TTF_MASK 0x3
64#define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
Will Deaconf0c453d2015-08-20 12:12:32 +010065#define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +010066#define IDR0_S1P (1 << 1)
67#define IDR0_S2P (1 << 0)
68
69#define ARM_SMMU_IDR1 0x4
70#define IDR1_TABLES_PRESET (1 << 30)
71#define IDR1_QUEUES_PRESET (1 << 29)
72#define IDR1_REL (1 << 28)
73#define IDR1_CMDQ_SHIFT 21
74#define IDR1_CMDQ_MASK 0x1f
75#define IDR1_EVTQ_SHIFT 16
76#define IDR1_EVTQ_MASK 0x1f
77#define IDR1_PRIQ_SHIFT 11
78#define IDR1_PRIQ_MASK 0x1f
79#define IDR1_SSID_SHIFT 6
80#define IDR1_SSID_MASK 0x1f
81#define IDR1_SID_SHIFT 0
82#define IDR1_SID_MASK 0x3f
83
84#define ARM_SMMU_IDR5 0x14
85#define IDR5_STALL_MAX_SHIFT 16
86#define IDR5_STALL_MAX_MASK 0xffff
87#define IDR5_GRAN64K (1 << 6)
88#define IDR5_GRAN16K (1 << 5)
89#define IDR5_GRAN4K (1 << 4)
90#define IDR5_OAS_SHIFT 0
91#define IDR5_OAS_MASK 0x7
92#define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
93#define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
94#define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
95#define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
96#define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
97#define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
98
99#define ARM_SMMU_CR0 0x20
100#define CR0_CMDQEN (1 << 3)
101#define CR0_EVTQEN (1 << 2)
102#define CR0_PRIQEN (1 << 1)
103#define CR0_SMMUEN (1 << 0)
104
105#define ARM_SMMU_CR0ACK 0x24
106
107#define ARM_SMMU_CR1 0x28
108#define CR1_SH_NSH 0
109#define CR1_SH_OSH 2
110#define CR1_SH_ISH 3
111#define CR1_CACHE_NC 0
112#define CR1_CACHE_WB 1
113#define CR1_CACHE_WT 2
114#define CR1_TABLE_SH_SHIFT 10
115#define CR1_TABLE_OC_SHIFT 8
116#define CR1_TABLE_IC_SHIFT 6
117#define CR1_QUEUE_SH_SHIFT 4
118#define CR1_QUEUE_OC_SHIFT 2
119#define CR1_QUEUE_IC_SHIFT 0
120
121#define ARM_SMMU_CR2 0x2c
122#define CR2_PTM (1 << 2)
123#define CR2_RECINVSID (1 << 1)
124#define CR2_E2H (1 << 0)
125
126#define ARM_SMMU_IRQ_CTRL 0x50
127#define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
Marc Zyngierccd63852015-07-15 11:55:18 +0100128#define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
Will Deacon48ec83b2015-05-27 17:25:59 +0100129#define IRQ_CTRL_GERROR_IRQEN (1 << 0)
130
131#define ARM_SMMU_IRQ_CTRLACK 0x54
132
133#define ARM_SMMU_GERROR 0x60
134#define GERROR_SFM_ERR (1 << 8)
135#define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
136#define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
137#define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
138#define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
139#define GERROR_PRIQ_ABT_ERR (1 << 3)
140#define GERROR_EVTQ_ABT_ERR (1 << 2)
141#define GERROR_CMDQ_ERR (1 << 0)
142#define GERROR_ERR_MASK 0xfd
143
144#define ARM_SMMU_GERRORN 0x64
145
146#define ARM_SMMU_GERROR_IRQ_CFG0 0x68
147#define ARM_SMMU_GERROR_IRQ_CFG1 0x70
148#define ARM_SMMU_GERROR_IRQ_CFG2 0x74
149
150#define ARM_SMMU_STRTAB_BASE 0x80
151#define STRTAB_BASE_RA (1UL << 62)
152#define STRTAB_BASE_ADDR_SHIFT 6
153#define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
154
155#define ARM_SMMU_STRTAB_BASE_CFG 0x88
156#define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
157#define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
158#define STRTAB_BASE_CFG_SPLIT_SHIFT 6
159#define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
160#define STRTAB_BASE_CFG_FMT_SHIFT 16
161#define STRTAB_BASE_CFG_FMT_MASK 0x3
162#define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
163#define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
164
165#define ARM_SMMU_CMDQ_BASE 0x90
166#define ARM_SMMU_CMDQ_PROD 0x98
167#define ARM_SMMU_CMDQ_CONS 0x9c
168
169#define ARM_SMMU_EVTQ_BASE 0xa0
170#define ARM_SMMU_EVTQ_PROD 0x100a8
171#define ARM_SMMU_EVTQ_CONS 0x100ac
172#define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
173#define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
174#define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
175
176#define ARM_SMMU_PRIQ_BASE 0xc0
177#define ARM_SMMU_PRIQ_PROD 0x100c8
178#define ARM_SMMU_PRIQ_CONS 0x100cc
179#define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
180#define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
181#define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
182
183/* Common MSI config fields */
Will Deacon48ec83b2015-05-27 17:25:59 +0100184#define MSI_CFG0_ADDR_SHIFT 2
185#define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
Marc Zyngierec11d632015-07-15 11:55:19 +0100186#define MSI_CFG2_SH_SHIFT 4
187#define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
188#define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
189#define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
190#define MSI_CFG2_MEMATTR_SHIFT 0
191#define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +0100192
193#define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
194#define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
195#define Q_OVERFLOW_FLAG (1 << 31)
196#define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
197#define Q_ENT(q, p) ((q)->base + \
198 Q_IDX(q, p) * (q)->ent_dwords)
199
200#define Q_BASE_RWA (1UL << 62)
201#define Q_BASE_ADDR_SHIFT 5
202#define Q_BASE_ADDR_MASK 0xfffffffffffUL
203#define Q_BASE_LOG2SIZE_SHIFT 0
204#define Q_BASE_LOG2SIZE_MASK 0x1fUL
205
206/*
207 * Stream table.
208 *
209 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
Zhen Leie2f4c232015-07-07 04:30:17 +0100210 * 2lvl: 128k L1 entries,
211 * 256 lazy entries per table (each table covers a PCI bus)
Will Deacon48ec83b2015-05-27 17:25:59 +0100212 */
Zhen Leie2f4c232015-07-07 04:30:17 +0100213#define STRTAB_L1_SZ_SHIFT 20
Will Deacon48ec83b2015-05-27 17:25:59 +0100214#define STRTAB_SPLIT 8
215
216#define STRTAB_L1_DESC_DWORDS 1
217#define STRTAB_L1_DESC_SPAN_SHIFT 0
218#define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
219#define STRTAB_L1_DESC_L2PTR_SHIFT 6
220#define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
221
222#define STRTAB_STE_DWORDS 8
223#define STRTAB_STE_0_V (1UL << 0)
224#define STRTAB_STE_0_CFG_SHIFT 1
225#define STRTAB_STE_0_CFG_MASK 0x7UL
226#define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
227#define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
228#define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
229#define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
230
231#define STRTAB_STE_0_S1FMT_SHIFT 4
232#define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
233#define STRTAB_STE_0_S1CTXPTR_SHIFT 6
234#define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
235#define STRTAB_STE_0_S1CDMAX_SHIFT 59
236#define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
237
238#define STRTAB_STE_1_S1C_CACHE_NC 0UL
239#define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
240#define STRTAB_STE_1_S1C_CACHE_WT 2UL
241#define STRTAB_STE_1_S1C_CACHE_WB 3UL
242#define STRTAB_STE_1_S1C_SH_NSH 0UL
243#define STRTAB_STE_1_S1C_SH_OSH 2UL
244#define STRTAB_STE_1_S1C_SH_ISH 3UL
245#define STRTAB_STE_1_S1CIR_SHIFT 2
246#define STRTAB_STE_1_S1COR_SHIFT 4
247#define STRTAB_STE_1_S1CSH_SHIFT 6
248
249#define STRTAB_STE_1_S1STALLD (1UL << 27)
250
251#define STRTAB_STE_1_EATS_ABT 0UL
252#define STRTAB_STE_1_EATS_TRANS 1UL
253#define STRTAB_STE_1_EATS_S1CHK 2UL
254#define STRTAB_STE_1_EATS_SHIFT 28
255
256#define STRTAB_STE_1_STRW_NSEL1 0UL
257#define STRTAB_STE_1_STRW_EL2 2UL
258#define STRTAB_STE_1_STRW_SHIFT 30
259
Will Deacona0eacd82015-11-18 18:15:51 +0000260#define STRTAB_STE_1_SHCFG_INCOMING 1UL
261#define STRTAB_STE_1_SHCFG_SHIFT 44
262
Will Deacon48ec83b2015-05-27 17:25:59 +0100263#define STRTAB_STE_2_S2VMID_SHIFT 0
264#define STRTAB_STE_2_S2VMID_MASK 0xffffUL
265#define STRTAB_STE_2_VTCR_SHIFT 32
266#define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
267#define STRTAB_STE_2_S2AA64 (1UL << 51)
268#define STRTAB_STE_2_S2ENDI (1UL << 52)
269#define STRTAB_STE_2_S2PTW (1UL << 54)
270#define STRTAB_STE_2_S2R (1UL << 58)
271
272#define STRTAB_STE_3_S2TTB_SHIFT 4
273#define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
274
275/* Context descriptor (stage-1 only) */
276#define CTXDESC_CD_DWORDS 8
277#define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
278#define ARM64_TCR_T0SZ_SHIFT 0
279#define ARM64_TCR_T0SZ_MASK 0x1fUL
280#define CTXDESC_CD_0_TCR_TG0_SHIFT 6
281#define ARM64_TCR_TG0_SHIFT 14
282#define ARM64_TCR_TG0_MASK 0x3UL
283#define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
Zhen Lei5d58c622015-06-26 09:32:59 +0100284#define ARM64_TCR_IRGN0_SHIFT 8
Will Deacon48ec83b2015-05-27 17:25:59 +0100285#define ARM64_TCR_IRGN0_MASK 0x3UL
286#define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
Zhen Lei5d58c622015-06-26 09:32:59 +0100287#define ARM64_TCR_ORGN0_SHIFT 10
Will Deacon48ec83b2015-05-27 17:25:59 +0100288#define ARM64_TCR_ORGN0_MASK 0x3UL
289#define CTXDESC_CD_0_TCR_SH0_SHIFT 12
290#define ARM64_TCR_SH0_SHIFT 12
291#define ARM64_TCR_SH0_MASK 0x3UL
292#define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
293#define ARM64_TCR_EPD0_SHIFT 7
294#define ARM64_TCR_EPD0_MASK 0x1UL
295#define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
296#define ARM64_TCR_EPD1_SHIFT 23
297#define ARM64_TCR_EPD1_MASK 0x1UL
298
299#define CTXDESC_CD_0_ENDI (1UL << 15)
300#define CTXDESC_CD_0_V (1UL << 31)
301
302#define CTXDESC_CD_0_TCR_IPS_SHIFT 32
