blob: f003b3ab646bc059a3ba5f316e3e058a96e8f748 [file] [log] [blame]
Will Deacon48ec83b2015-05-27 17:25:59 +01001/*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23#include <linux/delay.h>
Robin Murphy9adb9592016-01-26 18:06:36 +000024#include <linux/dma-iommu.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010025#include <linux/err.h>
26#include <linux/interrupt.h>
27#include <linux/iommu.h>
28#include <linux/iopoll.h>
29#include <linux/module.h>
Marc Zyngier166bdbd2015-10-13 18:32:30 +010030#include <linux/msi.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010031#include <linux/of.h>
32#include <linux/of_address.h>
Will Deacon941a8022015-08-11 16:25:10 +010033#include <linux/of_platform.h>
Will Deacon48ec83b2015-05-27 17:25:59 +010034#include <linux/pci.h>
35#include <linux/platform_device.h>
36
37#include "io-pgtable.h"
38
39/* MMIO registers */
40#define ARM_SMMU_IDR0 0x0
41#define IDR0_ST_LVL_SHIFT 27
42#define IDR0_ST_LVL_MASK 0x3
43#define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
Prem Mallappa6380be02015-12-14 22:01:23 +053044#define IDR0_STALL_MODEL_SHIFT 24
45#define IDR0_STALL_MODEL_MASK 0x3
46#define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
47#define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +010048#define IDR0_TTENDIAN_SHIFT 21
49#define IDR0_TTENDIAN_MASK 0x3
50#define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
51#define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
52#define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
53#define IDR0_CD2L (1 << 19)
54#define IDR0_VMID16 (1 << 18)
55#define IDR0_PRI (1 << 16)
56#define IDR0_SEV (1 << 14)
57#define IDR0_MSI (1 << 13)
58#define IDR0_ASID16 (1 << 12)
59#define IDR0_ATS (1 << 10)
60#define IDR0_HYP (1 << 9)
61#define IDR0_COHACC (1 << 4)
62#define IDR0_TTF_SHIFT 2
63#define IDR0_TTF_MASK 0x3
64#define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
Will Deaconf0c453d2015-08-20 12:12:32 +010065#define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +010066#define IDR0_S1P (1 << 1)
67#define IDR0_S2P (1 << 0)
68
69#define ARM_SMMU_IDR1 0x4
70#define IDR1_TABLES_PRESET (1 << 30)
71#define IDR1_QUEUES_PRESET (1 << 29)
72#define IDR1_REL (1 << 28)
73#define IDR1_CMDQ_SHIFT 21
74#define IDR1_CMDQ_MASK 0x1f
75#define IDR1_EVTQ_SHIFT 16
76#define IDR1_EVTQ_MASK 0x1f
77#define IDR1_PRIQ_SHIFT 11
78#define IDR1_PRIQ_MASK 0x1f
79#define IDR1_SSID_SHIFT 6
80#define IDR1_SSID_MASK 0x1f
81#define IDR1_SID_SHIFT 0
82#define IDR1_SID_MASK 0x3f
83
84#define ARM_SMMU_IDR5 0x14
85#define IDR5_STALL_MAX_SHIFT 16
86#define IDR5_STALL_MAX_MASK 0xffff
87#define IDR5_GRAN64K (1 << 6)
88#define IDR5_GRAN16K (1 << 5)
89#define IDR5_GRAN4K (1 << 4)
90#define IDR5_OAS_SHIFT 0
91#define IDR5_OAS_MASK 0x7
92#define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
93#define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
94#define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
95#define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
96#define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
97#define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
98
99#define ARM_SMMU_CR0 0x20
100#define CR0_CMDQEN (1 << 3)
101#define CR0_EVTQEN (1 << 2)
102#define CR0_PRIQEN (1 << 1)
103#define CR0_SMMUEN (1 << 0)
104
105#define ARM_SMMU_CR0ACK 0x24
106
107#define ARM_SMMU_CR1 0x28
108#define CR1_SH_NSH 0
109#define CR1_SH_OSH 2
110#define CR1_SH_ISH 3
111#define CR1_CACHE_NC 0
112#define CR1_CACHE_WB 1
113#define CR1_CACHE_WT 2
114#define CR1_TABLE_SH_SHIFT 10
115#define CR1_TABLE_OC_SHIFT 8
116#define CR1_TABLE_IC_SHIFT 6
117#define CR1_QUEUE_SH_SHIFT 4
118#define CR1_QUEUE_OC_SHIFT 2
119#define CR1_QUEUE_IC_SHIFT 0
120
121#define ARM_SMMU_CR2 0x2c
122#define CR2_PTM (1 << 2)
123#define CR2_RECINVSID (1 << 1)
124#define CR2_E2H (1 << 0)
125
126#define ARM_SMMU_IRQ_CTRL 0x50
127#define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
Marc Zyngierccd63852015-07-15 11:55:18 +0100128#define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
Will Deacon48ec83b2015-05-27 17:25:59 +0100129#define IRQ_CTRL_GERROR_IRQEN (1 << 0)
130
131#define ARM_SMMU_IRQ_CTRLACK 0x54
132
133#define ARM_SMMU_GERROR 0x60
134#define GERROR_SFM_ERR (1 << 8)
135#define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
136#define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
137#define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
138#define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
139#define GERROR_PRIQ_ABT_ERR (1 << 3)
140#define GERROR_EVTQ_ABT_ERR (1 << 2)
141#define GERROR_CMDQ_ERR (1 << 0)
142#define GERROR_ERR_MASK 0xfd
143
144#define ARM_SMMU_GERRORN 0x64
145
146#define ARM_SMMU_GERROR_IRQ_CFG0 0x68
147#define ARM_SMMU_GERROR_IRQ_CFG1 0x70
148#define ARM_SMMU_GERROR_IRQ_CFG2 0x74
149
150#define ARM_SMMU_STRTAB_BASE 0x80
151#define STRTAB_BASE_RA (1UL << 62)
152#define STRTAB_BASE_ADDR_SHIFT 6
153#define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
154
155#define ARM_SMMU_STRTAB_BASE_CFG 0x88
156#define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
157#define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
158#define STRTAB_BASE_CFG_SPLIT_SHIFT 6
159#define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
160#define STRTAB_BASE_CFG_FMT_SHIFT 16
161#define STRTAB_BASE_CFG_FMT_MASK 0x3
162#define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
163#define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
164
165#define ARM_SMMU_CMDQ_BASE 0x90
166#define ARM_SMMU_CMDQ_PROD 0x98
167#define ARM_SMMU_CMDQ_CONS 0x9c
168
169#define ARM_SMMU_EVTQ_BASE 0xa0
170#define ARM_SMMU_EVTQ_PROD 0x100a8
171#define ARM_SMMU_EVTQ_CONS 0x100ac
172#define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
173#define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
174#define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
175
176#define ARM_SMMU_PRIQ_BASE 0xc0
177#define ARM_SMMU_PRIQ_PROD 0x100c8
178#define ARM_SMMU_PRIQ_CONS 0x100cc
179#define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
180#define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
181#define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
182
183/* Common MSI config fields */
Will Deacon48ec83b2015-05-27 17:25:59 +0100184#define MSI_CFG0_ADDR_SHIFT 2
185#define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
Marc Zyngierec11d632015-07-15 11:55:19 +0100186#define MSI_CFG2_SH_SHIFT 4
187#define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
188#define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
189#define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
190#define MSI_CFG2_MEMATTR_SHIFT 0
191#define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
Will Deacon48ec83b2015-05-27 17:25:59 +0100192
193#define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
194#define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
195#define Q_OVERFLOW_FLAG (1 << 31)
196#define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
197#define Q_ENT(q, p) ((q)->base + \
198 Q_IDX(q, p) * (q)->ent_dwords)
199
200#define Q_BASE_RWA (1UL << 62)
201#define Q_BASE_ADDR_SHIFT 5
202#define Q_BASE_ADDR_MASK 0xfffffffffffUL
203#define Q_BASE_LOG2SIZE_SHIFT 0
204#define Q_BASE_LOG2SIZE_MASK 0x1fUL
205
206/*
207 * Stream table.