303#define ARM64_TCR_IPS_SHIFT 32
304#define ARM64_TCR_IPS_MASK 0x7UL
305#define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
306#define ARM64_TCR_TBI0_SHIFT 37
307#define ARM64_TCR_TBI0_MASK 0x1UL
308
309#define CTXDESC_CD_0_AA64 (1UL << 41)
310#define CTXDESC_CD_0_R (1UL << 45)
311#define CTXDESC_CD_0_A (1UL << 46)
312#define CTXDESC_CD_0_ASET_SHIFT 47
313#define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
314#define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
315#define CTXDESC_CD_0_ASID_SHIFT 48
316#define CTXDESC_CD_0_ASID_MASK 0xffffUL
317
318#define CTXDESC_CD_1_TTB0_SHIFT 4
319#define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
320
321#define CTXDESC_CD_3_MAIR_SHIFT 0
322
323/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
324#define ARM_SMMU_TCR2CD(tcr, fld) \
325 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
326 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
327
328/* Command queue */
329#define CMDQ_ENT_DWORDS 2
330#define CMDQ_MAX_SZ_SHIFT 8
331
332#define CMDQ_ERR_SHIFT 24
333#define CMDQ_ERR_MASK 0x7f
334#define CMDQ_ERR_CERROR_NONE_IDX 0
335#define CMDQ_ERR_CERROR_ILL_IDX 1
336#define CMDQ_ERR_CERROR_ABT_IDX 2
337
338#define CMDQ_0_OP_SHIFT 0
339#define CMDQ_0_OP_MASK 0xffUL
340#define CMDQ_0_SSV (1UL << 11)
341
342#define CMDQ_PREFETCH_0_SID_SHIFT 32
343#define CMDQ_PREFETCH_1_SIZE_SHIFT 0
344#define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
345
346#define CMDQ_CFGI_0_SID_SHIFT 32
347#define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
348#define CMDQ_CFGI_1_LEAF (1UL << 0)
349#define CMDQ_CFGI_1_RANGE_SHIFT 0
350#define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
351
352#define CMDQ_TLBI_0_VMID_SHIFT 32
353#define CMDQ_TLBI_0_ASID_SHIFT 48
354#define CMDQ_TLBI_1_LEAF (1UL << 0)
Will Deacon1c27df12015-09-18 16:12:56 +0100355#define CMDQ_TLBI_1_VA_MASK ~0xfffUL
356#define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
Will Deacon48ec83b2015-05-27 17:25:59 +0100357
358#define CMDQ_PRI_0_SSID_SHIFT 12
359#define CMDQ_PRI_0_SSID_MASK 0xfffffUL
360#define CMDQ_PRI_0_SID_SHIFT 32
361#define CMDQ_PRI_0_SID_MASK 0xffffffffUL
362#define CMDQ_PRI_1_GRPID_SHIFT 0
363#define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
364#define CMDQ_PRI_1_RESP_SHIFT 12
365#define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
366#define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
367#define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
368
369#define CMDQ_SYNC_0_CS_SHIFT 12
370#define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
371#define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
372
373/* Event queue */
374#define EVTQ_ENT_DWORDS 4
375#define EVTQ_MAX_SZ_SHIFT 7
376
377#define EVTQ_0_ID_SHIFT 0
378#define EVTQ_0_ID_MASK 0xffUL
379
380/* PRI queue */
381#define PRIQ_ENT_DWORDS 2
382#define PRIQ_MAX_SZ_SHIFT 8
383
384#define PRIQ_0_SID_SHIFT 0
385#define PRIQ_0_SID_MASK 0xffffffffUL
386#define PRIQ_0_SSID_SHIFT 32
387#define PRIQ_0_SSID_MASK 0xfffffUL
Will Deacon48ec83b2015-05-27 17:25:59 +0100388#define PRIQ_0_PERM_PRIV (1UL << 58)
389#define PRIQ_0_PERM_EXEC (1UL << 59)
390#define PRIQ_0_PERM_READ (1UL << 60)
391#define PRIQ_0_PERM_WRITE (1UL << 61)
392#define PRIQ_0_PRG_LAST (1UL << 62)
393#define PRIQ_0_SSID_V (1UL << 63)
394
395#define PRIQ_1_PRG_IDX_SHIFT 0
396#define PRIQ_1_PRG_IDX_MASK 0x1ffUL
397#define PRIQ_1_ADDR_SHIFT 12
398#define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
399
400/* High-level queue structures */
401#define ARM_SMMU_POLL_TIMEOUT_US 100
402
403static bool disable_bypass;
404module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
405MODULE_PARM_DESC(disable_bypass,
406 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
407
408enum pri_resp {
409 PRI_RESP_DENY,
410 PRI_RESP_FAIL,
411 PRI_RESP_SUCC,
412};
413
Marc Zyngier166bdbd2015-10-13 18:32:30 +0100414enum arm_smmu_msi_index {
415 EVTQ_MSI_INDEX,
416 GERROR_MSI_INDEX,
417 PRIQ_MSI_INDEX,
418 ARM_SMMU_MAX_MSIS,
419};
420
421static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
422 [EVTQ_MSI_INDEX] = {
423 ARM_SMMU_EVTQ_IRQ_CFG0,
424 ARM_SMMU_EVTQ_IRQ_CFG1,
425 ARM_SMMU_EVTQ_IRQ_CFG2,
426 },
427 [GERROR_MSI_INDEX] = {
428 ARM_SMMU_GERROR_IRQ_CFG0,
429 ARM_SMMU_GERROR_IRQ_CFG1,
430 ARM_SMMU_GERROR_IRQ_CFG2,
431 },
432 [PRIQ_MSI_INDEX] = {
433 ARM_SMMU_PRIQ_IRQ_CFG0,
434 ARM_SMMU_PRIQ_IRQ_CFG1,
435 ARM_SMMU_PRIQ_IRQ_CFG2,
436 },
437};
438
Will Deacon48ec83b2015-05-27 17:25:59 +0100439struct arm_smmu_cmdq_ent {
440 /* Common fields */
441 u8 opcode;
442 bool substream_valid;
443
444 /* Command-specific fields */
445 union {
446 #define CMDQ_OP_PREFETCH_CFG 0x1
447 struct {
448 u32 sid;
449 u8 size;
450 u64 addr;
451 } prefetch;
452
453 #define CMDQ_OP_CFGI_STE 0x3
454 #define CMDQ_OP_CFGI_ALL 0x4
455 struct {
456 u32 sid;
457 union {
458 bool leaf;
459 u8 span;
460 };
461 } cfgi;
462
463 #define CMDQ_OP_TLBI_NH_ASID 0x11
464 #define CMDQ_OP_TLBI_NH_VA 0x12
465 #define CMDQ_OP_TLBI_EL2_ALL 0x20
466 #define CMDQ_OP_TLBI_S12_VMALL 0x28
467 #define CMDQ_OP_TLBI_S2_IPA 0x2a
468 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
469 struct {
470 u16 asid;
471 u16 vmid;
472 bool leaf;
473 u64 addr;
474 } tlbi;
475
476 #define CMDQ_OP_PRI_RESP 0x41
477 struct {
478 u32 sid;
479 u32 ssid;
480 u16 grpid;
481 enum pri_resp resp;
482 } pri;
483
484 #define CMDQ_OP_CMD_SYNC 0x46
485 };
486};
487
488struct arm_smmu_queue {
489 int irq; /* Wired interrupt */
490
491 __le64 *base;
492 dma_addr_t base_dma;
493 u64 q_base;
494
495 size_t ent_dwords;
496 u32 max_n_shift;
497 u32 prod;
498 u32 cons;
499
500 u32 __iomem *prod_reg;
501 u32 __iomem *cons_reg;
502};
503
504struct arm_smmu_cmdq {
505 struct arm_smmu_queue q;
506 spinlock_t lock;
507};
508
509struct arm_smmu_evtq {
510 struct arm_smmu_queue q;
511 u32 max_stalls;
512};
513
514struct arm_smmu_priq {
515 struct arm_smmu_queue q;
516};
517
518/* High-level stream table and context descriptor structures */
519struct arm_smmu_strtab_l1_desc {
520 u8 span;
521
522 __le64 *l2ptr;
523 dma_addr_t l2ptr_dma;
524};
525
526struct arm_smmu_s1_cfg {
527 __le64 *cdptr;
528 dma_addr_t cdptr_dma;
529
530 struct arm_smmu_ctx_desc {
531 u16 asid;
532 u64 ttbr;
533 u64 tcr;
534 u64 mair;
535 } cd;
536};
537
538struct arm_smmu_s2_cfg {
539 u16 vmid;
540 u64 vttbr;
541 u64 vtcr;
542};
543
544struct arm_smmu_strtab_ent {
545 bool valid;
546
547 bool bypass; /* Overrides s1/s2 config */
548 struct arm_smmu_s1_cfg *s1_cfg;
549 struct arm_smmu_s2_cfg *s2_cfg;
550};
551
552struct arm_smmu_strtab_cfg {
553 __le64 *strtab;
554 dma_addr_t strtab_dma;
555 struct arm_smmu_strtab_l1_desc *l1_desc;
556 unsigned int num_l1_ents;
557
558 u64 strtab_base;
559 u32 strtab_base_cfg;
560};
561
562/* An SMMUv3 instance */
563struct arm_smmu_device {
564 struct device *dev;
565 void __iomem *base;
566
567#define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
568#define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
569#define ARM_SMMU_FEAT_TT_LE (1 << 2)
570#define ARM_SMMU_FEAT_TT_BE (1 << 3)
571#define ARM_SMMU_FEAT_PRI (1 << 4)
572#define ARM_SMMU_FEAT_ATS (1 << 5)
573#define ARM_SMMU_FEAT_SEV (1 << 6)
574#define ARM_SMMU_FEAT_MSI (1 << 7)
575#define ARM_SMMU_FEAT_COHERENCY (1 << 8)
576#define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
577#define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
578#define ARM_SMMU_FEAT_STALLS (1 << 11)
579#define ARM_SMMU_FEAT_HYP (1 << 12)
580 u32 features;
581
Zhen Lei5e929462015-07-07 04:30:18 +0100582#define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
583 u32 options;
584
Will Deacon48ec83b2015-05-27 17:25:59 +0100585 struct arm_smmu_cmdq cmdq;
586 struct arm_smmu_evtq evtq;
587 struct arm_smmu_priq priq;
588
589 int gerr_irq;
590
591 unsigned long ias; /* IPA */
592 unsigned long oas; /* PA */
Robin Murphyd5466352016-05-09 17:20:09 +0100593 unsigned long pgsize_bitmap;
Will Deacon48ec83b2015-05-27 17:25:59 +0100594
595#define ARM_SMMU_MAX_ASIDS (1 << 16)
596 unsigned int asid_bits;
597 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
598
599#define ARM_SMMU_MAX_VMIDS (1 << 16)
600 unsigned int vmid_bits;
601 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
602
603 unsigned int ssid_bits;
604 unsigned int sid_bits;
605
606 struct arm_smmu_strtab_cfg strtab_cfg;
Will Deacon48ec83b2015-05-27 17:25:59 +0100607};
608
609/* SMMU private data for an IOMMU group */
610struct arm_smmu_group {
611 struct arm_smmu_device *smmu;
612 struct arm_smmu_domain *domain;
613 int num_sids;
614 u32 *sids;
615 struct arm_smmu_strtab_ent ste;
616};
617
618/* SMMU private data for an IOMMU domain */
619enum arm_smmu_domain_stage {
620 ARM_SMMU_DOMAIN_S1 = 0,
621 ARM_SMMU_DOMAIN_S2,
622 ARM_SMMU_DOMAIN_NESTED,
623};
624
625struct arm_smmu_domain {
626 struct arm_smmu_device *smmu;
627 struct mutex init_mutex; /* Protects smmu pointer */
628
629 struct io_pgtable_ops *pgtbl_ops;
630 spinlock_t pgtbl_lock;
631
632 enum arm_smmu_domain_stage stage;
633 union {
634 struct arm_smmu_s1_cfg s1_cfg;
635 struct arm_smmu_s2_cfg s2_cfg;
636 };
637
638 struct iommu_domain domain;
639};
640
Zhen Lei5e929462015-07-07 04:30:18 +0100641struct arm_smmu_option_prop {
642 u32 opt;
643 const char *prop;
644};
645
646static struct arm_smmu_option_prop arm_smmu_options[] = {
647 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
648 { 0, NULL},
649};
650