208 *
209 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
Zhen Leie2f4c232015-07-07 04:30:17 +0100210 * 2lvl: 128k L1 entries,
211 * 256 lazy entries per table (each table covers a PCI bus)
Will Deacon48ec83b2015-05-27 17:25:59 +0100212 */
Zhen Leie2f4c232015-07-07 04:30:17 +0100213#define STRTAB_L1_SZ_SHIFT 20
Will Deacon48ec83b2015-05-27 17:25:59 +0100214#define STRTAB_SPLIT 8
215
216#define STRTAB_L1_DESC_DWORDS 1
217#define STRTAB_L1_DESC_SPAN_SHIFT 0
218#define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
219#define STRTAB_L1_DESC_L2PTR_SHIFT 6
220#define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
221
222#define STRTAB_STE_DWORDS 8
223#define STRTAB_STE_0_V (1UL << 0)
224#define STRTAB_STE_0_CFG_SHIFT 1
225#define STRTAB_STE_0_CFG_MASK 0x7UL
226#define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
227#define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
228#define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
229#define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
230
231#define STRTAB_STE_0_S1FMT_SHIFT 4
232#define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
233#define STRTAB_STE_0_S1CTXPTR_SHIFT 6
234#define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
235#define STRTAB_STE_0_S1CDMAX_SHIFT 59
236#define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
237
238#define STRTAB_STE_1_S1C_CACHE_NC 0UL
239#define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
240#define STRTAB_STE_1_S1C_CACHE_WT 2UL
241#define STRTAB_STE_1_S1C_CACHE_WB 3UL
242#define STRTAB_STE_1_S1C_SH_NSH 0UL
243#define STRTAB_STE_1_S1C_SH_OSH 2UL
244#define STRTAB_STE_1_S1C_SH_ISH 3UL
245#define STRTAB_STE_1_S1CIR_SHIFT 2
246#define STRTAB_STE_1_S1COR_SHIFT 4
247#define STRTAB_STE_1_S1CSH_SHIFT 6
248
249#define STRTAB_STE_1_S1STALLD (1UL << 27)
250
251#define STRTAB_STE_1_EATS_ABT 0UL
252#define STRTAB_STE_1_EATS_TRANS 1UL
253#define STRTAB_STE_1_EATS_S1CHK 2UL
254#define STRTAB_STE_1_EATS_SHIFT 28
255
256#define STRTAB_STE_1_STRW_NSEL1 0UL
257#define STRTAB_STE_1_STRW_EL2 2UL
258#define STRTAB_STE_1_STRW_SHIFT 30
259
Will Deacona0eacd82015-11-18 18:15:51 +0000260#define STRTAB_STE_1_SHCFG_INCOMING 1UL
261#define STRTAB_STE_1_SHCFG_SHIFT 44
262
Will Deacon48ec83b2015-05-27 17:25:59 +0100263#define STRTAB_STE_2_S2VMID_SHIFT 0
264#define STRTAB_STE_2_S2VMID_MASK 0xffffUL
265#define STRTAB_STE_2_VTCR_SHIFT 32
266#define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
267#define STRTAB_STE_2_S2AA64 (1UL << 51)
268#define STRTAB_STE_2_S2ENDI (1UL << 52)
269#define STRTAB_STE_2_S2PTW (1UL << 54)
270#define STRTAB_STE_2_S2R (1UL << 58)
271
272#define STRTAB_STE_3_S2TTB_SHIFT 4
273#define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
274
275/* Context descriptor (stage-1 only) */
276#define CTXDESC_CD_DWORDS 8
277#define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
278#define ARM64_TCR_T0SZ_SHIFT 0
279#define ARM64_TCR_T0SZ_MASK 0x1fUL
280#define CTXDESC_CD_0_TCR_TG0_SHIFT 6
281#define ARM64_TCR_TG0_SHIFT 14
282#define ARM64_TCR_TG0_MASK 0x3UL
283#define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
Zhen Lei5d58c622015-06-26 09:32:59 +0100284#define ARM64_TCR_IRGN0_SHIFT 8
Will Deacon48ec83b2015-05-27 17:25:59 +0100285#define ARM64_TCR_IRGN0_MASK 0x3UL
286#define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
Zhen Lei5d58c622015-06-26 09:32:59 +0100287#define ARM64_TCR_ORGN0_SHIFT 10
Will Deacon48ec83b2015-05-27 17:25:59 +0100288#define ARM64_TCR_ORGN0_MASK 0x3UL
289#define CTXDESC_CD_0_TCR_SH0_SHIFT 12
290#define ARM64_TCR_SH0_SHIFT 12
291#define ARM64_TCR_SH0_MASK 0x3UL
292#define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
293#define ARM64_TCR_EPD0_SHIFT 7
294#define ARM64_TCR_EPD0_MASK 0x1UL
295#define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
296#define ARM64_TCR_EPD1_SHIFT 23
297#define ARM64_TCR_EPD1_MASK 0x1UL
298
299#define CTXDESC_CD_0_ENDI (1UL << 15)
300#define CTXDESC_CD_0_V (1UL << 31)
301
302#define CTXDESC_CD_0_TCR_IPS_SHIFT 32
303#define ARM64_TCR_IPS_SHIFT 32
304#define ARM64_TCR_IPS_MASK 0x7UL
305#define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
306#define ARM64_TCR_TBI0_SHIFT 37
307#define ARM64_TCR_TBI0_MASK 0x1UL
308
309#define CTXDESC_CD_0_AA64 (1UL << 41)
310#define CTXDESC_CD_0_R (1UL << 45)
311#define CTXDESC_CD_0_A (1UL << 46)
312#define CTXDESC_CD_0_ASET_SHIFT 47
313#define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
314#define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
315#define CTXDESC_CD_0_ASID_SHIFT 48
316#define CTXDESC_CD_0_ASID_MASK 0xffffUL
317
318#define CTXDESC_CD_1_TTB0_SHIFT 4
319#define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
320
321#define CTXDESC_CD_3_MAIR_SHIFT 0
322
323/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
324#define ARM_SMMU_TCR2CD(tcr, fld) \
325 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
326 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
327
328/* Command queue */
329#define CMDQ_ENT_DWORDS 2
330#define CMDQ_MAX_SZ_SHIFT 8
331
332#define CMDQ_ERR_SHIFT 24
333#define CMDQ_ERR_MASK 0x7f
334#define CMDQ_ERR_CERROR_NONE_IDX 0
335#define CMDQ_ERR_CERROR_ILL_IDX 1
336#define CMDQ_ERR_CERROR_ABT_IDX 2
337
338#define CMDQ_0_OP_SHIFT 0
339#define CMDQ_0_OP_MASK 0xffUL
340#define CMDQ_0_SSV (1UL << 11)
341
342#define CMDQ_PREFETCH_0_SID_SHIFT 32
343#define CMDQ_PREFETCH_1_SIZE_SHIFT 0
344#define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
345
346#define CMDQ_CFGI_0_SID_SHIFT 32
347#define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
348#define CMDQ_CFGI_1_LEAF (1UL << 0)
349#define CMDQ_CFGI_1_RANGE_SHIFT 0
350#define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
351
352#define CMDQ_TLBI_0_VMID_SHIFT 32
353#define CMDQ_TLBI_0_ASID_SHIFT 48
354#define CMDQ_TLBI_1_LEAF (1UL << 0)
Will Deacon1c27df12015-09-18 16:12:56 +0100355#define CMDQ_TLBI_1_VA_MASK ~0xfffUL
356#define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
Will Deacon48ec83b2015-05-27 17:25:59 +0100357
358#define CMDQ_PRI_0_SSID_SHIFT 12
359#define CMDQ_PRI_0_SSID_MASK 0xfffffUL
360#define CMDQ_PRI_0_SID_SHIFT 32
361#define CMDQ_PRI_0_SID_MASK 0xffffffffUL
362#define CMDQ_PRI_1_GRPID_SHIFT 0
363#define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
364#define CMDQ_PRI_1_RESP_SHIFT 12
365#define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
366#define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
367#define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
368
369#define CMDQ_SYNC_0_CS_SHIFT 12
370#define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
371#define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
372
373/* Event queue */
374#define EVTQ_ENT_DWORDS 4
375#define EVTQ_MAX_SZ_SHIFT 7
376
377#define EVTQ_0_ID_SHIFT 0
378#define EVTQ_0_ID_MASK 0xffUL
379
380/* PRI queue */
381#define PRIQ_ENT_DWORDS 2
382#define PRIQ_MAX_SZ_SHIFT 8
383
384#define PRIQ_0_SID_SHIFT 0
385#define PRIQ_0_SID_MASK 0xffffffffUL
386#define PRIQ_0_SSID_SHIFT 32
387#define PRIQ_0_SSID_MASK 0xfffffUL
Will Deacon48ec83b2015-05-27 17:25:59 +0100388#define PRIQ_0_PERM_PRIV (1UL << 58)
389#define PRIQ_0_PERM_EXEC (1UL << 59)
390#define PRIQ_0_PERM_READ (1UL << 60)
391#define PRIQ_0_PERM_WRITE (1UL << 61)
392#define PRIQ_0_PRG_LAST (1UL << 62)
393#define PRIQ_0_SSID_V (1UL << 63)
394
395#define PRIQ_1_PRG_IDX_SHIFT 0
396#define PRIQ_1_PRG_IDX_MASK 0x1ffUL
397#define PRIQ_1_ADDR_SHIFT 12
398#define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
399
400/* High-level queue structures */
401#define ARM_SMMU_POLL_TIMEOUT_US 100
402
403static bool disable_bypass;
404module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
405MODULE_PARM_DESC(disable_bypass,
406 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
407
408enum pri_resp {
409 PRI_RESP_DENY,
410 PRI_RESP_FAIL,
411 PRI_RESP_SUCC,
412};
413
Marc Zyngier166bdbd2015-10-13 18:32:30 +0100414enum arm_smmu_msi_index {
415 EVTQ_MSI_INDEX,
416 GERROR_MSI_INDEX,
417 PRIQ_MSI_INDEX,
418 ARM_SMMU_MAX_MSIS,
419};
420
421static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
422 [EVTQ_MSI_INDEX] = {
423 ARM_SMMU_EVTQ_IRQ_CFG0,
424 ARM_SMMU_EVTQ_IRQ_CFG1,
425 ARM_SMMU_EVTQ_IRQ_CFG2,
426 },
427 [GERROR_MSI_INDEX] = {
428 ARM_SMMU_GERROR_IRQ_CFG0,
429 ARM_SMMU_GERROR_IRQ_CFG1,
430 ARM_SMMU_GERROR_IRQ_CFG2,
431 },
432 [PRIQ_MSI_INDEX] = {
433 ARM_SMMU_PRIQ_IRQ_CFG0,
434 ARM_SMMU_PRIQ_IRQ_CFG1,
435 ARM_SMMU_PRIQ_IRQ_CFG2,
436 },
437};
438
Will Deacon48ec83b2015-05-27 17:25:59 +0100439struct arm_smmu_cmdq_ent {
440 /* Common fields */
441 u8 opcode;
442 bool substream_valid;
443
444 /* Command-specific fields */
445 union {
446 #define CMDQ_OP_PREFETCH_CFG 0x1
447 struct {
448 u32 sid;
449 u8 size;
450 u64 addr;
451 } prefetch;
452
453 #define CMDQ_OP_CFGI_STE 0x3
454 #define CMDQ_OP_CFGI_ALL 0x4
455 struct {
456 u32 sid;
457 union {
458 bool leaf;
459 u8 span;
460 };
461 } cfgi;
462
463 #define CMDQ_OP_TLBI_NH_ASID 0x11
464 #define CMDQ_OP_TLBI_NH_VA 0x12
465 #define CMDQ_OP_TLBI_EL2_ALL 0x20
466 #define CMDQ_OP_TLBI_S12_VMALL 0x28
467 #define CMDQ_OP_TLBI_S2_IPA 0x2a
468 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
469 struct {
470 u16 asid;
471 u16 vmid;
472 bool leaf;
473 u64 addr;
474 } tlbi;
475
476 #define CMDQ_OP_PRI_RESP 0x41
477 struct {
478 u32 sid;
479 u32 ssid;
480 u16 grpid;
481 enum pri_resp resp;
482 } pri;
483
484 #define CMDQ_OP_CMD_SYNC 0x46
485 };
486};
487
488struct arm_smmu_queue {
489 int irq; /* Wired interrupt */
490
491 __le64 *base;
492 dma_addr_t base_dma;
493 u64 q_base;
494
495 size_t ent_dwords;
496 u32 max_n_shift;
497 u32 prod;
498 u32 cons;
499
500 u32 __iomem *prod_reg;
501 u32 __iomem *cons_reg;
502};
503
504struct arm_smmu_cmdq {
505 struct arm_smmu_queue q;
506 spinlock_t lock;
507};
508
509struct arm_smmu_evtq {
510 struct arm_smmu_queue q;
511 u32 max_stalls;
512};
513
514struct arm_smmu_priq {
515 struct arm_smmu_queue q;
516};
517
518/* High-level stream table and context descriptor structures */
519struct arm_smmu_strtab_l1_desc {
520 u8 span;
521
522 __le64 *l2ptr;
523 dma_addr_t l2ptr_dma;
524};
525
526struct arm_smmu_s1_cfg {
527 __le64 *cdptr;
528 dma_addr_t cdptr_dma;
529
530 struct arm_smmu_ctx_desc {
531 u16 asid;
532 u64 ttbr;
533 u64 tcr;
534 u64 mair;
535 } cd;
536};
537
538struct arm_smmu_s2_cfg {
539 u16 vmid;
540 u64 vttbr;
541 u64 vtcr;
542};
543
544struct arm_smmu_strtab_ent {
545 bool valid;
546
547 bool bypass; /* Overrides s1/s2 config */
548 struct arm_smmu_s1_cfg *s1_cfg;
549 struct arm_smmu_s2_cfg *s2_cfg;
550};
551
552struct arm_smmu_strtab_cfg {
553 __le64 *strtab;
554 dma_addr_t strtab_dma;
555 struct arm_smmu_strtab_l1_desc *l1_desc;
556 unsigned int num_l1_ents;
557
558 u64 strtab_base;
559 u32 strtab_base_cfg;
560};
561
562/* An SMMUv3 instance */
563struct arm_smmu_device {
564 struct device *dev;
565 void __iomem *base;
566
567#define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
568#define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
569#define ARM_SMMU_FEAT_TT_LE (1 << 2)
570#define ARM_SMMU_FEAT_TT_BE (1 << 3)
571#define ARM_SMMU_FEAT_PRI (1 << 4)
572#define ARM_SMMU_FEAT_ATS (1 << 5)
573#define ARM_SMMU_FEAT_SEV (1 << 6)
574#define ARM_SMMU_FEAT_MSI (1 << 7)
575#define ARM_SMMU_FEAT_COHERENCY (1 << 8)
576#define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
577#define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
578#define ARM_SMMU_FEAT_STALLS (1 << 11)
579#define ARM_SMMU_FEAT_HYP (1 << 12)
580 u32 features;
581
Zhen Lei5e929462015-07-07 04:30:18 +0100582#define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
583 u32 options;
584
Will Deacon48ec83b2015-05-27 17:25:59 +0100585 struct arm_smmu_cmdq cmdq;
586 struct arm_smmu_evtq evtq;
587 struct arm_smmu_priq priq;
588
589 int gerr_irq;
590
591 unsigned long ias; /* IPA */
592 unsigned long oas; /* PA */
593
594#define ARM_SMMU_MAX_ASIDS (1 << 16)
595 unsigned int asid_bits;
596 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
597
598#define ARM_SMMU_MAX_VMIDS (1 << 16)
599 unsigned int vmid_bits;
600 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
601
602 unsigned int ssid_bits;
603 unsigned int sid_bits;
604
605 struct arm_smmu_strtab_cfg strtab_cfg;
Will Deacon48ec83b2015-05-27 17:25:59 +0100606};
607
608/* SMMU private data for an IOMMU group */
609struct arm_smmu_group {
610 struct arm_smmu_device *smmu;
611 struct arm_smmu_domain *domain;
612 int num_sids;
613 u32 *sids;
614 struct arm_smmu_strtab_ent ste;
615};
616
617/* SMMU private data for an IOMMU domain */
618enum arm_smmu_domain_stage {
619 ARM_SMMU_DOMAIN_S1 = 0,
620 ARM_SMMU_DOMAIN_S2,
621 ARM_SMMU_DOMAIN_NESTED,
622};
623
624struct arm_smmu_domain {
625 struct arm_smmu_device *smmu;
626 struct mutex init_mutex; /* Protects smmu pointer */
627
628 struct io_pgtable_ops *pgtbl_ops;
629 spinlock_t pgtbl_lock;
630
631 enum arm_smmu_domain_stage stage;
632 union {
633 struct arm_smmu_s1_cfg s1_cfg;
634 struct arm_smmu_s2_cfg s2_cfg;
635 };
636
637 struct iommu_domain domain;
638};
639
Zhen Lei5e929462015-07-07 04:30:18 +0100640struct arm_smmu_option_prop {
641 u32 opt;
642 const char *prop;
643};
644
645static struct arm_smmu_option_prop arm_smmu_options[] = {
646 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
647 { 0, NULL},
648};
649
Will Deacon48ec83b2015-05-27 17:25:59 +0100650static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
651{
652 return container_of(dom, struct arm_smmu_domain, domain);
653}
654
Zhen Lei5e929462015-07-07 04:30:18 +0100655static void parse_driver_options(struct arm_smmu_device *smmu)
656{
657 int i = 0;
658
659 do {
660 if (of_property_read_bool(smmu->dev->of_node,
661 arm_smmu_options[i].prop)) {
662 smmu->options |= arm_smmu_options[i].opt;
663 dev_notice(smmu->dev, "option %s\n",
664 arm_smmu_options[i].prop);
665 }
666 } while (arm_smmu_options[++i].opt);
667}
668
Will Deacon48ec83b2015-05-27 17:25:59 +0100669/* Low-level queue manipulation functions */
670static bool queue_full(struct arm_smmu_queue *q)
671{
672 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
673 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
674}
675
676static bool queue_empty(struct arm_smmu_queue *q)
677{
678 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
679 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
680}
681
682static void queue_sync_cons(struct arm_smmu_queue *q)
683{
684 q->cons = readl_relaxed(q->cons_reg);
685}
686
687static void queue_inc_cons(struct arm_smmu_queue *q)
688{
689 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
690
691 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
692 writel(q->cons, q->cons_reg);
693}
694
695static int queue_sync_prod(struct arm_smmu_queue *q)
696{
697 int ret = 0;
698 u32 prod = readl_relaxed(q->prod_reg);
699
700 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
701 ret = -EOVERFLOW;
702
703 q->prod = prod;
704 return ret;
705}
706
707static void queue_inc_prod(struct arm_smmu_queue *q)
708{
709 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
710
711 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
712 writel(q->prod, q->prod_reg);
713}
714
715static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
716{
717 if (Q_WRP(q, q->cons) == Q_WRP(q, until))
718 return Q_IDX(q, q->cons) < Q_IDX(q, until);
719
720 return Q_IDX(q, q->cons) >= Q_IDX(q, until);
721}
722
723static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
724{
725 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
726
727 while (queue_sync_cons(q), __queue_cons_before(q, until)) {
728 if (ktime_compare(ktime_get(), timeout) > 0)
729 return -ETIMEDOUT;
730
731 if (wfe) {
732 wfe();
733 } else {
734 cpu_relax();
735 udelay(1);
736 }
737 }
738
739 return 0;
740}
741
742static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
743{
744 int i;
745
746 for (i = 0; i < n_dwords; ++i)
747 *dst++ = cpu_to_le64(*src++);
748}
749
750static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
751{
752 if (queue_full(q))
753 return -ENOSPC;
754
755 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
756 queue_inc_prod(q);
757 return 0;
758}
759
760static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
761{
762 int i;
763
764 for (i = 0; i < n_dwords; ++i)
765 *dst++ = le64_to_cpu(*src++);
766}
767
768static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
769{
770 if (queue_empty(q))
771 return -EAGAIN;
772
773 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
774 queue_inc_cons(q);
775 return 0;
776}
777
778/* High-level queue accessors */
779static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
780{
781 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
782 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
783
784 switch (ent->opcode) {
785 case CMDQ_OP_TLBI_EL2_ALL:
786 case CMDQ_OP_TLBI_NSNH_ALL:
787 break;
788 case CMDQ_OP_PREFETCH_CFG:
789 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
790 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
791 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
792 break;
793 case CMDQ_OP_CFGI_STE:
794 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
795 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
796 break;
797 case CMDQ_OP_CFGI_ALL:
798 /* Cover the entire SID range */
799 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
800 break;
801 case CMDQ_OP_TLBI_NH_VA:
802 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
Will Deacon1c27df12015-09-18 16:12:56 +0100803 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
804 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
805 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100806 case CMDQ_OP_TLBI_S2_IPA:
807 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
808 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
Will Deacon1c27df12015-09-18 16:12:56 +0100809 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
Will Deacon48ec83b2015-05-27 17:25:59 +0100810 break;
811 case CMDQ_OP_TLBI_NH_ASID:
812 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
813 /* Fallthrough */
814 case CMDQ_OP_TLBI_S12_VMALL:
815 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
816 break;
817 case CMDQ_OP_PRI_RESP:
818 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
819 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
820 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
821 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
822 switch (ent->pri.resp) {
823 case PRI_RESP_DENY:
824 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
825 break;
826 case PRI_RESP_FAIL:
827 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
828 break;
829 case PRI_RESP_SUCC:
830 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
831 break;
832 default:
833 return -EINVAL;
834 }
835 break;
836 case CMDQ_OP_CMD_SYNC:
837 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
838 break;
839 default:
840 return -ENOENT;
841 }
842
843 return 0;
844}
845
846static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
847{
848 static const char *cerror_str[] = {
849 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
850 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
851 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
852 };
853
854 int i;
855 u64 cmd[CMDQ_ENT_DWORDS];
856 struct arm_smmu_queue *q = &smmu->cmdq.q;
857 u32 cons = readl_relaxed(q->cons_reg);
858 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
859 struct arm_smmu_cmdq_ent cmd_sync = {
860 .opcode = CMDQ_OP_CMD_SYNC,
861 };
862
863 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
Will Deacona0d5c042015-12-04 12:00:29 +0000864 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
Will Deacon48ec83b2015-05-27 17:25:59 +0100865
866 switch (idx) {
Will Deacon48ec83b2015-05-27 17:25:59 +0100867 case CMDQ_ERR_CERROR_ABT_IDX:
868 dev_err(smmu->dev, "retrying command fetch\n");
869 case CMDQ_ERR_CERROR_NONE_IDX:
870 return;
Will Deacona0d5c042015-12-04 12:00:29 +0000871 case CMDQ_ERR_CERROR_ILL_IDX:
872 /* Fallthrough */
873 default:
874 break;
Will Deacon48ec83b2015-05-27 17:25:59 +0100875 }
876
877 /*
878 * We may have concurrent producers, so we need to be careful
879 * not to touch any of the shadow cmdq state.
880 */
881 queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
882 dev_err(smmu->dev, "skipping command in error state:\n");
883 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
884 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
885
886 /* Convert the erroneous command into a CMD_SYNC */
887 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
888 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
889 return;
890 }
891
892 queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
893}
894
895static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
896 struct arm_smmu_cmdq_ent *ent)
897{
898 u32 until;
899 u64 cmd[CMDQ_ENT_DWORDS];
900 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
901 struct arm_smmu_queue *q = &smmu->cmdq.q;
902
903 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
904 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
905 ent->opcode);
906 return;
907 }
908
909 spin_lock(&smmu->cmdq.lock);
910 while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
911 /*
912 * Keep the queue locked, otherwise the producer could wrap
913 * twice and we could see a future consumer pointer that looks
914 * like it's behind us.
915 */
916 if (queue_poll_cons(q, until, wfe))
917 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
918 }
919
920 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
921 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
922 spin_unlock(&smmu->cmdq.lock);
923}
924
925/* Context descriptor manipulation functions */
926static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
927{
928 u64 val = 0;
929
930 /* Repack the TCR. Just care about TTBR0 for now */
931 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
932 val |= ARM_SMMU_TCR2CD(tcr, TG0);
933 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
934 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
935 val |= ARM_SMMU_TCR2CD(tcr, SH0);
936 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
937 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
938 val |= ARM_SMMU_TCR2CD(tcr, IPS);
939 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
940
941 return val;
942}
943
944static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
945 struct arm_smmu_s1_cfg *cfg)
946{
947 u64 val;
948
949 /*
950 * We don't need to issue any invalidation here, as we'll invalidate
951 * the STE when installing the new entry anyway.