Will Deacon48ec83b2015-05-27 17:25:59 +0100651static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
652{
653 return container_of(dom, struct arm_smmu_domain, domain);
654}
655
Zhen Lei5e929462015-07-07 04:30:18 +0100656static void parse_driver_options(struct arm_smmu_device *smmu)
657{
658 int i = 0;
659
660 do {
661 if (of_property_read_bool(smmu->dev->of_node,
662 arm_smmu_options[i].prop)) {
663 smmu->options |= arm_smmu_options[i].opt;
664 dev_notice(smmu->dev, "option %s\n",
665 arm_smmu_options[i].prop);
666 }
667 } while (arm_smmu_options[++i].opt);
668}
669
Will Deacon48ec83b2015-05-27 17:25:59 +0100670/* Low-level queue manipulation functions */
671static bool queue_full(struct arm_smmu_queue *q)
672{
673 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
674 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
675}
676
677static bool queue_empty(struct arm_smmu_queue *q)
678{
679 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
680 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
681}
682
683static void queue_sync_cons(struct arm_smmu_queue *q)
684{
685 q->cons = readl_relaxed(q->cons_reg);
686}
687
688static void queue_inc_cons(struct arm_smmu_queue *q)
689{
690 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
691
692 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
693 writel(q->cons, q->cons_reg);
694}
695
696static int queue_sync_prod(struct arm_smmu_queue *q)
697{
698 int ret = 0;
699 u32 prod = readl_relaxed(q->prod_reg);
700
701 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
702 ret = -EOVERFLOW;
703
704 q->prod = prod;
705 return ret;
706}
707
708static void queue_inc_prod(struct arm_smmu_queue *q)
709{
710 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
711
712 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
713 writel(q->prod, q->prod_reg);
714}
715
716static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
717{
718 if (Q_WRP(q, q->cons) == Q_WRP(q, until))
719 return Q_IDX(q, q->cons) < Q_IDX(q, until);
720
721 return Q_IDX(q, q->cons) >= Q_IDX(q, until);
722}
723
724static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
725{
726 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
727
728 while (queue_sync_cons(q), __queue_cons_before(q, until)) {
729 if (ktime_compare(ktime_get(), timeout) > 0)
730 return -ETIMEDOUT;
731
732 if (wfe) {
733 wfe();
734 } else {
735 cpu_relax();
736 udelay(1);
737 }
738 }
739
740 return 0;
741}
742
743static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
744{
745 int i;
746
747 for (i = 0; i < n_dwords; ++i)
748 *dst++ = cpu_to_le64(*src++);
749}
750
751static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
752{
753 if (queue_full(q))
754 return -ENOSPC;
755
756 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
757 queue_inc_prod(q);
758 return 0;
759}
760
761static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
762{
763 int i;
764
765 for (i = 0; i < n_dwords; ++i)
766 *dst++ = le64_to_cpu(*src++);
767}
768
769static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
770{
771 if (queue_empty(q))
772 return -EAGAIN;
773
774 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
775 queue_inc_cons(q);
776 return 0;
777}
778
779/* High-level queue accessors */
780static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
781{
782 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
783 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
784
785 switch (ent->opcode) {
786 case CMDQ_OP_TLBI_EL2_ALL:
787 case CMDQ_OP_TLBI_NSNH_ALL:
788 break;
789 case CMDQ_OP_PREFETCH_CFG:
790 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
791 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
792 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
793 break;
794 case CMDQ_OP_CFGI_STE:
795 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
796 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
797 break;
798 case CMDQ_OP_CFGI_ALL:
799 /* Cover the entire SID range */
800 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
801 break;
802 case CMDQ_OP_TLBI_NH_VA:
803 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
Will Deacon1c27df12015-09-18 16:12:56 +0100804 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
805 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
806 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100807 case CMDQ_OP_TLBI_S2_IPA:
808 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
809 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
Will Deacon1c27df12015-09-18 16:12:56 +0100810 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
Will Deacon48ec83b2015-05-27 17:25:59 +0100811 break;
812 case CMDQ_OP_TLBI_NH_ASID:
813 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
814 /* Fallthrough */
815 case CMDQ_OP_TLBI_S12_VMALL:
816 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
817 break;
818 case CMDQ_OP_PRI_RESP:
819 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
820 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
821 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
822 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
823 switch (ent->pri.resp) {
824 case PRI_RESP_DENY:
825 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
826 break;
827 case PRI_RESP_FAIL:
828 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
829 break;
830 case PRI_RESP_SUCC:
831 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
832 break;
833 default:
834 return -EINVAL;
835 }
836 break;
837 case CMDQ_OP_CMD_SYNC:
838 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
839 break;
840 default:
841 return -ENOENT;
842 }
843
844 return 0;
845}
846
847static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
848{
849 static const char *cerror_str[] = {
850 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
851 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
852 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
853 };
854
855 int i;
856 u64 cmd[CMDQ_ENT_DWORDS];
857 struct arm_smmu_queue *q = &smmu->cmdq.q;
858 u32 cons = readl_relaxed(q->cons_reg);
859 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
860 struct arm_smmu_cmdq_ent cmd_sync = {
861 .opcode = CMDQ_OP_CMD_SYNC,
862 };
863
864 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
Will Deacona0d5c042015-12-04 12:00:29 +0000865 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
Will Deacon48ec83b2015-05-27 17:25:59 +0100866
867 switch (idx) {
Will Deacon48ec83b2015-05-27 17:25:59 +0100868 case CMDQ_ERR_CERROR_ABT_IDX:
869 dev_err(smmu->dev, "retrying command fetch\n");
870 case CMDQ_ERR_CERROR_NONE_IDX:
871 return;
Will Deacona0d5c042015-12-04 12:00:29 +0000872 case CMDQ_ERR_CERROR_ILL_IDX:
873 /* Fallthrough */
874 default:
875 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100876 }
877
878 /*
879 * We may have concurrent producers, so we need to be careful
880 * not to touch any of the shadow cmdq state.
881 */
Will Deaconaea20372016-07-29 11:15:37 +0100882 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
Will Deacon48ec83b2015-05-27 17:25:59 +0100883 dev_err(smmu->dev, "skipping command in error state:\n");
884 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
885 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
886
887 /* Convert the erroneous command into a CMD_SYNC */
888 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
889 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
890 return;
891 }
892
Will Deaconaea20372016-07-29 11:15:37 +0100893 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
Will Deacon48ec83b2015-05-27 17:25:59 +0100894}
895
896static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
897 struct arm_smmu_cmdq_ent *ent)
898{
899 u32 until;
900 u64 cmd[CMDQ_ENT_DWORDS];
901 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
902 struct arm_smmu_queue *q = &smmu->cmdq.q;
903
904 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
905 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
906 ent->opcode);
907 return;
908 }
909
910 spin_lock(&smmu->cmdq.lock);
911 while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
912 /*
913 * Keep the queue locked, otherwise the producer could wrap
914 * twice and we could see a future consumer pointer that looks
915 * like it's behind us.
916 */
917 if (queue_poll_cons(q, until, wfe))
918 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
919 }
920
921 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
922 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
923 spin_unlock(&smmu->cmdq.lock);
924}
925
926/* Context descriptor manipulation functions */
927static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
928{
929 u64 val = 0;
930
931 /* Repack the TCR. Just care about TTBR0 for now */
932 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
933 val |= ARM_SMMU_TCR2CD(tcr, TG0);
934 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
935 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
936 val |= ARM_SMMU_TCR2CD(tcr, SH0);
937 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
938 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
939 val |= ARM_SMMU_TCR2CD(tcr, IPS);
940 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
941
942 return val;
943}
944
945static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
946 struct arm_smmu_s1_cfg *cfg)
947{
948 u64 val;
949
950 /*
951 * We don't need to issue any invalidation here, as we'll invalidate
952 * the STE when installing the new entry anyway.