952 */
953 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
954#ifdef __BIG_ENDIAN
955 CTXDESC_CD_0_ENDI |
956#endif
957 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
958 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
959 CTXDESC_CD_0_V;
960 cfg->cdptr[0] = cpu_to_le64(val);
961
962 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
963 cfg->cdptr[1] = cpu_to_le64(val);
964
965 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
966}
967
968/* Stream table manipulation functions */
969static void
970arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
971{
972 u64 val = 0;
973
974 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
975 << STRTAB_L1_DESC_SPAN_SHIFT;
976 val |= desc->l2ptr_dma &
977 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
978
979 *dst = cpu_to_le64(val);
980}
981
982static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
983{
984 struct arm_smmu_cmdq_ent cmd = {
985 .opcode = CMDQ_OP_CFGI_STE,
986 .cfgi = {
987 .sid = sid,
988 .leaf = true,
989 },
990 };
991
992 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
993 cmd.opcode = CMDQ_OP_CMD_SYNC;
994 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
995}
996
997static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
998 __le64 *dst, struct arm_smmu_strtab_ent *ste)
999{
1000 /*
1001 * This is hideously complicated, but we only really care about
1002 * three cases at the moment:
1003 *
1004 * 1. Invalid (all zero) -> bypass (init)
1005 * 2. Bypass -> translation (attach)
1006 * 3. Translation -> bypass (detach)
1007 *
1008 * Given that we can't update the STE atomically and the SMMU
1009 * doesn't read the thing in a defined order, that leaves us
1010 * with the following maintenance requirements:
1011 *
1012 * 1. Update Config, return (init time STEs aren't live)
1013 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1014 * 3. Update Config, sync
1015 */
1016 u64 val = le64_to_cpu(dst[0]);
1017 bool ste_live = false;
1018 struct arm_smmu_cmdq_ent prefetch_cmd = {
1019 .opcode = CMDQ_OP_PREFETCH_CFG,
1020 .prefetch = {
1021 .sid = sid,
1022 },
1023 };
1024
1025 if (val & STRTAB_STE_0_V) {
1026 u64 cfg;
1027
1028 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1029 switch (cfg) {
1030 case STRTAB_STE_0_CFG_BYPASS:
1031 break;
1032 case STRTAB_STE_0_CFG_S1_TRANS:
1033 case STRTAB_STE_0_CFG_S2_TRANS:
1034 ste_live = true;
1035 break;
1036 default:
1037 BUG(); /* STE corruption */
1038 }
1039 }
1040
1041 /* Nuke the existing Config, as we're going to rewrite it */
1042 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1043
1044 if (ste->valid)
1045 val |= STRTAB_STE_0_V;
1046 else
1047 val &= ~STRTAB_STE_0_V;
1048
1049 if (ste->bypass) {
1050 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1051 : STRTAB_STE_0_CFG_BYPASS;
1052 dst[0] = cpu_to_le64(val);
Will Deacona0eacd82015-11-18 18:15:51 +00001053 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1054 << STRTAB_STE_1_SHCFG_SHIFT);
Will Deacon48ec83b2015-05-27 17:25:59 +01001055 dst[2] = 0; /* Nuke the VMID */
1056 if (ste_live)
1057 arm_smmu_sync_ste_for_sid(smmu, sid);
1058 return;
1059 }
1060
1061 if (ste->s1_cfg) {
1062 BUG_ON(ste_live);
1063 dst[1] = cpu_to_le64(
1064 STRTAB_STE_1_S1C_CACHE_WBRA
1065 << STRTAB_STE_1_S1CIR_SHIFT |
1066 STRTAB_STE_1_S1C_CACHE_WBRA
1067 << STRTAB_STE_1_S1COR_SHIFT |
1068 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
Will Deacon48ec83b2015-05-27 17:25:59 +01001069#ifdef CONFIG_PCI_ATS
1070 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1071#endif
1072 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1073
Prem Mallappa6380be02015-12-14 22:01:23 +05301074 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1075 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1076
Will Deacon48ec83b2015-05-27 17:25:59 +01001077 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1078 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1079 STRTAB_STE_0_CFG_S1_TRANS;
1080
1081 }
1082
1083 if (ste->s2_cfg) {
1084 BUG_ON(ste_live);
1085 dst[2] = cpu_to_le64(
1086 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1087 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1088 << STRTAB_STE_2_VTCR_SHIFT |
1089#ifdef __BIG_ENDIAN
1090 STRTAB_STE_2_S2ENDI |
1091#endif
1092 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1093 STRTAB_STE_2_S2R);
1094
1095 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1096 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1097
1098 val |= STRTAB_STE_0_CFG_S2_TRANS;
1099 }
1100
1101 arm_smmu_sync_ste_for_sid(smmu, sid);
1102 dst[0] = cpu_to_le64(val);
1103 arm_smmu_sync_ste_for_sid(smmu, sid);
1104
1105 /* It's likely that we'll want to use the new STE soon */
Zhen Lei5e929462015-07-07 04:30:18 +01001106 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1107 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
Will Deacon48ec83b2015-05-27 17:25:59 +01001108}
1109
1110static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1111{
1112 unsigned int i;
1113 struct arm_smmu_strtab_ent ste = {
1114 .valid = true,
1115 .bypass = true,
1116 };
1117
1118 for (i = 0; i < nent; ++i) {
1119 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1120 strtab += STRTAB_STE_DWORDS;
1121 }
1122}
1123
1124static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1125{
1126 size_t size;
1127 void *strtab;
1128 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1129 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1130
1131 if (desc->l2ptr)
1132 return 0;
1133
1134 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
Zhen Lei69146e72015-06-26 09:32:58 +01001135 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
Will Deacon48ec83b2015-05-27 17:25:59 +01001136
1137 desc->span = STRTAB_SPLIT + 1;
Will Deacon04fa26c2015-10-30 18:12:41 +00001138 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1139 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001140 if (!desc->l2ptr) {
1141 dev_err(smmu->dev,
1142 "failed to allocate l2 stream table for SID %u\n",
1143 sid);
1144 return -ENOMEM;
1145 }
1146
1147 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1148 arm_smmu_write_strtab_l1_desc(strtab, desc);
1149 return 0;
1150}
1151
1152/* IRQ and event handlers */
1153static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1154{
1155 int i;
1156 struct arm_smmu_device *smmu = dev;
1157 struct arm_smmu_queue *q = &smmu->evtq.q;
1158 u64 evt[EVTQ_ENT_DWORDS];
1159
1160 while (!queue_remove_raw(q, evt)) {
1161 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1162
1163 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1164 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1165 dev_info(smmu->dev, "\t0x%016llx\n",
1166 (unsigned long long)evt[i]);
1167 }
1168
1169 /* Sync our overflow flag, as we believe we're up to speed */
1170 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1171 return IRQ_HANDLED;
1172}
1173
1174static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1175{
1176 irqreturn_t ret = IRQ_WAKE_THREAD;
1177 struct arm_smmu_device *smmu = dev;
1178 struct arm_smmu_queue *q = &smmu->evtq.q;
1179
1180 /*
1181 * Not much we can do on overflow, so scream and pretend we're
1182 * trying harder.
1183 */
1184 if (queue_sync_prod(q) == -EOVERFLOW)
1185 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1186 else if (queue_empty(q))
1187 ret = IRQ_NONE;
1188
1189 return ret;
1190}
1191
1192static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1193{
1194 struct arm_smmu_device *smmu = dev;
1195 struct arm_smmu_queue *q = &smmu->priq.q;
1196 u64 evt[PRIQ_ENT_DWORDS];
1197
1198 while (!queue_remove_raw(q, evt)) {
1199 u32 sid, ssid;
1200 u16 grpid;
1201 bool ssv, last;
1202
1203 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1204 ssv = evt[0] & PRIQ_0_SSID_V;
1205 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1206 last = evt[0] & PRIQ_0_PRG_LAST;
1207 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1208
1209 dev_info(smmu->dev, "unexpected PRI request received:\n");
1210 dev_info(smmu->dev,
1211 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1212 sid, ssid, grpid, last ? "L" : "",
1213 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1214 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1215 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1216 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1217 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1218
1219 if (last) {
1220 struct arm_smmu_cmdq_ent cmd = {
1221 .opcode = CMDQ_OP_PRI_RESP,
1222 .substream_valid = ssv,
1223 .pri = {
1224 .sid = sid,
1225 .ssid = ssid,
1226 .grpid = grpid,
1227 .resp = PRI_RESP_DENY,
1228 },
1229 };
1230
1231 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1232 }
1233 }
1234
1235 /* Sync our overflow flag, as we believe we're up to speed */
1236 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1237 return IRQ_HANDLED;
1238}
1239
1240static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1241{
1242 irqreturn_t ret = IRQ_WAKE_THREAD;
1243 struct arm_smmu_device *smmu = dev;
1244 struct arm_smmu_queue *q = &smmu->priq.q;
1245
1246 /* PRIQ overflow indicates a programming error */
1247 if (queue_sync_prod(q) == -EOVERFLOW)
1248 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1249 else if (queue_empty(q))
1250 ret = IRQ_NONE;
1251
1252 return ret;
1253}
1254
1255static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1256{
1257 /* We don't actually use CMD_SYNC interrupts for anything */
1258 return IRQ_HANDLED;
1259}
1260
1261static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1262
1263static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1264{
Prem Mallappa324ba102015-12-14 22:01:14 +05301265 u32 gerror, gerrorn, active;
Will Deacon48ec83b2015-05-27 17:25:59 +01001266 struct arm_smmu_device *smmu = dev;
1267
1268 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1269 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1270
Prem Mallappa324ba102015-12-14 22:01:14 +05301271 active = gerror ^ gerrorn;
1272 if (!(active & GERROR_ERR_MASK))
Will Deacon48ec83b2015-05-27 17:25:59 +01001273 return IRQ_NONE; /* No errors pending */
1274
1275 dev_warn(smmu->dev,
1276 "unexpected global error reported (0x%08x), this could be serious\n",
Prem Mallappa324ba102015-12-14 22:01:14 +05301277 active);
Will Deacon48ec83b2015-05-27 17:25:59 +01001278
Prem Mallappa324ba102015-12-14 22:01:14 +05301279 if (active & GERROR_SFM_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001280 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1281 arm_smmu_device_disable(smmu);
1282 }
1283
Prem Mallappa324ba102015-12-14 22:01:14 +05301284 if (active & GERROR_MSI_GERROR_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001285 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1286
Prem Mallappa324ba102015-12-14 22:01:14 +05301287 if (active & GERROR_MSI_PRIQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001288 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1289 arm_smmu_priq_handler(irq, smmu->dev);
1290 }
1291
Prem Mallappa324ba102015-12-14 22:01:14 +05301292 if (active & GERROR_MSI_EVTQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001293 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1294 arm_smmu_evtq_handler(irq, smmu->dev);
1295 }
1296
Prem Mallappa324ba102015-12-14 22:01:14 +05301297 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
Will Deacon48ec83b2015-05-27 17:25:59 +01001298 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1299 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1300 }
1301
Prem Mallappa324ba102015-12-14 22:01:14 +05301302 if (active & GERROR_PRIQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001303 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1304
Prem Mallappa324ba102015-12-14 22:01:14 +05301305 if (active & GERROR_EVTQ_ABT_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001306 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1307
Prem Mallappa324ba102015-12-14 22:01:14 +05301308 if (active & GERROR_CMDQ_ERR)
Will Deacon48ec83b2015-05-27 17:25:59 +01001309 arm_smmu_cmdq_skip_err(smmu);
1310
1311 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1312 return IRQ_HANDLED;
1313}
1314
1315/* IO_PGTABLE API */
1316static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1317{
1318 struct arm_smmu_cmdq_ent cmd;
1319
1320 cmd.opcode = CMDQ_OP_CMD_SYNC;
1321 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1322}
1323
1324static void arm_smmu_tlb_sync(void *cookie)
1325{
1326 struct arm_smmu_domain *smmu_domain = cookie;
1327 __arm_smmu_tlb_sync(smmu_domain->smmu);
1328}
1329
1330static void arm_smmu_tlb_inv_context(void *cookie)
1331{
1332 struct arm_smmu_domain *smmu_domain = cookie;
1333 struct arm_smmu_device *smmu = smmu_domain->smmu;
1334 struct arm_smmu_cmdq_ent cmd;
1335
1336 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1337 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1338 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1339 cmd.tlbi.vmid = 0;
1340 } else {
1341 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1342 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1343 }
1344
1345 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1346 __arm_smmu_tlb_sync(smmu);
1347}
1348
1349static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
Robin Murphy06c610e2015-12-07 18:18:53 +00001350 size_t granule, bool leaf, void *cookie)
Will Deacon48ec83b2015-05-27 17:25:59 +01001351{
1352 struct arm_smmu_domain *smmu_domain = cookie;
1353 struct arm_smmu_device *smmu = smmu_domain->smmu;
1354 struct arm_smmu_cmdq_ent cmd = {
1355 .tlbi = {
1356 .leaf = leaf,
1357 .addr = iova,
1358 },
1359 };
1360
1361 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1362 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1363 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1364 } else {
1365 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1366 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1367 }
1368
Robin Murphy75df1382015-12-07 18:18:52 +00001369 do {
1370 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1371 cmd.tlbi.addr += granule;
1372 } while (size -= granule);
Will Deacon48ec83b2015-05-27 17:25:59 +01001373}
1374
Will Deacon48ec83b2015-05-27 17:25:59 +01001375static struct iommu_gather_ops arm_smmu_gather_ops = {
1376 .tlb_flush_all = arm_smmu_tlb_inv_context,
1377 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1378 .tlb_sync = arm_smmu_tlb_sync,
Will Deacon48ec83b2015-05-27 17:25:59 +01001379};
1380
1381/* IOMMU API */
1382static bool arm_smmu_capable(enum iommu_cap cap)
1383{
1384 switch (cap) {
1385 case IOMMU_CAP_CACHE_COHERENCY:
1386 return true;
1387 case IOMMU_CAP_INTR_REMAP:
1388 return true; /* MSIs are just memory writes */
1389 case IOMMU_CAP_NOEXEC:
1390 return true;
1391 default:
1392 return false;
1393 }
1394}
1395
1396static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1397{
1398 struct arm_smmu_domain *smmu_domain;
1399
Robin Murphy9adb9592016-01-26 18:06:36 +00001400 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
Will Deacon48ec83b2015-05-27 17:25:59 +01001401 return NULL;
1402
1403 /*
1404 * Allocate the domain and initialise some of its data structures.
1405 * We can't really do anything meaningful until we've added a
1406 * master.
1407 */
1408 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1409 if (!smmu_domain)
1410 return NULL;
1411
Robin Murphy9adb9592016-01-26 18:06:36 +00001412 if (type == IOMMU_DOMAIN_DMA &&
1413 iommu_get_dma_cookie(&smmu_domain->domain)) {
1414 kfree(smmu_domain);
1415 return NULL;
1416 }
1417
Will Deacon48ec83b2015-05-27 17:25:59 +01001418 mutex_init(&smmu_domain->init_mutex);
1419 spin_lock_init(&smmu_domain->pgtbl_lock);
1420 return &smmu_domain->domain;
1421}
1422
1423static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1424{
1425 int idx, size = 1 << span;
1426
1427 do {
1428 idx = find_first_zero_bit(map, size);
1429 if (idx == size)
1430 return -ENOSPC;
1431 } while (test_and_set_bit(idx, map));
1432
1433 return idx;
1434}
1435
1436static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1437{
1438 clear_bit(idx, map);
1439}
1440
1441static void arm_smmu_domain_free(struct iommu_domain *domain)
1442{
1443 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1444 struct arm_smmu_device *smmu = smmu_domain->smmu;
1445
Robin Murphy9adb9592016-01-26 18:06:36 +00001446 iommu_put_dma_cookie(domain);
Markus Elfringa6e08fb2015-06-29 17:47:43 +01001447 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
Will Deacon48ec83b2015-05-27 17:25:59 +01001448
1449 /* Free the CD and ASID, if we allocated them */
1450 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1451 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1452
1453 if (cfg->cdptr) {
Will Deacon04fa26c2015-10-30 18:12:41 +00001454 dmam_free_coherent(smmu_domain->smmu->dev,
1455 CTXDESC_CD_DWORDS << 3,
1456 cfg->cdptr,
1457 cfg->cdptr_dma);
Will Deacon48ec83b2015-05-27 17:25:59 +01001458
1459 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1460 }
1461 } else {
1462 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1463 if (cfg->vmid)
1464 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1465 }
1466
1467 kfree(smmu_domain);
1468}
1469
1470static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1471 struct io_pgtable_cfg *pgtbl_cfg)
1472{
1473 int ret;
Will Deaconc0733a22015-10-13 17:51:14 +01001474 int asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001475 struct arm_smmu_device *smmu = smmu_domain->smmu;
1476 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1477
1478 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1479 if (IS_ERR_VALUE(asid))
1480 return asid;
1481
Will Deacon04fa26c2015-10-30 18:12:41 +00001482 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1483 &cfg->cdptr_dma,
1484 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01001485 if (!cfg->cdptr) {
1486 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
Will Deaconc0733a22015-10-13 17:51:14 +01001487 ret = -ENOMEM;
Will Deacon48ec83b2015-05-27 17:25:59 +01001488 goto out_free_asid;
1489 }
1490
Will Deaconc0733a22015-10-13 17:51:14 +01001491 cfg->cd.asid = (u16)asid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001492 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1493 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1494 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1495 return 0;
1496
1497out_free_asid:
1498 arm_smmu_bitmap_free(smmu->asid_map, asid);
1499 return ret;
1500}
1501
1502static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1503 struct io_pgtable_cfg *pgtbl_cfg)
1504{
Will Deaconc0733a22015-10-13 17:51:14 +01001505 int vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001506 struct arm_smmu_device *smmu = smmu_domain->smmu;
1507 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1508
1509 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1510 if (IS_ERR_VALUE(vmid))
1511 return vmid;
1512
Will Deaconc0733a22015-10-13 17:51:14 +01001513 cfg->vmid = (u16)vmid;
Will Deacon48ec83b2015-05-27 17:25:59 +01001514 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1515 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1516 return 0;
1517}
1518
1519static struct iommu_ops arm_smmu_ops;
1520
1521static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1522{
1523 int ret;
1524 unsigned long ias, oas;
1525 enum io_pgtable_fmt fmt;
1526 struct io_pgtable_cfg pgtbl_cfg;
1527 struct io_pgtable_ops *pgtbl_ops;
1528 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1529 struct io_pgtable_cfg *);
1530 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1531 struct arm_smmu_device *smmu = smmu_domain->smmu;
1532
1533 /* Restrict the stage to what we can actually support */
1534 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1535 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1536 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1537 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1538
1539 switch (smmu_domain->stage) {
1540 case ARM_SMMU_DOMAIN_S1:
1541 ias = VA_BITS;
1542 oas = smmu->ias;
1543 fmt = ARM_64_LPAE_S1;
1544 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1545 break;
1546 case ARM_SMMU_DOMAIN_NESTED:
1547 case ARM_SMMU_DOMAIN_S2:
1548 ias = smmu->ias;
1549 oas = smmu->oas;
1550 fmt = ARM_64_LPAE_S2;
1551 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1552 break;
1553 default:
1554 return -EINVAL;
1555 }
1556
1557 pgtbl_cfg = (struct io_pgtable_cfg) {
1558 .pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
1559 .ias = ias,
1560 .oas = oas,
1561 .tlb = &arm_smmu_gather_ops,
Robin Murphybdc6d972015-07-29 19:46:07 +01001562 .iommu_dev = smmu->dev,
Will Deacon48ec83b2015-05-27 17:25:59 +01001563 };
1564
1565 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1566 if (!pgtbl_ops)
1567 return -ENOMEM;
1568
1569 arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1570 smmu_domain->pgtbl_ops = pgtbl_ops;
1571
1572 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1573 if (IS_ERR_VALUE(ret))
1574 free_io_pgtable_ops(pgtbl_ops);
1575
1576 return ret;
1577}
1578
1579static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1580{
1581 struct iommu_group *group;
1582 struct arm_smmu_group *smmu_group;
1583
1584 group = iommu_group_get(dev);
1585 if (!group)
1586 return NULL;
1587
1588 smmu_group = iommu_group_get_iommudata(group);
1589 iommu_group_put(group);
1590 return smmu_group;
1591}
1592
1593static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1594{
1595 __le64 *step;
1596 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1597
1598 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1599 struct arm_smmu_strtab_l1_desc *l1_desc;
1600 int idx;
1601
1602 /* Two-level walk */
1603 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1604 l1_desc = &cfg->l1_desc[idx];
1605 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1606 step = &l1_desc->l2ptr[idx];
1607 } else {
1608 /* Simple linear lookup */
1609 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1610 }
1611
1612 return step;
1613}
1614
1615static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1616{
1617 int i;
1618 struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1619 struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1620 struct arm_smmu_device *smmu = smmu_group->smmu;
1621
1622 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1623 ste->s1_cfg = &smmu_domain->s1_cfg;
1624 ste->s2_cfg = NULL;
1625 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1626 } else {
1627 ste->s1_cfg = NULL;
1628 ste->s2_cfg = &smmu_domain->s2_cfg;
1629 }
1630
1631 for (i = 0; i < smmu_group->num_sids; ++i) {
1632 u32 sid = smmu_group->sids[i];
1633 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1634
1635 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1636 }
1637
1638 return 0;
1639}
1640
1641static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1642{
1643 int ret = 0;
1644 struct arm_smmu_device *smmu;
1645 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1646 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1647
1648 if (!smmu_group)
1649 return -ENOENT;
1650
1651 /* Already attached to a different domain? */
1652 if (smmu_group->domain && smmu_group->domain != smmu_domain)
1653 return -EEXIST;
1654
1655 smmu = smmu_group->smmu;
1656 mutex_lock(&smmu_domain->init_mutex);
1657
1658 if (!smmu_domain->smmu) {
1659 smmu_domain->smmu = smmu;
1660 ret = arm_smmu_domain_finalise(domain);
1661 if (ret) {
1662 smmu_domain->smmu = NULL;
1663 goto out_unlock;
1664 }
1665 } else if (smmu_domain->smmu != smmu) {