953 */
954 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
955#ifdef __BIG_ENDIAN
956 CTXDESC_CD_0_ENDI |
957#endif
958 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
959 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
960 CTXDESC_CD_0_V;
961 cfg->cdptr[0] = cpu_to_le64(val);
962
963 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
964 cfg->cdptr[1] = cpu_to_le64(val);
965
966 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
967}
968
969/* Stream table manipulation functions */
970static void
971arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
972{
973 u64 val = 0;
974
975 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
976 << STRTAB_L1_DESC_SPAN_SHIFT;
977 val |= desc->l2ptr_dma &
978 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
979
980 *dst = cpu_to_le64(val);
981}
982
983static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
984{
985 struct arm_smmu_cmdq_ent cmd = {
986 .opcode = CMDQ_OP_CFGI_STE,
987 .cfgi = {
988 .sid = sid,
989 .leaf = true,
990 },
991 };
992
993 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
994 cmd.opcode = CMDQ_OP_CMD_SYNC;
995 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
996}
997
998static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
999 __le64 *dst, struct arm_smmu_strtab_ent *ste)
1000{
1001 /*
1002 * This is hideously complicated, but we only really care about
1003 * three cases at the moment:
1004 *
1005 * 1. Invalid (all zero) -> bypass (init)
1006 * 2. Bypass -> translation (attach)
1007 * 3. Translation -> bypass (detach)
1008 *
1009 * Given that we can't update the STE atomically and the SMMU
1010 * doesn't read the thing in a defined order, that leaves us
1011 * with the following maintenance requirements:
1012 *
1013 * 1. Update Config, return (init time STEs aren't live)
1014 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1015 * 3. Update Config, sync
1016 */
1017 u64 val = le64_to_cpu(dst[0]);
1018 bool ste_live = false;
1019 struct arm_smmu_cmdq_ent prefetch_cmd = {
1020 .opcode = CMDQ_OP_PREFETCH_CFG,
1021 .prefetch = {
1022 .sid = sid,
1023 },
1024 };
1025
1026 if (val & STRTAB_STE_0_V) {
1027 u64 cfg;
1028
1029 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1030 switch (cfg) {
1031 case STRTAB_STE_0_CFG_BYPASS:
1032 break;
1033 case STRTAB_STE_0_CFG_S1_TRANS:
1034 case STRTAB_STE_0_CFG_S2_TRANS:
1035 ste_live = true;
1036 break;
Will Deacon5bc0a112016-08-16 14:29:16 +01001037 case STRTAB_STE_0_CFG_ABORT:
1038 if (disable_bypass)
1039 break;
Will Deacon48ec83b2015-05-27 17:25:59 +01001040 default:
1041 BUG(); /* STE corruption */
1042 }
1043 }
1044
1045 /* Nuke the existing Config, as we're going to rewrite it */
1046 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1047
1048 if (ste->valid)
1049 val |= STRTAB_STE_0_V;
1050 else
1051 val &= ~STRTAB_STE_0_V;
1052
1053 if (ste->bypass) {
1054 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1055 : STRTAB_STE_0_CFG_BYPASS;
1056 dst[0] = cpu_to_le64(val);
Will Deacona0eacd82015-11-18 18:15:51 +00001057 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1058 << STRTAB_STE_1_SHCFG_SHIFT);
Will Deacon48ec83b2015-05-27 17:25:59 +01001059 dst[2] = 0; /* Nuke the VMID */
1060 if (ste_live)
1061 arm_smmu_sync_ste_for_sid(smmu, sid);
1062 return;
1063 }
1064
1065 if (ste->s1_cfg) {
1066 BUG_ON(ste_live);
1067 dst[1] = cpu_to_le64(
1068 STRTAB_STE_1_S1C_CACHE_WBRA
1069 << STRTAB_STE_1_S1CIR_SHIFT |
1070 STRTAB_STE_1_S1C_CACHE_WBRA
1071 << STRTAB_STE_1_S1COR_SHIFT |
1072 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
Will Deacon48ec83b2015-05-27 17:25:59 +01001073#ifdef CONFIG_PCI_ATS
1074 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1075#endif
1076 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1077
Prem Mallappa6380be02015-12-14 22:01:23 +05301078 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1079 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1080
Will Deacon48ec83b2015-05-27 17:25:59 +01001081 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1082 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1083 STRTAB_STE_0_CFG_S1_TRANS;
1084
1085 }
1086
1087 if (ste->s2_cfg) {
1088 BUG_ON(ste_live);
1089 dst[2] = cpu_to_le64(
1090 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1091 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1092 << STRTAB_STE_2_VTCR_SHIFT |
1093#ifdef __BIG_ENDIAN
1094 STRTAB_STE_2_S2ENDI |
1095#endif
1096 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1097 STRTAB_STE_2_S2R);
1098
1099 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1100 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1101
1102 val |= STRTAB_STE_0_CFG_S2_TRANS;
1103 }
1104
1105 arm_smmu_sync_ste_for_sid(smmu, sid);
1106 dst[0] = cpu_to_le64(val);
1107 arm_smmu_sync_ste_for_sid(smmu, sid);
1108
1109 /* It's likely that we'll want to use the new STE soon */
Zhen Lei5e929462015-07-07 04:30:18 +01001110 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1111 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
Will Deacon48ec83b2015-05-27 17:25:59 +01001112}
1113
1114static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1115{
1116 unsigned int i;
1117 struct arm_smmu_strtab_ent ste = {
1118 .valid = true,
1119 .bypass = true,
1120 };
1121
1122 for (i = 0; i < nent; ++i) {
1123 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1124 strtab += STRTAB_STE_DWORDS;
1125 }
1126}
1127
1128static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1129{
1130 size_t size;
1131 void *strtab;
1132 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1133 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1134
1135 if (desc->l2ptr)
1136 return 0;
1137
1138 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
Zhen Lei69146e72015-06-26 09:32:58 +01001139 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
Will Deacon48ec83b2015-05-27 17:25:59 +01001140
1141 desc->span = STRTAB_SPLIT + 1;
Will Deacon04fa26c2015-10-30 18:12:41 +00001142 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1143 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001144 if (!desc->l2ptr) {
1145 dev_err(smmu->dev,
1146 "failed to allocate l2 stream table for SID %u\n",
1147 sid);
1148 return -ENOMEM;
1149 }
1150
1151 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1152 arm_smmu_write_strtab_l1_desc(strtab, desc);
1153 return 0;
1154}
1155
1156/* IRQ and event handlers */
1157static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1158{
1159 int i;
1160 struct arm_smmu_device *smmu = dev;
1161 struct arm_smmu_queue *q = &smmu->evtq.q;
1162 u64 evt[EVTQ_ENT_DWORDS];
1163
1164 while (!queue_remove_raw(q, evt)) {
1165 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1166
1167 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1168 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1169 dev_info(smmu->dev, "\t0x%016llx\n",
1170 (unsigned long long)evt[i]);
1171 }
1172
1173 /* Sync our overflow flag, as we believe we're up to speed */
1174 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1175 return IRQ_HANDLED;
1176}
1177
1178static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1179{
1180 irqreturn_t ret = IRQ_WAKE_THREAD;
1181 struct arm_smmu_device *smmu = dev;
1182 struct arm_smmu_queue *q = &smmu->evtq.q;
1183
1184 /*
1185 * Not much we can do on overflow, so scream and pretend we're
1186 * trying harder.
1187 */
1188 if (queue_sync_prod(q) == -EOVERFLOW)
1189 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1190 else if (queue_empty(q))
1191 ret = IRQ_NONE;
1192
1193 return ret;
1194}
1195
1196static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1197{
1198 struct arm_smmu_device *smmu = dev;
1199 struct arm_smmu_queue *q = &smmu->priq.q;
1200 u64 evt[PRIQ_ENT_DWORDS];
1201
1202 while (!queue_remove_raw(q, evt)) {
1203 u32 sid, ssid;
1204 u16 grpid;
1205 bool ssv, last;
1206
1207 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1208 ssv = evt[0] & PRIQ_0_SSID_V;
1209 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1210 last = evt[0] & PRIQ_0_PRG_LAST;
1211 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1212
1213 dev_info(smmu->dev, "unexpected PRI request received:\n");
1214 dev_info(smmu->dev,
1215 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1216 sid, ssid, grpid, last ? "L" : "",
1217 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1218 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1219 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1220 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1221 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1222
1223 if (last) {
1224 struct arm_smmu_cmdq_ent cmd = {
1225 .opcode = CMDQ_OP_PRI_RESP,
1226 .substream_valid = ssv,
1227 .pri = {
1228 .sid = sid,
1229 .ssid = ssid,
1230 .grpid = grpid,
1231 .resp = PRI_RESP_DENY,
1232 },
1233 };
1234
1235 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1236 }
1237 }
1238
1239 /* Sync our overflow flag, as we believe we're up to speed */
1240 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1241 return IRQ_HANDLED;
1242}
1243
1244static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1245{
1246 irqreturn_t ret = IRQ_WAKE_THREAD;
1247 struct arm_smmu_device *smmu = dev;
1248 struct arm_smmu_queue *q = &smmu->priq.q;
1249
1250 /* PRIQ overflow indicates a programming error */
1251 if (queue_sync_prod(q) == -EOVERFLOW)
1252 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1253 else if (queue_empty(q))
1254 ret = IRQ_NONE;
1255
1256 return ret;
1257}
1258
1259static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1260{
1261 /* We don't actually use CMD_SYNC interrupts for anything */
1262 return IRQ_HANDLED;
1263}
1264
1265static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1266
1267static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1268{
Prem Mallappa324ba102015-12-14 22:01:14 +05301269 u32 gerror, gerrorn, active;
Will Deacon48ec83b2015-05-27 17:25:59 +01001270 struct arm_smmu_device *smmu = dev;
1271
1272 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1273 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1274
Prem Mallappa324ba102015-12-14 22:01:14 +05301275 active = gerror ^ gerrorn;
1276 if (!(active & GERROR_ERR_MASK))
Will Deacon48ec83b2015-05-27 17:25:59 +01001277 return IRQ_NONE; /* No errors pending */
1278
1279 dev_warn(smmu->dev,
1280 "unexpected global error reported (0x%08x), this could be serious\n",
Prem Mallappa324ba102015-12-14 22:01:14 +05301281 active);
Will Deacon48ec83b2015-05-27 17:25:59 +01001282
Prem Mallappa324ba102015-12-14 22:01:14 +05301283 if (active & GERROR_SFM_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001284 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1285 arm_smmu_device_disable(smmu);
1286 }
1287
Prem Mallappa324ba102015-12-14 22:01:14 +05301288 if (active & GERROR_MSI_GERROR_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001289 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1290
Prem Mallappa324ba102015-12-14 22:01:14 +05301291 if (active & GERROR_MSI_PRIQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001292 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1293 arm_smmu_priq_handler(irq, smmu->dev);
1294 }
1295
Prem Mallappa324ba102015-12-14 22:01:14 +05301296 if (active & GERROR_MSI_EVTQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001297 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1298 arm_smmu_evtq_handler(irq, smmu->dev);
1299 }
1300
Prem Mallappa324ba102015-12-14 22:01:14 +05301301 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001302 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1303 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1304 }
1305
Prem Mallappa324ba102015-12-14 22:01:14 +05301306 if (active & GERROR_PRIQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001307 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1308
Prem Mallappa324ba102015-12-14 22:01:14 +05301309 if (active & GERROR_EVTQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001310 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1311
Prem Mallappa324ba102015-12-14 22:01:14 +05301312 if (active & GERROR_CMDQ_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001313 arm_smmu_cmdq_skip_err(smmu);
1314
1315 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1316 return IRQ_HANDLED;
1317}
1318
1319/* IO_PGTABLE API */
1320static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1321{
1322 struct arm_smmu_cmdq_ent cmd;
1323
1324 cmd.opcode = CMDQ_OP_CMD_SYNC;
1325 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1326}
1327
1328static void arm_smmu_tlb_sync(void *cookie)
1329{
1330 struct arm_smmu_domain *smmu_domain = cookie;
1331 __arm_smmu_tlb_sync(smmu_domain->smmu);
1332}
1333
1334static void arm_smmu_tlb_inv_context(void *cookie)
1335{
1336 struct arm_smmu_domain *smmu_domain = cookie;
1337 struct arm_smmu_device *smmu = smmu_domain->smmu;
1338 struct arm_smmu_cmdq_ent cmd;
1339
1340 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1341 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1342 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1343 cmd.tlbi.vmid = 0;
1344 } else {
1345 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1346 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1347 }
1348
1349 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1350 __arm_smmu_tlb_sync(smmu);
1351}
1352
1353static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
Robin Murphy06c610e2015-12-07 18:18:53 +00001354 size_t granule, bool leaf, void *cookie)
Will Deacon48ec83b2015-05-27 17:25:59 +01001355{
1356 struct arm_smmu_domain *smmu_domain = cookie;
1357 struct arm_smmu_device *smmu = smmu_domain->smmu;
1358 struct arm_smmu_cmdq_ent cmd = {
1359 .tlbi = {
1360 .leaf = leaf,
1361 .addr = iova,
1362 },
1363 };
1364
1365 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1366 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1367 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1368 } else {
1369 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1370 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1371 }
1372
Robin Murphy75df1382015-12-07 18:18:52 +00001373 do {
1374 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1375 cmd.tlbi.addr += granule;
1376 } while (size -= granule);
Will Deacon48ec83b2015-05-27 17:25:59 +01001377}
1378
Will Deacon48ec83b2015-05-27 17:25:59 +01001379static struct iommu_gather_ops arm_smmu_gather_ops = {
1380 .tlb_flush_all = arm_smmu_tlb_inv_context,
1381 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1382 .tlb_sync = arm_smmu_tlb_sync,
Will Deacon48ec83b2015-05-27 17:25:59 +01001383};
1384
1385/* IOMMU API */
1386static bool arm_smmu_capable(enum iommu_cap cap)
1387{
1388 switch (cap) {
1389 case IOMMU_CAP_CACHE_COHERENCY:
1390 return true;
1391 case IOMMU_CAP_INTR_REMAP:
1392 return true; /* MSIs are just memory writes */
1393 case IOMMU_CAP_NOEXEC:
1394 return true;
1395 default:
1396 return false;
1397 }
1398}
1399
1400static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1401{
1402 struct arm_smmu_domain *smmu_domain;
1403
Robin Murphy9adb9592016-01-26 18:06:36 +00001404 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
Will Deacon48ec83b2015-05-27 17:25:59 +01001405 return NULL;
1406
1407 /*
1408 * Allocate the domain and initialise some of its data structures.