1666 dev_err(dev,
1667 "cannot attach to SMMU %s (upstream of %s)\n",
1668 dev_name(smmu_domain->smmu->dev),
1669 dev_name(smmu->dev));
1670 ret = -ENXIO;
1671 goto out_unlock;
1672 }
1673
1674 /* Group already attached to this domain? */
1675 if (smmu_group->domain)
1676 goto out_unlock;
1677
1678 smmu_group->domain = smmu_domain;
1679 smmu_group->ste.bypass = false;
1680
1681 ret = arm_smmu_install_ste_for_group(smmu_group);
1682 if (IS_ERR_VALUE(ret))
1683 smmu_group->domain = NULL;
1684
1685out_unlock:
1686 mutex_unlock(&smmu_domain->init_mutex);
1687 return ret;
1688}
1689
1690static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1691{
1692 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1693 struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1694
1695 BUG_ON(!smmu_domain);
1696 BUG_ON(!smmu_group);
1697
1698 mutex_lock(&smmu_domain->init_mutex);
1699 BUG_ON(smmu_group->domain != smmu_domain);
1700
1701 smmu_group->ste.bypass = true;
1702 if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1703 dev_warn(dev, "failed to install bypass STE\n");
1704
1705 smmu_group->domain = NULL;
1706 mutex_unlock(&smmu_domain->init_mutex);
1707}
1708
1709static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1710 phys_addr_t paddr, size_t size, int prot)
1711{
1712 int ret;
1713 unsigned long flags;
1714 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1715 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1716
1717 if (!ops)
1718 return -ENODEV;
1719
1720 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1721 ret = ops->map(ops, iova, paddr, size, prot);
1722 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1723 return ret;
1724}
1725
1726static size_t
1727arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1728{
1729 size_t ret;
1730 unsigned long flags;
1731 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1732 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1733
1734 if (!ops)
1735 return 0;
1736
1737 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1738 ret = ops->unmap(ops, iova, size);
1739 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1740 return ret;
1741}
1742
1743static phys_addr_t
1744arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1745{
1746 phys_addr_t ret;
1747 unsigned long flags;
1748 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1749 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1750
1751 if (!ops)
1752 return 0;
1753
1754 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1755 ret = ops->iova_to_phys(ops, iova);
1756 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1757
1758 return ret;
1759}
1760
1761static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1762{
1763 *(u32 *)sidp = alias;
1764 return 0; /* Continue walking */
1765}
1766
1767static void __arm_smmu_release_pci_iommudata(void *data)
1768{
1769 kfree(data);
1770}
1771
1772static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1773{
1774 struct device_node *of_node;
Will Deacon941a8022015-08-11 16:25:10 +01001775 struct platform_device *smmu_pdev;
1776 struct arm_smmu_device *smmu = NULL;
Will Deacon48ec83b2015-05-27 17:25:59 +01001777 struct pci_bus *bus = pdev->bus;
1778
1779 /* Walk up to the root bus */
1780 while (!pci_is_root_bus(bus))
1781 bus = bus->parent;
1782
1783 /* Follow the "iommus" phandle from the host controller */
1784 of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1785 if (!of_node)
1786 return NULL;
1787
1788 /* See if we can find an SMMU corresponding to the phandle */
Will Deacon941a8022015-08-11 16:25:10 +01001789 smmu_pdev = of_find_device_by_node(of_node);
1790 if (smmu_pdev)
1791 smmu = platform_get_drvdata(smmu_pdev);
1792
Will Deacon48ec83b2015-05-27 17:25:59 +01001793 of_node_put(of_node);
1794 return smmu;
1795}
1796
1797static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1798{
1799 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1800
1801 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1802 limit *= 1UL << STRTAB_SPLIT;
1803
1804 return sid < limit;
1805}
1806
1807static int arm_smmu_add_device(struct device *dev)
1808{
1809 int i, ret;
1810 u32 sid, *sids;
1811 struct pci_dev *pdev;
1812 struct iommu_group *group;
1813 struct arm_smmu_group *smmu_group;
1814 struct arm_smmu_device *smmu;
1815
1816 /* We only support PCI, for now */
1817 if (!dev_is_pci(dev))
1818 return -ENODEV;
1819
1820 pdev = to_pci_dev(dev);
1821 group = iommu_group_get_for_dev(dev);
1822 if (IS_ERR(group))
1823 return PTR_ERR(group);
1824
1825 smmu_group = iommu_group_get_iommudata(group);
1826 if (!smmu_group) {
1827 smmu = arm_smmu_get_for_pci_dev(pdev);
1828 if (!smmu) {
1829 ret = -ENOENT;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001830 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001831 }
1832
1833 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1834 if (!smmu_group) {
1835 ret = -ENOMEM;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001836 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001837 }
1838
1839 smmu_group->ste.valid = true;
1840 smmu_group->smmu = smmu;
1841 iommu_group_set_iommudata(group, smmu_group,
1842 __arm_smmu_release_pci_iommudata);
1843 } else {
1844 smmu = smmu_group->smmu;
1845 }
1846
1847 /* Assume SID == RID until firmware tells us otherwise */
1848 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1849 for (i = 0; i < smmu_group->num_sids; ++i) {
1850 /* If we already know about this SID, then we're done */
1851 if (smmu_group->sids[i] == sid)
Peng Fan9a4a9d82015-11-20 16:56:18 +08001852 goto out_put_group;
Will Deacon48ec83b2015-05-27 17:25:59 +01001853 }
1854
1855 /* Check the SID is in range of the SMMU and our stream table */
1856 if (!arm_smmu_sid_in_range(smmu, sid)) {
1857 ret = -ERANGE;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001858 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001859 }
1860
1861 /* Ensure l2 strtab is initialised */
1862 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1863 ret = arm_smmu_init_l2_strtab(smmu, sid);
1864 if (ret)
Peng Fan9a4a9d82015-11-20 16:56:18 +08001865 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001866 }
1867
1868 /* Resize the SID array for the group */
1869 smmu_group->num_sids++;
1870 sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1871 GFP_KERNEL);
1872 if (!sids) {
1873 smmu_group->num_sids--;
1874 ret = -ENOMEM;
Peng Fan9a4a9d82015-11-20 16:56:18 +08001875 goto out_remove_dev;
Will Deacon48ec83b2015-05-27 17:25:59 +01001876 }
1877
1878 /* Add the new SID */
1879 sids[smmu_group->num_sids - 1] = sid;
1880 smmu_group->sids = sids;
Will Deacon48ec83b2015-05-27 17:25:59 +01001881
1882out_put_group:
1883 iommu_group_put(group);
Peng Fan9a4a9d82015-11-20 16:56:18 +08001884 return 0;
1885
1886out_remove_dev:
1887 iommu_group_remove_device(dev);
1888 iommu_group_put(group);
Will Deacon48ec83b2015-05-27 17:25:59 +01001889 return ret;
1890}
1891
1892static void arm_smmu_remove_device(struct device *dev)
1893{
1894 iommu_group_remove_device(dev);
1895}
1896
1897static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1898 enum iommu_attr attr, void *data)
1899{
1900 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1901
1902 switch (attr) {
1903 case DOMAIN_ATTR_NESTING:
1904 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1905 return 0;
1906 default:
1907 return -ENODEV;
1908 }
1909}
1910
1911static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1912 enum iommu_attr attr, void *data)
1913{
1914 int ret = 0;
1915 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1916
1917 mutex_lock(&smmu_domain->init_mutex);
1918
1919 switch (attr) {
1920 case DOMAIN_ATTR_NESTING:
1921 if (smmu_domain->smmu) {
1922 ret = -EPERM;
1923 goto out_unlock;
1924 }
1925
1926 if (*(int *)data)
1927 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1928 else
1929 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1930
1931 break;
1932 default:
1933 ret = -ENODEV;
1934 }
1935
1936out_unlock:
1937 mutex_unlock(&smmu_domain->init_mutex);
1938 return ret;
1939}
1940
1941static struct iommu_ops arm_smmu_ops = {
1942 .capable = arm_smmu_capable,
1943 .domain_alloc = arm_smmu_domain_alloc,
1944 .domain_free = arm_smmu_domain_free,
1945 .attach_dev = arm_smmu_attach_dev,
1946 .detach_dev = arm_smmu_detach_dev,
1947 .map = arm_smmu_map,
1948 .unmap = arm_smmu_unmap,
1949 .iova_to_phys = arm_smmu_iova_to_phys,
1950 .add_device = arm_smmu_add_device,
1951 .remove_device = arm_smmu_remove_device,
Joerg Roedelaf659932015-10-21 23:51:41 +02001952 .device_group = pci_device_group,
Will Deacon48ec83b2015-05-27 17:25:59 +01001953 .domain_get_attr = arm_smmu_domain_get_attr,
1954 .domain_set_attr = arm_smmu_domain_set_attr,
1955 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1956};
1957
1958/* Probing and initialisation functions */
1959static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1960 struct arm_smmu_queue *q,
1961 unsigned long prod_off,
1962 unsigned long cons_off,
1963 size_t dwords)
1964{
1965 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1966
Will Deacon04fa26c2015-10-30 18:12:41 +00001967 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
Will Deacon48ec83b2015-05-27 17:25:59 +01001968 if (!q->base) {
1969 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1970 qsz);
1971 return -ENOMEM;
1972 }
1973
1974 q->prod_reg = smmu->base + prod_off;
1975 q->cons_reg = smmu->base + cons_off;
1976 q->ent_dwords = dwords;
1977
1978 q->q_base = Q_BASE_RWA;
1979 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1980 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1981 << Q_BASE_LOG2SIZE_SHIFT;
1982
1983 q->prod = q->cons = 0;
1984 return 0;
1985}
1986
Will Deacon48ec83b2015-05-27 17:25:59 +01001987static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1988{
1989 int ret;
1990
1991 /* cmdq */
1992 spin_lock_init(&smmu->cmdq.lock);
1993 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1994 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1995 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00001996 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01001997
1998 /* evtq */
1999 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2000 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
2001 if (ret)
Will Deacon04fa26c2015-10-30 18:12:41 +00002002 return ret;
Will Deacon48ec83b2015-05-27 17:25:59 +01002003
2004 /* priq */
2005 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2006 return 0;
2007
Will Deacon04fa26c2015-10-30 18:12:41 +00002008 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2009 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
Will Deacon48ec83b2015-05-27 17:25:59 +01002010}
2011
2012static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2013{
2014 unsigned int i;
2015 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2016 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2017 void *strtab = smmu->strtab_cfg.strtab;
2018
2019 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2020 if (!cfg->l1_desc) {
2021 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2022 return -ENOMEM;
2023 }
2024
2025 for (i = 0; i < cfg->num_l1_ents; ++i) {
2026 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2027 strtab += STRTAB_L1_DESC_DWORDS << 3;
2028 }
2029
2030 return 0;
2031}
2032
2033static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2034{
2035 void *strtab;
2036 u64 reg;
Will Deacond2e88e72015-06-30 10:02:28 +01002037 u32 size, l1size;
Will Deacon48ec83b2015-05-27 17:25:59 +01002038 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2039
Will Deacon28c8b402015-07-16 17:50:12 +01002040 /*
2041 * If we can resolve everything with a single L2 table, then we
2042 * just need a single L1 descriptor. Otherwise, calculate the L1
2043 * size, capped to the SIDSIZE.
2044 */
2045 if (smmu->sid_bits < STRTAB_SPLIT) {
2046 size = 0;
2047 } else {
2048 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2049 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2050 }
Will Deacond2e88e72015-06-30 10:02:28 +01002051 cfg->num_l1_ents = 1 << size;
2052
2053 size += STRTAB_SPLIT;
2054 if (size < smmu->sid_bits)
Will Deacon48ec83b2015-05-27 17:25:59 +01002055 dev_warn(smmu->dev,
2056 "2-level strtab only covers %u/%u bits of SID\n",
Will Deacond2e88e72015-06-30 10:02:28 +01002057 size, smmu->sid_bits);
Will Deacon48ec83b2015-05-27 17:25:59 +01002058
Will Deacond2e88e72015-06-30 10:02:28 +01002059 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002060 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2061 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002062 if (!strtab) {
2063 dev_err(smmu->dev,
2064 "failed to allocate l1 stream table (%u bytes)\n",
2065 size);
2066 return -ENOMEM;
2067 }
2068 cfg->strtab = strtab;
2069
2070 /* Configure strtab_base_cfg for 2 levels */
2071 reg = STRTAB_BASE_CFG_FMT_2LVL;
2072 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2073 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2074 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2075 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2076 cfg->strtab_base_cfg = reg;
2077
Will Deacon04fa26c2015-10-30 18:12:41 +00002078 return arm_smmu_init_l1_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002079}
2080
2081static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2082{
2083 void *strtab;
2084 u64 reg;
2085 u32 size;
2086 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2087
2088 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
Will Deacon04fa26c2015-10-30 18:12:41 +00002089 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2090 GFP_KERNEL | __GFP_ZERO);
Will Deacon48ec83b2015-05-27 17:25:59 +01002091 if (!strtab) {
2092 dev_err(smmu->dev,
2093 "failed to allocate linear stream table (%u bytes)\n",
2094 size);
2095 return -ENOMEM;
2096 }
2097 cfg->strtab = strtab;
2098 cfg->num_l1_ents = 1 << smmu->sid_bits;
2099
2100 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2101 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2102 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2103 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2104 cfg->strtab_base_cfg = reg;
2105
2106 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2107 return 0;
2108}
2109
2110static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2111{
2112 u64 reg;
2113 int ret;
2114
2115 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2116 ret = arm_smmu_init_strtab_2lvl(smmu);
2117 else
2118 ret = arm_smmu_init_strtab_linear(smmu);
2119
2120 if (ret)
2121 return ret;
2122
2123 /* Set the strtab base address */
2124 reg = smmu->strtab_cfg.strtab_dma &
2125 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2126 reg |= STRTAB_BASE_RA;
2127 smmu->strtab_cfg.strtab_base = reg;
2128
2129 /* Allocate the first VMID for stage-2 bypass STEs */
2130 set_bit(0, smmu->vmid_map);
2131 return 0;
2132}
2133
Will Deacon48ec83b2015-05-27 17:25:59 +01002134static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2135{
2136 int ret;
2137
2138 ret = arm_smmu_init_queues(smmu);
2139 if (ret)
2140 return ret;
2141
Will Deacon04fa26c2015-10-30 18:12:41 +00002142 return arm_smmu_init_strtab(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002143}
2144
2145static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2146 unsigned int reg_off, unsigned int ack_off)
2147{
2148 u32 reg;
2149
2150 writel_relaxed(val, smmu->base + reg_off);
2151 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2152 1, ARM_SMMU_POLL_TIMEOUT_US);
2153}
2154
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002155static void arm_smmu_free_msis(void *data)
2156{
2157 struct device *dev = data;
2158 platform_msi_domain_free_irqs(dev);
2159}
2160
2161static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2162{
2163 phys_addr_t doorbell;
2164 struct device *dev = msi_desc_to_dev(desc);
2165 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2166 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2167
2168 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2169 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2170
2171 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2172 writel_relaxed(msg->data, smmu->base + cfg[1]);
2173 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2174}
2175
2176static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2177{
2178 struct msi_desc *desc;
2179 int ret, nvec = ARM_SMMU_MAX_MSIS;
2180 struct device *dev = smmu->dev;
2181
2182 /* Clear the MSI address regs */
2183 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2184 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2185
2186 if (smmu->features & ARM_SMMU_FEAT_PRI)
2187 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2188 else
2189 nvec--;
2190
2191 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2192 return;
2193
2194 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2195 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2196 if (ret) {
2197 dev_warn(dev, "failed to allocate MSIs\n");
2198 return;
2199 }
2200
2201 for_each_msi_entry(desc, dev) {
2202 switch (desc->platform.msi_index) {
2203 case EVTQ_MSI_INDEX:
2204 smmu->evtq.q.irq = desc->irq;
2205 break;
2206 case GERROR_MSI_INDEX:
2207 smmu->gerr_irq = desc->irq;
2208 break;
2209 case PRIQ_MSI_INDEX:
2210 smmu->priq.q.irq = desc->irq;
2211 break;
2212 default: /* Unknown */
2213 continue;
2214 }
2215 }
2216
2217 /* Add callback to free MSIs on teardown */
2218 devm_add_action(dev, arm_smmu_free_msis, dev);
2219}
2220
Will Deacon48ec83b2015-05-27 17:25:59 +01002221static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2222{
2223 int ret, irq;
Marc Zyngierccd63852015-07-15 11:55:18 +01002224 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002225
2226 /* Disable IRQs first */
2227 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2228 ARM_SMMU_IRQ_CTRLACK);
2229 if (ret) {
2230 dev_err(smmu->dev, "failed to disable irqs\n");
2231 return ret;
2232 }
2233
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002234 arm_smmu_setup_msis(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002235
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002236 /* Request interrupt lines */
Will Deacon48ec83b2015-05-27 17:25:59 +01002237 irq = smmu->evtq.q.irq;
2238 if (irq) {
2239 ret = devm_request_threaded_irq(smmu->dev, irq,
2240 arm_smmu_evtq_handler,
2241 arm_smmu_evtq_thread,
2242 0, "arm-smmu-v3-evtq", smmu);
2243 if (IS_ERR_VALUE(ret))
2244 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2245 }
2246
2247 irq = smmu->cmdq.q.irq;
2248 if (irq) {
2249 ret = devm_request_irq(smmu->dev, irq,
2250 arm_smmu_cmdq_sync_handler, 0,
2251 "arm-smmu-v3-cmdq-sync", smmu);
2252 if (IS_ERR_VALUE(ret))
2253 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2254 }
2255
2256 irq = smmu->gerr_irq;
2257 if (irq) {
2258 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2259 0, "arm-smmu-v3-gerror", smmu);
2260 if (IS_ERR_VALUE(ret))
2261 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2262 }
2263
2264 if (smmu->features & ARM_SMMU_FEAT_PRI) {
Will Deacon48ec83b2015-05-27 17:25:59 +01002265 irq = smmu->priq.q.irq;
2266 if (irq) {
2267 ret = devm_request_threaded_irq(smmu->dev, irq,
2268 arm_smmu_priq_handler,
2269 arm_smmu_priq_thread,
2270 0, "arm-smmu-v3-priq",
2271 smmu);
2272 if (IS_ERR_VALUE(ret))
2273 dev_warn(smmu->dev,
2274 "failed to enable priq irq\n");
Marc Zyngierccd63852015-07-15 11:55:18 +01002275 else
2276 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
Will Deacon48ec83b2015-05-27 17:25:59 +01002277 }
2278 }
2279
2280 /* Enable interrupt generation on the SMMU */
Marc Zyngierccd63852015-07-15 11:55:18 +01002281 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
Will Deacon48ec83b2015-05-27 17:25:59 +01002282 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2283 if (ret)
2284 dev_warn(smmu->dev, "failed to enable irqs\n");
2285
2286 return 0;
2287}
2288
2289static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2290{
2291 int ret;
2292
2293 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2294 if (ret)
2295 dev_err(smmu->dev, "failed to clear cr0\n");
2296
2297 return ret;
2298}
2299
2300static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2301{
2302 int ret;
2303 u32 reg, enables;
2304 struct arm_smmu_cmdq_ent cmd;
2305
2306 /* Clear CR0 and sync (disables SMMU and queue processing) */
2307 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2308 if (reg & CR0_SMMUEN)
2309 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2310
2311 ret = arm_smmu_device_disable(smmu);
2312 if (ret)
2313 return ret;
2314
2315 /* CR1 (table and queue memory attributes) */
2316 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2317 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2318 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2319 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2320 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2321 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2322 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2323
2324 /* CR2 (random crap) */
2325 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2326 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2327
2328 /* Stream table */
2329 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2330 smmu->base + ARM_SMMU_STRTAB_BASE);
2331 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2332 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2333
2334 /* Command queue */
2335 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2336 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2337 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2338
2339 enables = CR0_CMDQEN;
2340 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2341 ARM_SMMU_CR0ACK);
2342 if (ret) {
2343 dev_err(smmu->dev, "failed to enable command queue\n");
2344 return ret;
2345 }
2346
2347 /* Invalidate any cached configuration */
2348 cmd.opcode = CMDQ_OP_CFGI_ALL;
2349 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2350 cmd.opcode = CMDQ_OP_CMD_SYNC;
2351 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2352
2353 /* Invalidate any stale TLB entries */
2354 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2355 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2356 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2357 }
2358
2359 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2360 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2361 cmd.opcode = CMDQ_OP_CMD_SYNC;
2362 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2363
2364 /* Event queue */
2365 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2366 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2367 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2368
2369 enables |= CR0_EVTQEN;
2370 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2371 ARM_SMMU_CR0ACK);
2372 if (ret) {
2373 dev_err(smmu->dev, "failed to enable event queue\n");
2374 return ret;
2375 }
2376
2377 /* PRI queue */
2378 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2379 writeq_relaxed(smmu->priq.q.q_base,
2380 smmu->base + ARM_SMMU_PRIQ_BASE);
2381 writel_relaxed(smmu->priq.q.prod,
2382 smmu->base + ARM_SMMU_PRIQ_PROD);
2383 writel_relaxed(smmu->priq.q.cons,
2384 smmu->base + ARM_SMMU_PRIQ_CONS);
2385
2386 enables |= CR0_PRIQEN;
2387 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2388 ARM_SMMU_CR0ACK);
2389 if (ret) {
2390 dev_err(smmu->dev, "failed to enable PRI queue\n");
2391 return ret;
2392 }
2393 }
2394
2395 ret = arm_smmu_setup_irqs(smmu);
2396 if (ret) {
2397 dev_err(smmu->dev, "failed to setup irqs\n");
2398 return ret;
2399 }
2400
2401 /* Enable the SMMU interface */
2402 enables |= CR0_SMMUEN;
2403 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2404 ARM_SMMU_CR0ACK);
2405 if (ret) {
2406 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2407 return ret;
2408 }
2409
2410 return 0;
2411}
2412
2413static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2414{
2415 u32 reg;
2416 bool coherent;
2417 unsigned long pgsize_bitmap = 0;
2418
2419 /* IDR0 */
2420 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2421
2422 /* 2-level structures */
2423 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2424 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2425
2426 if (reg & IDR0_CD2L)
2427 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2428
2429 /*
2430 * Translation table endianness.