1409 * We can't really do anything meaningful until we've added a
1410 * master.
1411 */
1412 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1413 if (!smmu_domain)
1414 return NULL;
1415
Robin Murphy9adb9592016-01-26 18:06:36 +00001416 if (type == IOMMU_DOMAIN_DMA &&
1417 iommu_get_dma_cookie(&smmu_domain->domain)) {
1418 kfree(smmu_domain);
1419 return NULL;
1420 }
1421
Will Deacon48ec83b2015-05-27 17:25:59 +01001422 mutex_init(&smmu_domain->init_mutex);
1423 spin_lock_init(&smmu_domain->pgtbl_lock);
1424 return &smmu_domain->domain;
1425}
1426
1427static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1428{
1429 int idx, size = 1 << span;
1430
1431 do {
1432 idx = find_first_zero_bit(map, size);
1433 if (idx == size)
1434 return -ENOSPC;
1435 } while (test_and_set_bit(idx, map));
1436
1437 return idx;
1438}
1439
1440static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1441{
1442 clear_bit(idx, map);
1443}
1444
1445static void arm_smmu_domain_free(struct iommu_domain *domain)
1446{
1447 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1448 struct arm_smmu_device *smmu = smmu_domain->smmu;
1449
Robin Murphy9adb9592016-01-26 18:06:36 +00001450 iommu_put_dma_cookie(domain);
Markus Elfringa6e08fb2015-06-29 17:47:43 +01001451 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
Will Deacon48ec83b2015-05-27 17:25:59 +01001452
1453 /* Free the CD and ASID, if we allocated them */
1454 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1455 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1456
1457 if (cfg->cdptr) {
Will Deacon04fa26c2015-10-30 18:12:41 +00001458 dmam_free_coherent(smmu_domain->smmu->dev,
1459 CTXDESC_CD_DWORDS << 3,
1460 cfg->cdptr,
1461 cfg->cdptr_dma);
Will Deacon48ec83b2015-05-27 17:25:59 +01001462
1463 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1464 }
1465 } else {
1466 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1467 if (cfg->vmid)
1468 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1469 }
1470
1471 kfree(smmu_domain);
1472}
1473
1474static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1475 struct io_pgtable_cfg *pgtbl_cfg)
1476{
1477 int ret;
Will Deaconc0733a22015-10-13 17:51:14 +01001478 int asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001479 struct arm_smmu_device *smmu = smmu_domain->smmu;
1480 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1481
1482 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001483 if (asid < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001484 return asid;
1485
Will Deacon04fa26c2015-10-30 18:12:41 +00001486 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1487 &cfg->cdptr_dma,
1488 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001489 if (!cfg->cdptr) {
1490 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
Will Deaconc0733a22015-10-13 17:51:14 +01001491 ret = -ENOMEM;
Will Deacon48ec83b2015-05-27 17:25:59 +01001492 goto out_free_asid;
1493 }
1494
Will Deaconc0733a22015-10-13 17:51:14 +01001495 cfg->cd.asid = (u16)asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001496 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1497 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1498 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1499 return 0;
1500
1501out_free_asid:
1502 arm_smmu_bitmap_free(smmu->asid_map, asid);
1503 return ret;
1504}
1505
1506static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1507 struct io_pgtable_cfg *pgtbl_cfg)
1508{
Will Deaconc0733a22015-10-13 17:51:14 +01001509 int vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001510 struct arm_smmu_device *smmu = smmu_domain->smmu;
1511 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1512
1513 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001514 if (vmid < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001515 return vmid;
1516
Will Deaconc0733a22015-10-13 17:51:14 +01001517 cfg->vmid = (u16)vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001518 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1519 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1520 return 0;
1521}
1522
Will Deacon48ec83b2015-05-27 17:25:59 +01001523static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1524{
1525 int ret;
1526 unsigned long ias, oas;
1527 enum io_pgtable_fmt fmt;
1528 struct io_pgtable_cfg pgtbl_cfg;
1529 struct io_pgtable_ops *pgtbl_ops;
1530 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1531 struct io_pgtable_cfg *);
1532 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1533 struct arm_smmu_device *smmu = smmu_domain->smmu;
1534
1535 /* Restrict the stage to what we can actually support */
1536 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1537 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1538 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1539 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1540
1541 switch (smmu_domain->stage) {
1542 case ARM_SMMU_DOMAIN_S1:
1543 ias = VA_BITS;
1544 oas = smmu->ias;
1545 fmt = ARM_64_LPAE_S1;
1546 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1547 break;
1548 case ARM_SMMU_DOMAIN_NESTED:
1549 case ARM_SMMU_DOMAIN_S2:
1550 ias = smmu->ias;
1551 oas = smmu->oas;
1552 fmt = ARM_64_LPAE_S2;
1553 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1554 break;
1555 default:
1556 return -EINVAL;
1557 }
1558
1559 pgtbl_cfg = (struct io_pgtable_cfg) {
Robin Murphyd5466352016-05-09 17:20:09 +01001560 .pgsize_bitmap = smmu->pgsize_bitmap,
Will Deacon48ec83b2015-05-27 17:25:59 +01001561 .ias = ias,
1562 .oas = oas,
1563 .tlb = &arm_smmu_gather_ops,
Robin Murphybdc6d972015-07-29 19:46:07 +01001564 .iommu_dev = smmu->dev,
Will Deacon48ec83b2015-05-27 17:25:59 +01001565 };
1566
1567 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1568 if (!pgtbl_ops)
1569 return -ENOMEM;
1570
Robin Murphyd5466352016-05-09 17:20:09 +01001571 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
Will Deacon48ec83b2015-05-27 17:25:59 +01001572 smmu_domain->pgtbl_ops = pgtbl_ops;
1573
1574 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001575 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001576 free_io_pgtable_ops(pgtbl_ops);
1577
1578 return ret;
1579}
1580
1581static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1582{
1583 struct iommu_group *group;
1584 struct arm_smmu_group *smmu_group;
1585
1586 group = iommu_group_get(dev);
1587 if (!group)
1588 return NULL;
1589
1590 smmu_group = iommu_group_get_iommudata(group);
1591 iommu_group_put(group);
1592 return smmu_group;
1593}
1594
1595static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1596{
1597 __le64 *step;
1598 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1599
1600 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1601 struct arm_smmu_strtab_l1_desc *l1_desc;
1602 int idx;
1603
1604 /* Two-level walk */
1605 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1606 l1_desc = &cfg->l1_desc[idx];
1607 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1608 step = &l1_desc->l2ptr[idx];
1609 } else {
1610 /* Simple linear lookup */
1611 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1612 }
1613
1614 return step;
1615}
1616
1617static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1618{
1619 int i;
1620 struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1621 struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1622 struct arm_smmu_device *smmu = smmu_group->smmu;
1623
1624 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1625 ste->s1_cfg = &smmu_domain->s1_cfg;
1626 ste->s2_cfg = NULL;
1627 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1628 } else {
1629 ste->s1_cfg = NULL;
1630 ste->s2_cfg = &smmu_domain->s2_cfg;
1631 }
1632
1633 for (i = 0; i < smmu_group->num_sids; ++i) {
1634 u32 sid = smmu_group->sids[i];
1635 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1636
1637 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1638 }
1639
1640 return 0;
1641}
1642
Will Deaconbc7f2ce2016-02-17 17:41:57 +00001643static void arm_smmu_detach_dev(struct device *dev)
1644{
1645 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1646
1647 smmu_group->ste.bypass = true;
Arnd Bergmann287980e2016-05-27 23:23:25 +02001648 if (arm_smmu_install_ste_for_group(smmu_group) < 0)
Will Deaconbc7f2ce2016-02-17 17:41:57 +00001649 dev_warn(dev, "failed to install bypass STE\n");
1650
1651 smmu_group->domain = NULL;
1652}
1653
Will Deacon48ec83b2015-05-27 17:25:59 +01001654static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1655{
1656 int ret = 0;
1657 struct arm_smmu_device *smmu;
1658 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1659 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1660
1661 if (!smmu_group)
1662 return -ENOENT;
1663
1664 /* Already attached to a different domain? */
1665 if (smmu_group->domain && smmu_group->domain != smmu_domain)
Will Deaconbc7f2ce2016-02-17 17:41:57 +00001666 arm_smmu_detach_dev(dev);
Will Deacon48ec83b2015-05-27 17:25:59 +01001667
1668 smmu = smmu_group->smmu;
1669 mutex_lock(&smmu_domain->init_mutex);
1670
1671 if (!smmu_domain->smmu) {
1672 smmu_domain->smmu = smmu;
1673 ret = arm_smmu_domain_finalise(domain);
1674 if (ret) {
1675 smmu_domain->smmu = NULL;
1676 goto out_unlock;
1677 }
1678 } else if (smmu_domain->smmu != smmu) {
1679 dev_err(dev,
1680 "cannot attach to SMMU %s (upstream of %s)\n",
1681 dev_name(smmu_domain->smmu->dev),
1682 dev_name(smmu->dev));
1683 ret = -ENXIO;
1684 goto out_unlock;
1685 }
1686
1687 /* Group already attached to this domain? */
1688 if (smmu_group->domain)
1689 goto out_unlock;
1690
1691 smmu_group->domain = smmu_domain;
Will Deaconcbf82772016-02-18 12:05:57 +00001692
1693 /*
1694 * FIXME: This should always be "false" once we have IOMMU-backed
1695 * DMA ops for all devices behind the SMMU.