2431 * We currently require the same endianness as the CPU, but this
2432 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2433 */
2434 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2435 case IDR0_TTENDIAN_MIXED:
2436 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2437 break;
2438#ifdef __BIG_ENDIAN
2439 case IDR0_TTENDIAN_BE:
2440 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2441 break;
2442#else
2443 case IDR0_TTENDIAN_LE:
2444 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2445 break;
2446#endif
2447 default:
2448 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2449 return -ENXIO;
2450 }
2451
2452 /* Boolean feature flags */
2453 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2454 smmu->features |= ARM_SMMU_FEAT_PRI;
2455
2456 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2457 smmu->features |= ARM_SMMU_FEAT_ATS;
2458
2459 if (reg & IDR0_SEV)
2460 smmu->features |= ARM_SMMU_FEAT_SEV;
2461
2462 if (reg & IDR0_MSI)
2463 smmu->features |= ARM_SMMU_FEAT_MSI;
2464
2465 if (reg & IDR0_HYP)
2466 smmu->features |= ARM_SMMU_FEAT_HYP;
2467
2468 /*
2469 * The dma-coherent property is used in preference to the ID
2470 * register, but warn on mismatch.
2471 */
2472 coherent = of_dma_is_coherent(smmu->dev->of_node);
2473 if (coherent)
2474 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2475
2476 if (!!(reg & IDR0_COHACC) != coherent)
2477 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2478 coherent ? "true" : "false");
2479
Prem Mallappa6380be02015-12-14 22:01:23 +05302480 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2481 case IDR0_STALL_MODEL_STALL:
2482 /* Fallthrough */
2483 case IDR0_STALL_MODEL_FORCE:
Will Deacon48ec83b2015-05-27 17:25:59 +01002484 smmu->features |= ARM_SMMU_FEAT_STALLS;
Prem Mallappa6380be02015-12-14 22:01:23 +05302485 }
Will Deacon48ec83b2015-05-27 17:25:59 +01002486
2487 if (reg & IDR0_S1P)
2488 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2489
2490 if (reg & IDR0_S2P)
2491 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2492
2493 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2494 dev_err(smmu->dev, "no translation support!\n");
2495 return -ENXIO;
2496 }
2497
2498 /* We only support the AArch64 table format at present */
Will Deaconf0c453d2015-08-20 12:12:32 +01002499 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2500 case IDR0_TTF_AARCH32_64:
2501 smmu->ias = 40;
2502 /* Fallthrough */
2503 case IDR0_TTF_AARCH64:
2504 break;
2505 default:
Will Deacon48ec83b2015-05-27 17:25:59 +01002506 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2507 return -ENXIO;
2508 }
2509
2510 /* ASID/VMID sizes */
2511 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2512 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2513
2514 /* IDR1 */
2515 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2516 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2517 dev_err(smmu->dev, "embedded implementation not supported\n");
2518 return -ENXIO;
2519 }
2520
2521 /* Queue sizes, capped at 4k */
2522 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2523 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2524 if (!smmu->cmdq.q.max_n_shift) {
2525 /* Odd alignment restrictions on the base, so ignore for now */
2526 dev_err(smmu->dev, "unit-length command queue not supported\n");
2527 return -ENXIO;
2528 }
2529
2530 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2531 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2532 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2533 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2534
2535 /* SID/SSID sizes */
2536 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2537 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2538
2539 /* IDR5 */
2540 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2541
2542 /* Maximum number of outstanding stalls */
2543 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2544 & IDR5_STALL_MAX_MASK;
2545
2546 /* Page sizes */
2547 if (reg & IDR5_GRAN64K)
2548 pgsize_bitmap |= SZ_64K | SZ_512M;
2549 if (reg & IDR5_GRAN16K)
2550 pgsize_bitmap |= SZ_16K | SZ_32M;
2551 if (reg & IDR5_GRAN4K)
2552 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2553
2554 arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2555
2556 /* Output address size */
2557 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2558 case IDR5_OAS_32_BIT:
2559 smmu->oas = 32;
2560 break;
2561 case IDR5_OAS_36_BIT:
2562 smmu->oas = 36;
2563 break;
2564 case IDR5_OAS_40_BIT:
2565 smmu->oas = 40;
2566 break;
2567 case IDR5_OAS_42_BIT:
2568 smmu->oas = 42;
2569 break;
2570 case IDR5_OAS_44_BIT:
2571 smmu->oas = 44;
2572 break;
Will Deacon85430962015-08-03 10:35:40 +01002573 default:
2574 dev_info(smmu->dev,
2575 "unknown output address size. Truncating to 48-bit\n");
2576 /* Fallthrough */
Will Deacon48ec83b2015-05-27 17:25:59 +01002577 case IDR5_OAS_48_BIT:
2578 smmu->oas = 48;
Will Deacon48ec83b2015-05-27 17:25:59 +01002579 }
2580
2581 /* Set the DMA mask for our table walker */
2582 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2583 dev_warn(smmu->dev,
2584 "failed to set DMA mask for table walker\n");
2585
Will Deaconf0c453d2015-08-20 12:12:32 +01002586 smmu->ias = max(smmu->ias, smmu->oas);
Will Deacon48ec83b2015-05-27 17:25:59 +01002587
2588 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2589 smmu->ias, smmu->oas, smmu->features);
2590 return 0;
2591}
2592
2593static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2594{
2595 int irq, ret;
2596 struct resource *res;
2597 struct arm_smmu_device *smmu;
2598 struct device *dev = &pdev->dev;
2599
2600 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2601 if (!smmu) {
2602 dev_err(dev, "failed to allocate arm_smmu_device\n");
2603 return -ENOMEM;
2604 }
2605 smmu->dev = dev;
2606
2607 /* Base address */
2608 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2609 if (resource_size(res) + 1 < SZ_128K) {
2610 dev_err(dev, "MMIO region too small (%pr)\n", res);
2611 return -EINVAL;
2612 }
2613
2614 smmu->base = devm_ioremap_resource(dev, res);
2615 if (IS_ERR(smmu->base))
2616 return PTR_ERR(smmu->base);
2617
2618 /* Interrupt lines */
2619 irq = platform_get_irq_byname(pdev, "eventq");
2620 if (irq > 0)
2621 smmu->evtq.q.irq = irq;
2622
2623 irq = platform_get_irq_byname(pdev, "priq");
2624 if (irq > 0)
2625 smmu->priq.q.irq = irq;
2626
2627 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2628 if (irq > 0)
2629 smmu->cmdq.q.irq = irq;
2630
2631 irq = platform_get_irq_byname(pdev, "gerror");
2632 if (irq > 0)
2633 smmu->gerr_irq = irq;
2634
Zhen Lei5e929462015-07-07 04:30:18 +01002635 parse_driver_options(smmu);
2636
Will Deacon48ec83b2015-05-27 17:25:59 +01002637 /* Probe the h/w */
2638 ret = arm_smmu_device_probe(smmu);
2639 if (ret)
2640 return ret;
2641
2642 /* Initialise in-memory data structures */
2643 ret = arm_smmu_init_structures(smmu);
2644 if (ret)
2645 return ret;
2646
Marc Zyngier166bdbd2015-10-13 18:32:30 +01002647 /* Record our private device structure */
2648 platform_set_drvdata(pdev, smmu);
2649
Will Deacon48ec83b2015-05-27 17:25:59 +01002650 /* Reset the device */
Will Deacon04fa26c2015-10-30 18:12:41 +00002651 return arm_smmu_device_reset(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002652}
2653
2654static int arm_smmu_device_remove(struct platform_device *pdev)
2655{
Will Deacon941a8022015-08-11 16:25:10 +01002656 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
Will Deacon48ec83b2015-05-27 17:25:59 +01002657
2658 arm_smmu_device_disable(smmu);
Will Deacon48ec83b2015-05-27 17:25:59 +01002659 return 0;
2660}
2661
2662static struct of_device_id arm_smmu_of_match[] = {
2663 { .compatible = "arm,smmu-v3", },
2664 { },
2665};
2666MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2667
2668static struct platform_driver arm_smmu_driver = {
2669 .driver = {
2670 .name = "arm-smmu-v3",
2671 .of_match_table = of_match_ptr(arm_smmu_of_match),
2672 },
2673 .probe = arm_smmu_device_dt_probe,
2674 .remove = arm_smmu_device_remove,
2675};
2676
2677static int __init arm_smmu_init(void)
2678{
2679 struct device_node *np;
2680 int ret;
2681
2682 np = of_find_matching_node(NULL, arm_smmu_of_match);
2683 if (!np)
2684 return 0;
2685
2686 of_node_put(np);
2687
2688 ret = platform_driver_register(&arm_smmu_driver);
2689 if (ret)
2690 return ret;
2691
2692 return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2693}
2694
2695static void __exit arm_smmu_exit(void)
2696{
2697 return platform_driver_unregister(&arm_smmu_driver);
2698}
2699
2700subsys_initcall(arm_smmu_init);
2701module_exit(arm_smmu_exit);
2702
2703MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2704MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2705MODULE_LICENSE("GPL v2");