1696 */
1697 smmu_group->ste.bypass = domain->type == IOMMU_DOMAIN_DMA;
Will Deacon48ec83b2015-05-27 17:25:59 +01001698
1699 ret = arm_smmu_install_ste_for_group(smmu_group);
Arnd Bergmann287980e2016-05-27 23:23:25 +02001700 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01001701 smmu_group->domain = NULL;
1702
1703out_unlock:
1704 mutex_unlock(&smmu_domain->init_mutex);
1705 return ret;
1706}
1707
Will Deacon48ec83b2015-05-27 17:25:59 +01001708static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1709 phys_addr_t paddr, size_t size, int prot)
1710{
1711 int ret;
1712 unsigned long flags;
1713 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1714 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1715
1716 if (!ops)
1717 return -ENODEV;
1718
1719 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1720 ret = ops->map(ops, iova, paddr, size, prot);
1721 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1722 return ret;
1723}
1724
1725static size_t
1726arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1727{
1728 size_t ret;
1729 unsigned long flags;
1730 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1731 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1732
1733 if (!ops)
1734 return 0;
1735
1736 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1737 ret = ops->unmap(ops, iova, size);
1738 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1739 return ret;
1740}
1741
1742static phys_addr_t
1743arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1744{
1745 phys_addr_t ret;
1746 unsigned long flags;
1747 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1748 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1749
1750 if (!ops)
1751 return 0;
1752
1753 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1754 ret = ops->iova_to_phys(ops, iova);
1755 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1756
1757 return ret;
1758}
1759
1760static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1761{
1762 *(u32 *)sidp = alias;
1763 return 0; /* Continue walking */
1764}
1765
1766static void __arm_smmu_release_pci_iommudata(void *data)
1767{
1768 kfree(data);
1769}
1770
1771static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1772{
1773 struct device_node *of_node;
Will Deacon941a8022015-08-11 16:25:10 +01001774 struct platform_device *smmu_pdev;
1775 struct arm_smmu_device *smmu = NULL;
Will Deacon48ec83b2015-05-27 17:25:59 +01001776 struct pci_bus *bus = pdev->bus;
1777
1778 /* Walk up to the root bus */
1779 while (!pci_is_root_bus(bus))
1780 bus = bus->parent;
1781
1782 /* Follow the "iommus" phandle from the host controller */
1783 of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1784 if (!of_node)
1785 return NULL;
1786
1787 /* See if we can find an SMMU corresponding to the phandle */
Will Deacon941a8022015-08-11 16:25:10 +01001788 smmu_pdev = of_find_device_by_node(of_node);
1789 if (smmu_pdev)
1790 smmu = platform_get_drvdata(smmu_pdev);
1791
Will Deacon48ec83b2015-05-27 17:25:59 +01001792 of_node_put(of_node);
1793 return smmu;
1794}
1795
1796static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1797{
1798 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1799
1800 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1801 limit *= 1UL << STRTAB_SPLIT;
1802
1803 return sid < limit;
1804}
1805
1806static int arm_smmu_add_device(struct device *dev)
1807{
1808 int i, ret;
1809 u32 sid, *sids;
1810 struct pci_dev *pdev;
1811 struct iommu_group *group;
1812 struct arm_smmu_group *smmu_group;
1813 struct arm_smmu_device *smmu;
1814
1815 /* We only support PCI, for now */
1816 if (!dev_is_pci(dev))
1817 return -ENODEV;
1818
1819 pdev = to_pci_dev(dev);
1820 group = iommu_group_get_for_dev(dev);
1821 if (IS_ERR(group))
1822 return PTR_ERR(group);
1823
1824 smmu_group = iommu_group_get_iommudata(group);
1825 if (!smmu_group) {
1826 smmu = arm_smmu_get_for_pci_dev(pdev);
1827 if (!smmu) {
1828 ret = -ENOENT;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001829 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001830 }
1831
1832 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1833 if (!smmu_group) {
1834 ret = -ENOMEM;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001835 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001836 }
1837
1838 smmu_group->ste.valid = true;
1839 smmu_group->smmu = smmu;
1840 iommu_group_set_iommudata(group, smmu_group,
1841 __arm_smmu_release_pci_iommudata);
1842 } else {
1843 smmu = smmu_group->smmu;
1844 }
1845
1846 /* Assume SID == RID until firmware tells us otherwise */
1847 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1848 for (i = 0; i < smmu_group->num_sids; ++i) {
1849 /* If we already know about this SID, then we're done */
1850 if (smmu_group->sids[i] == sid)
Peng Fan9a4a9d82015-11-20 16:56:18 +08001851 goto out_put_group;
Will Deacon48ec83b2015-05-27 17:25:59 +01001852 }
1853
1854 /* Check the SID is in range of the SMMU and our stream table */
1855 if (!arm_smmu_sid_in_range(smmu, sid)) {
1856 ret = -ERANGE;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001857 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001858 }
1859
1860 /* Ensure l2 strtab is initialised */
1861 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1862 ret = arm_smmu_init_l2_strtab(smmu, sid);
1863 if (ret)
Peng Fan9a4a9d82015-11-20 16:56:18 +08001864 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001865 }
1866
1867 /* Resize the SID array for the group */
1868 smmu_group->num_sids++;
1869 sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1870 GFP_KERNEL);
1871 if (!sids) {
1872 smmu_group->num_sids--;
1873 ret = -ENOMEM;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001874 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001875 }
1876
1877 /* Add the new SID */
1878 sids[smmu_group->num_sids - 1] = sid;
1879 smmu_group->sids = sids;
Will Deacon48ec83b2015-05-27 17:25:59 +01001880
1881out_put_group:
1882 iommu_group_put(group);
Peng Fan9a4a9d82015-11-20 16:56:18 +08001883 return 0;
1884
1885out_remove_dev:
1886 iommu_group_remove_device(dev);
1887 iommu_group_put(group);
Will Deacon48ec83b2015-05-27 17:25:59 +01001888 return ret;
1889}
1890
1891static void arm_smmu_remove_device(struct device *dev)
1892{
1893 iommu_group_remove_device(dev);
1894}
1895
1896static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1897 enum iommu_attr attr, void *data)
1898{
1899 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1900
1901 switch (attr) {
1902 case DOMAIN_ATTR_NESTING:
1903 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1904 return 0;
1905 default:
1906 return -ENODEV;
1907 }
1908}
1909
1910static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1911 enum iommu_attr attr, void *data)
1912{
1913 int ret = 0;
1914 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1915
1916 mutex_lock(&smmu_domain->init_mutex);
1917
1918 switch (attr) {
1919 case DOMAIN_ATTR_NESTING:
1920 if (smmu_domain->smmu) {
1921 ret = -EPERM;
1922 goto out_unlock;
1923 }
1924
1925 if (*(int *)data)
1926 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1927 else
1928 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1929
1930 break;
1931 default:
1932 ret = -ENODEV;
1933 }
1934
1935out_unlock:
1936 mutex_unlock(&smmu_domain->init_mutex);
1937 return ret;
1938}
1939
1940static struct iommu_ops arm_smmu_ops = {
1941 .capable = arm_smmu_capable,
1942 .domain_alloc = arm_smmu_domain_alloc,
1943 .domain_free = arm_smmu_domain_free,
1944 .attach_dev = arm_smmu_attach_dev,
Will Deacon48ec83b2015-05-27 17:25:59 +01001945 .map = arm_smmu_map,
1946 .unmap = arm_smmu_unmap,
Jean-Philippe Brucker9aeb26c2016-06-03 11:50:30 +01001947 .map_sg = default_iommu_map_sg,
Will Deacon48ec83b2015-05-27 17:25:59 +01001948 .iova_to_phys = arm_smmu_iova_to_phys,
1949 .add_device = arm_smmu_add_device,
1950 .remove_device = arm_smmu_remove_device,
Joerg Roedelaf659932015-10-21 23:51:41 +02001951 .device_group = pci_device_group,
Will Deacon48ec83b2015-05-27 17:25:59 +01001952 .domain_get_attr = arm_smmu_domain_get_attr,
1953 .domain_set_attr = arm_smmu_domain_set_attr,
1954 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1955};
1956
1957/* Probing and initialisation functions */
1958static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1959 struct arm_smmu_queue *q,
1960 unsigned long prod_off,
1961 unsigned long cons_off,
1962 size_t dwords)
1963{
1964 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1965
Will Deacon04fa26c2015-10-30 18:12:41 +00001966 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
Will Deacon48ec83b2015-05-27 17:25:59 +01001967 if (!q->base) {
1968 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1969 qsz);
1970 return -ENOMEM;
1971 }
1972
1973 q->prod_reg = smmu->base + prod_off;
1974 q->cons_reg = smmu->base + cons_off;
1975 q->ent_dwords = dwords;
1976
1977 q->q_base = Q_BASE_RWA;
1978 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1979 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1980 << Q_BASE_LOG2SIZE_SHIFT;
1981
1982 q->prod = q->cons = 0;
1983 return 0;
1984}
1985
Will Deacon48ec83b2015-05-27 17:25:59 +01001986static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1987{
1988 int ret;
1989
1990 /* cmdq */
1991 spin_lock_init(&smmu->cmdq.lock);
1992 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1993 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1994 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00001995 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01001996
1997 /* evtq */
1998 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1999 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
2000 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00002001 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01002002
2003 /* priq */
2004 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2005 return 0;
2006
Will Deacon04fa26c2015-10-30 18:12:41 +00002007 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2008 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
Will Deacon48ec83b2015-05-27 17:25:59 +01002009}
2010
2011static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2012{
2013 unsigned int i;
2014 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2015 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2016 void *strtab = smmu->strtab_cfg.strtab;
2017
2018 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2019 if (!cfg->l1_desc) {
2020 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2021 return -ENOMEM;
2022 }
2023
2024 for (i = 0; i < cfg->num_l1_ents; ++i) {
2025 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2026 strtab += STRTAB_L1_DESC_DWORDS << 3;
2027 }
2028
2029 return 0;
2030}
2031
2032static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2033{
2034 void *strtab;
2035 u64 reg;
Will Deacond2e88e72015-06-30 10:02:28 +01002036 u32 size, l1size;
Will Deacon48ec83b2015-05-27 17:25:59 +01002037 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2038
Will Deacon28c8b402015-07-16 17:50:12 +01002039 /*
2040 * If we can resolve everything with a single L2 table, then we
2041 * just need a single L1 descriptor. Otherwise, calculate the L1
2042 * size, capped to the SIDSIZE.
2043 */
2044 if (smmu->sid_bits < STRTAB_SPLIT) {
2045 size = 0;
2046 } else {
2047 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2048 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2049 }
Will Deacond2e88e72015-06-30 10:02:28 +01002050 cfg->num_l1_ents = 1 << size;
2051
2052 size += STRTAB_SPLIT;
2053 if (size < smmu->sid_bits)
Will Deacon48ec83b2015-05-27 17:25:59 +01002054 dev_warn(smmu->dev,
2055 "2-level strtab only covers %u/%u bits of SID\n",
Will Deacond2e88e72015-06-30 10:02:28 +01002056 size, smmu->sid_bits);
Will Deacon48ec83b2015-05-27 17:25:59 +01002057
Will Deacond2e88e72015-06-30 10:02:28 +01002058 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002059 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2060 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002061 if (!strtab) {
2062 dev_err(smmu->dev,
2063 "failed to allocate l1 stream table (%u bytes)\n",
2064 size);
2065 return -ENOMEM;
2066 }
2067 cfg->strtab = strtab;
2068
2069 /* Configure strtab_base_cfg for 2 levels */
2070 reg = STRTAB_BASE_CFG_FMT_2LVL;
2071 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2072 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2073 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2074 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2075 cfg->strtab_base_cfg = reg;
2076
Will Deacon04fa26c2015-10-30 18:12:41 +00002077 return arm_smmu_init_l1_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002078}
2079
2080static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2081{
2082 void *strtab;
2083 u64 reg;
2084 u32 size;
2085 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2086
2087 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002088 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2089 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002090 if (!strtab) {
2091 dev_err(smmu->dev,
2092 "failed to allocate linear stream table (%u bytes)\n",
2093 size);
2094 return -ENOMEM;
2095 }
2096 cfg->strtab = strtab;
2097 cfg->num_l1_ents = 1 << smmu->sid_bits;
2098
2099 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2100 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2101 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2102 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2103 cfg->strtab_base_cfg = reg;
2104
2105 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2106 return 0;
2107}
2108
2109static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2110{
2111 u64 reg;
2112 int ret;
2113
2114 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2115 ret = arm_smmu_init_strtab_2lvl(smmu);
2116 else
2117 ret = arm_smmu_init_strtab_linear(smmu);
2118
2119 if (ret)
2120 return ret;
2121
2122 /* Set the strtab base address */
2123 reg = smmu->strtab_cfg.strtab_dma &
2124 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2125 reg |= STRTAB_BASE_RA;
2126 smmu->strtab_cfg.strtab_base = reg;
2127
2128 /* Allocate the first VMID for stage-2 bypass STEs */
2129 set_bit(0, smmu->vmid_map);
2130 return 0;
2131}
2132
Will Deacon48ec83b2015-05-27 17:25:59 +01002133static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2134{
2135 int ret;
2136
2137 ret = arm_smmu_init_queues(smmu);
2138 if (ret)
2139 return ret;
2140
Will Deacon04fa26c2015-10-30 18:12:41 +00002141 return arm_smmu_init_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002142}
2143
2144static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2145 unsigned int reg_off, unsigned int ack_off)
2146{
2147 u32 reg;
2148
2149 writel_relaxed(val, smmu->base + reg_off);
2150 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2151 1, ARM_SMMU_POLL_TIMEOUT_US);
2152}
2153
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002154static void arm_smmu_free_msis(void *data)
2155{
2156 struct device *dev = data;
2157 platform_msi_domain_free_irqs(dev);
2158}
2159
2160static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2161{
2162 phys_addr_t doorbell;
2163 struct device *dev = msi_desc_to_dev(desc);
2164 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2165 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2166
2167 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2168 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2169
2170 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2171 writel_relaxed(msg->data, smmu->base + cfg[1]);
2172 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2173}
2174
2175static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2176{
2177 struct msi_desc *desc;
2178 int ret, nvec = ARM_SMMU_MAX_MSIS;
2179 struct device *dev = smmu->dev;
2180
2181 /* Clear the MSI address regs */
2182 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2183 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2184
2185 if (smmu->features & ARM_SMMU_FEAT_PRI)
2186 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2187 else
2188 nvec--;
2189
2190 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2191 return;
2192
2193 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2194 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2195 if (ret) {
2196 dev_warn(dev, "failed to allocate MSIs\n");
2197 return;
2198 }
2199
2200 for_each_msi_entry(desc, dev) {
2201 switch (desc->platform.msi_index) {
2202 case EVTQ_MSI_INDEX:
2203 smmu->evtq.q.irq = desc->irq;
2204 break;
2205 case GERROR_MSI_INDEX:
2206 smmu->gerr_irq = desc->irq;
2207 break;
2208 case PRIQ_MSI_INDEX:
2209 smmu->priq.q.irq = desc->irq;
2210 break;
2211 default: /* Unknown */
2212 continue;
2213 }
2214 }
2215
2216 /* Add callback to free MSIs on teardown */
2217 devm_add_action(dev, arm_smmu_free_msis, dev);
2218}
2219
Will Deacon48ec83b2015-05-27 17:25:59 +01002220static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2221{
2222 int ret, irq;
Marc Zyngierccd63852015-07-15 11:55:18 +01002223 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002224
2225 /* Disable IRQs first */
2226 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2227 ARM_SMMU_IRQ_CTRLACK);
2228 if (ret) {
2229 dev_err(smmu->dev, "failed to disable irqs\n");
2230 return ret;
2231 }
2232
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002233 arm_smmu_setup_msis(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002234
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002235 /* Request interrupt lines */
Will Deacon48ec83b2015-05-27 17:25:59 +01002236 irq = smmu->evtq.q.irq;
2237 if (irq) {
2238 ret = devm_request_threaded_irq(smmu->dev, irq,
2239 arm_smmu_evtq_handler,
2240 arm_smmu_evtq_thread,
2241 0, "arm-smmu-v3-evtq", smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002242 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002243 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2244 }
2245
2246 irq = smmu->cmdq.q.irq;
2247 if (irq) {
2248 ret = devm_request_irq(smmu->dev, irq,
2249 arm_smmu_cmdq_sync_handler, 0,
2250 "arm-smmu-v3-cmdq-sync", smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002251 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002252 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2253 }
2254
2255 irq = smmu->gerr_irq;
2256 if (irq) {
2257 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2258 0, "arm-smmu-v3-gerror", smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002259 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002260 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2261 }
2262
2263 if (smmu->features & ARM_SMMU_FEAT_PRI) {
Will Deacon48ec83b2015-05-27 17:25:59 +01002264 irq = smmu->priq.q.irq;
2265 if (irq) {
2266 ret = devm_request_threaded_irq(smmu->dev, irq,
2267 arm_smmu_priq_handler,
2268 arm_smmu_priq_thread,
2269 0, "arm-smmu-v3-priq",
2270 smmu);
Arnd Bergmann287980e2016-05-27 23:23:25 +02002271 if (ret < 0)
Will Deacon48ec83b2015-05-27 17:25:59 +01002272 dev_warn(smmu->dev,
2273 "failed to enable priq irq\n");
Marc Zyngierccd63852015-07-15 11:55:18 +01002274 else
2275 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002276 }
2277 }
2278
2279 /* Enable interrupt generation on the SMMU */
Marc Zyngierccd63852015-07-15 11:55:18 +01002280 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
Will Deacon48ec83b2015-05-27 17:25:59 +01002281 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2282 if (ret)
2283 dev_warn(smmu->dev, "failed to enable irqs\n");
2284
2285 return 0;
2286}
2287
2288static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2289{
2290 int ret;
2291
2292 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2293 if (ret)
2294 dev_err(smmu->dev, "failed to clear cr0\n");
2295
2296 return ret;
2297}
2298
2299static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2300{
2301 int ret;
2302 u32 reg, enables;
2303 struct arm_smmu_cmdq_ent cmd;
2304
2305 /* Clear CR0 and sync (disables SMMU and queue processing) */
2306 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2307 if (reg & CR0_SMMUEN)
2308 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2309
2310 ret = arm_smmu_device_disable(smmu);
2311 if (ret)
2312 return ret;
2313
2314 /* CR1 (table and queue memory attributes) */
2315 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2316 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2317 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2318 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2319 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2320 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2321 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2322
2323 /* CR2 (random crap) */
2324 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2325 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2326
2327 /* Stream table */
2328 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2329 smmu->base + ARM_SMMU_STRTAB_BASE);
2330 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2331 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2332
2333 /* Command queue */
2334 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2335 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2336 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2337
2338 enables = CR0_CMDQEN;
2339 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2340 ARM_SMMU_CR0ACK);
2341 if (ret) {
2342 dev_err(smmu->dev, "failed to enable command queue\n");
2343 return ret;
2344 }
2345
2346 /* Invalidate any cached configuration */
2347 cmd.opcode = CMDQ_OP_CFGI_ALL;
2348 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2349 cmd.opcode = CMDQ_OP_CMD_SYNC;
2350 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2351
2352 /* Invalidate any stale TLB entries */
2353 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2354 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2355 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2356 }
2357
2358 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2359 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2360 cmd.opcode = CMDQ_OP_CMD_SYNC;
2361 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2362
2363 /* Event queue */
2364 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2365 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2366 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2367
2368 enables |= CR0_EVTQEN;
2369 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2370 ARM_SMMU_CR0ACK);
2371 if (ret) {
2372 dev_err(smmu->dev, "failed to enable event queue\n");
2373 return ret;
2374 }
2375
2376 /* PRI queue */
2377 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2378 writeq_relaxed(smmu->priq.q.q_base,
2379 smmu->base + ARM_SMMU_PRIQ_BASE);
2380 writel_relaxed(smmu->priq.q.prod,
2381 smmu->base + ARM_SMMU_PRIQ_PROD);
2382 writel_relaxed(smmu->priq.q.cons,
2383 smmu->base + ARM_SMMU_PRIQ_CONS);
2384
2385 enables |= CR0_PRIQEN;
2386 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2387 ARM_SMMU_CR0ACK);
2388 if (ret) {
2389 dev_err(smmu->dev, "failed to enable PRI queue\n");
2390 return ret;
2391 }
2392 }
2393
2394 ret = arm_smmu_setup_irqs(smmu);
2395 if (ret) {
2396 dev_err(smmu->dev, "failed to setup irqs\n");
2397 return ret;
2398 }
2399
2400 /* Enable the SMMU interface */
2401 enables |= CR0_SMMUEN;
2402 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2403 ARM_SMMU_CR0ACK);
2404 if (ret) {
2405 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2406 return ret;
2407 }
2408
2409 return 0;
2410}
2411
2412static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2413{
2414 u32 reg;
2415 bool coherent;
Will Deacon48ec83b2015-05-27 17:25:59 +01002416
2417 /* IDR0 */
2418 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2419
2420 /* 2-level structures */
2421 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2422 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2423
2424 if (reg & IDR0_CD2L)
2425 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2426
2427 /*
2428 * Translation table endianness.
2429 * We currently require the same endianness as the CPU, but this
2430 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2431 */
2432 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2433 case IDR0_TTENDIAN_MIXED:
2434 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2435 break;
2436#ifdef __BIG_ENDIAN
2437 case IDR0_TTENDIAN_BE:
2438 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2439 break;
2440#else
2441 case IDR0_TTENDIAN_LE:
2442 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2443 break;
2444#endif
2445 default:
2446 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2447 return -ENXIO;
2448 }
2449
2450 /* Boolean feature flags */
2451 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2452 smmu->features |= ARM_SMMU_FEAT_PRI;
2453
2454 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2455 smmu->features |= ARM_SMMU_FEAT_ATS;
2456
2457 if (reg & IDR0_SEV)
2458 smmu->features |= ARM_SMMU_FEAT_SEV;
2459
2460 if (reg & IDR0_MSI)
2461 smmu->features |= ARM_SMMU_FEAT_MSI;
2462
2463 if (reg & IDR0_HYP)
2464 smmu->features |= ARM_SMMU_FEAT_HYP;
2465
2466 /*
2467 * The dma-coherent property is used in preference to the ID
2468 * register, but warn on mismatch.
2469 */
2470 coherent = of_dma_is_coherent(smmu->dev->of_node);
2471 if (coherent)
2472 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2473
2474 if (!!(reg & IDR0_COHACC) != coherent)
2475 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2476 coherent ? "true" : "false");
2477
Prem Mallappa6380be02015-12-14 22:01:23 +05302478 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2479 case IDR0_STALL_MODEL_STALL:
2480 /* Fallthrough */
2481 case IDR0_STALL_MODEL_FORCE:
Will Deacon48ec83b2015-05-27 17:25:59 +01002482 smmu->features |= ARM_SMMU_FEAT_STALLS;
Prem Mallappa6380be02015-12-14 22:01:23 +05302483 }
Will Deacon48ec83b2015-05-27 17:25:59 +01002484
2485 if (reg & IDR0_S1P)
2486 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2487
2488 if (reg & IDR0_S2P)
2489 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2490
2491 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2492 dev_err(smmu->dev, "no translation support!\n");
2493 return -ENXIO;
2494 }
2495
2496 /* We only support the AArch64 table format at present */
Will Deaconf0c453d2015-08-20 12:12:32 +01002497 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2498 case IDR0_TTF_AARCH32_64:
2499 smmu->ias = 40;
2500 /* Fallthrough */
2501 case IDR0_TTF_AARCH64:
2502 break;
2503 default:
Will Deacon48ec83b2015-05-27 17:25:59 +01002504 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2505 return -ENXIO;
2506 }
2507
2508 /* ASID/VMID sizes */
2509 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2510 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2511
2512 /* IDR1 */
2513 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2514 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2515 dev_err(smmu->dev, "embedded implementation not supported\n");
2516 return -ENXIO;
2517 }
2518
2519 /* Queue sizes, capped at 4k */
2520 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2521 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2522 if (!smmu->cmdq.q.max_n_shift) {
2523 /* Odd alignment restrictions on the base, so ignore for now */
2524 dev_err(smmu->dev, "unit-length command queue not supported\n");
2525 return -ENXIO;
2526 }
2527
2528 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2529 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2530 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2531 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2532
2533 /* SID/SSID sizes */
2534 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2535 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2536
2537 /* IDR5 */
2538 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2539
2540 /* Maximum number of outstanding stalls */
2541 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2542 & IDR5_STALL_MAX_MASK;
2543
2544 /* Page sizes */
2545 if (reg & IDR5_GRAN64K)
Robin Murphyd5466352016-05-09 17:20:09 +01002546 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
Will Deacon48ec83b2015-05-27 17:25:59 +01002547 if (reg & IDR5_GRAN16K)
Robin Murphyd5466352016-05-09 17:20:09 +01002548 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
Will Deacon48ec83b2015-05-27 17:25:59 +01002549 if (reg & IDR5_GRAN4K)
Robin Murphyd5466352016-05-09 17:20:09 +01002550 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
Will Deacon48ec83b2015-05-27 17:25:59 +01002551
Robin Murphyd5466352016-05-09 17:20:09 +01002552 if (arm_smmu_ops.pgsize_bitmap == -1UL)
2553 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2554 else
2555 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
Will Deacon48ec83b2015-05-27 17:25:59 +01002556
2557 /* Output address size */
2558 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2559 case IDR5_OAS_32_BIT:
2560 smmu->oas = 32;
2561 break;
2562 case IDR5_OAS_36_BIT:
2563 smmu->oas = 36;
2564 break;
2565 case IDR5_OAS_40_BIT:
2566 smmu->oas = 40;
2567 break;
2568 case IDR5_OAS_42_BIT:
2569 smmu->oas = 42;
2570 break;
2571 case IDR5_OAS_44_BIT:
2572 smmu->oas = 44;
2573 break;
Will Deacon85430962015-08-03 10:35:40 +01002574 default:
2575 dev_info(smmu->dev,
2576 "unknown output address size. Truncating to 48-bit\n");
2577 /* Fallthrough */
Will Deacon48ec83b2015-05-27 17:25:59 +01002578 case IDR5_OAS_48_BIT:
2579 smmu->oas = 48;
Will Deacon48ec83b2015-05-27 17:25:59 +01002580 }
2581
2582 /* Set the DMA mask for our table walker */
2583 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2584 dev_warn(smmu->dev,
2585 "failed to set DMA mask for table walker\n");
2586
Will Deaconf0c453d2015-08-20 12:12:32 +01002587 smmu->ias = max(smmu->ias, smmu->oas);
Will Deacon48ec83b2015-05-27 17:25:59 +01002588
2589 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2590 smmu->ias, smmu->oas, smmu->features);
2591 return 0;
2592}
2593
2594static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2595{
2596 int irq, ret;
2597 struct resource *res;
2598 struct arm_smmu_device *smmu;
2599 struct device *dev = &pdev->dev;
2600
2601 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2602 if (!smmu) {
2603 dev_err(dev, "failed to allocate arm_smmu_device\n");
2604 return -ENOMEM;
2605 }
2606 smmu->dev = dev;
2607
2608 /* Base address */
2609 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2610 if (resource_size(res) + 1 < SZ_128K) {
2611 dev_err(dev, "MMIO region too small (%pr)\n", res);
2612 return -EINVAL;
2613 }
2614
2615 smmu->base = devm_ioremap_resource(dev, res);
2616 if (IS_ERR(smmu->base))
2617 return PTR_ERR(smmu->base);
2618
2619 /* Interrupt lines */
2620 irq = platform_get_irq_byname(pdev, "eventq");
2621 if (irq > 0)
2622 smmu->evtq.q.irq = irq;
2623
2624 irq = platform_get_irq_byname(pdev, "priq");
2625 if (irq > 0)
2626 smmu->priq.q.irq = irq;
2627
2628 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2629 if (irq > 0)
2630 smmu->cmdq.q.irq = irq;
2631
2632 irq = platform_get_irq_byname(pdev, "gerror");
2633 if (irq > 0)
2634 smmu->gerr_irq = irq;
2635
Zhen Lei5e929462015-07-07 04:30:18 +01002636 parse_driver_options(smmu);
2637
Will Deacon48ec83b2015-05-27 17:25:59 +01002638 /* Probe the h/w */
2639 ret = arm_smmu_device_probe(smmu);
2640 if (ret)
2641 return ret;
2642
2643 /* Initialise in-memory data structures */
2644 ret = arm_smmu_init_structures(smmu);
2645 if (ret)
2646 return ret;
2647
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002648 /* Record our private device structure */
2649 platform_set_drvdata(pdev, smmu);
2650
Will Deacon48ec83b2015-05-27 17:25:59 +01002651 /* Reset the device */
Will Deacon04fa26c2015-10-30 18:12:41 +00002652 return arm_smmu_device_reset(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002653}
2654
2655static int arm_smmu_device_remove(struct platform_device *pdev)
2656{
Will Deacon941a8022015-08-11 16:25:10 +01002657 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
Will Deacon48ec83b2015-05-27 17:25:59 +01002658
2659 arm_smmu_device_disable(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002660 return 0;
2661}
2662
2663static struct of_device_id arm_smmu_of_match[] = {
2664 { .compatible = "arm,smmu-v3", },
2665 { },
2666};
2667MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2668
2669static struct platform_driver arm_smmu_driver = {
2670 .driver = {
2671 .name = "arm-smmu-v3",
2672 .of_match_table = of_match_ptr(arm_smmu_of_match),
2673 },
2674 .probe = arm_smmu_device_dt_probe,
2675 .remove = arm_smmu_device_remove,
2676};
2677
2678static int __init arm_smmu_init(void)
2679{
2680 struct device_node *np;
2681 int ret;
2682
2683 np = of_find_matching_node(NULL, arm_smmu_of_match);
2684 if (!np)
2685 return 0;
2686
2687 of_node_put(np);
2688
2689 ret = platform_driver_register(&arm_smmu_driver);
2690 if (ret)
2691 return ret;
2692
Wei Chen112c8982016-06-13 17:20:17 +08002693 pci_request_acs();
2694
Will Deacon48ec83b2015-05-27 17:25:59 +01002695 return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2696}
2697
2698static void __exit arm_smmu_exit(void)
2699{
2700 return platform_driver_unregister(&arm_smmu_driver);
2701}
2702
2703subsys_initcall(arm_smmu_init);
2704module_exit(arm_smmu_exit);
2705
2706MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2707MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2708MODULE_LICENSE("GPL v2");