blob: 54cec066ba10c2791465a06618fec0a04fc078e9 [file] [log] [blame]
//! Checks for usage of const which the type is not `Freeze` (`Cell`-free).
//!
//! This lint is **warn** by default.
use std::ptr;
use clippy_utils::diagnostics::span_lint_and_then;
use clippy_utils::macros::macro_backtrace;
use clippy_utils::{def_path_def_ids, in_constant};
use if_chain::if_chain;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::{
BodyId, Expr, ExprKind, HirId, Impl, ImplItem, ImplItemKind, Item, ItemKind, Node, TraitItem, TraitItemKind, UnOp,
};
use rustc_lint::{LateContext, LateLintPass, Lint};
use rustc_middle::mir::interpret::{ErrorHandled, EvalToValTreeResult, GlobalId};
use rustc_middle::query::Key;
use rustc_middle::ty::adjustment::Adjust;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_session::{declare_tool_lint, impl_lint_pass};
use rustc_span::{sym, InnerSpan, Span};
use rustc_target::abi::VariantIdx;
// FIXME: this is a correctness problem but there's no suitable
// warn-by-default category.
declare_clippy_lint! {
/// ### What it does
/// Checks for declaration of `const` items which is interior
/// mutable (e.g., contains a `Cell`, `Mutex`, `AtomicXxxx`, etc.).
///
/// ### Why is this bad?
/// Consts are copied everywhere they are referenced, i.e.,
/// every time you refer to the const a fresh instance of the `Cell` or `Mutex`
/// or `AtomicXxxx` will be created, which defeats the whole purpose of using
/// these types in the first place.
///
/// The `const` should better be replaced by a `static` item if a global
/// variable is wanted, or replaced by a `const fn` if a constructor is wanted.
///
/// ### Known problems
/// A "non-constant" const item is a legacy way to supply an
/// initialized value to downstream `static` items (e.g., the
/// `std::sync::ONCE_INIT` constant). In this case the use of `const` is legit,
/// and this lint should be suppressed.
///
/// Even though the lint avoids triggering on a constant whose type has enums that have variants
/// with interior mutability, and its value uses non interior mutable variants (see
/// [#3962](https://github.com/rust-lang/rust-clippy/issues/3962) and
/// [#3825](https://github.com/rust-lang/rust-clippy/issues/3825) for examples);
/// it complains about associated constants without default values only based on its types;
/// which might not be preferable.
/// There're other enums plus associated constants cases that the lint cannot handle.
///
/// Types that have underlying or potential interior mutability trigger the lint whether
/// the interior mutable field is used or not. See issues
/// [#5812](https://github.com/rust-lang/rust-clippy/issues/5812) and
///
/// ### Example
/// ```no_run
/// use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
///
/// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12);
/// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged
/// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct
/// ```
///
/// Use instead:
/// ```no_run
/// # use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
/// static STATIC_ATOM: AtomicUsize = AtomicUsize::new(15);
/// STATIC_ATOM.store(9, SeqCst);
/// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance
/// ```
#[clippy::version = "pre 1.29.0"]
pub DECLARE_INTERIOR_MUTABLE_CONST,
style,
"declaring `const` with interior mutability"
}
// FIXME: this is a correctness problem but there's no suitable
// warn-by-default category.
declare_clippy_lint! {
/// ### What it does
/// Checks if `const` items which is interior mutable (e.g.,
/// contains a `Cell`, `Mutex`, `AtomicXxxx`, etc.) has been borrowed directly.
///
/// ### Why is this bad?
/// Consts are copied everywhere they are referenced, i.e.,
/// every time you refer to the const a fresh instance of the `Cell` or `Mutex`
/// or `AtomicXxxx` will be created, which defeats the whole purpose of using
/// these types in the first place.
///
/// The `const` value should be stored inside a `static` item.
///
/// ### Known problems
/// When an enum has variants with interior mutability, use of its non
/// interior mutable variants can generate false positives. See issue
/// [#3962](https://github.com/rust-lang/rust-clippy/issues/3962)
///
/// Types that have underlying or potential interior mutability trigger the lint whether
/// the interior mutable field is used or not. See issues
/// [#5812](https://github.com/rust-lang/rust-clippy/issues/5812) and
/// [#3825](https://github.com/rust-lang/rust-clippy/issues/3825)
///
/// ### Example
/// ```no_run
/// use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
/// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12);
///
/// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged
/// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct
/// ```
///
/// Use instead:
/// ```no_run
/// use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
/// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12);
///
/// static STATIC_ATOM: AtomicUsize = CONST_ATOM;
/// STATIC_ATOM.store(9, SeqCst);
/// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance
/// ```
#[clippy::version = "pre 1.29.0"]
pub BORROW_INTERIOR_MUTABLE_CONST,
style,
"referencing `const` with interior mutability"
}
#[derive(Copy, Clone)]
enum Source {
Item { item: Span },
Assoc { item: Span },
Expr { expr: Span },
}
impl Source {
#[must_use]
fn lint(&self) -> (&'static Lint, &'static str, Span) {
match self {
Self::Item { item } | Self::Assoc { item, .. } => (
DECLARE_INTERIOR_MUTABLE_CONST,
"a `const` item should never be interior mutable",
*item,
),
Self::Expr { expr } => (
BORROW_INTERIOR_MUTABLE_CONST,
"a `const` item with interior mutability should not be borrowed",
*expr,
),
}
}
}
fn lint(cx: &LateContext<'_>, source: Source) {
let (lint, msg, span) = source.lint();
span_lint_and_then(cx, lint, span, msg, |diag| {
if span.from_expansion() {
return; // Don't give suggestions into macros.
}
match source {
Source::Item { .. } => {
let const_kw_span = span.from_inner(InnerSpan::new(0, 5));
diag.span_label(const_kw_span, "make this a static item (maybe with lazy_static)");
},
Source::Assoc { .. } => (),
Source::Expr { .. } => {
diag.help("assign this const to a local or static variable, and use the variable here");
},
}
});
}
#[derive(Clone)]
pub struct NonCopyConst {
ignore_interior_mutability: Vec<String>,
ignore_mut_def_ids: FxHashSet<DefId>,
}
impl_lint_pass!(NonCopyConst => [DECLARE_INTERIOR_MUTABLE_CONST, BORROW_INTERIOR_MUTABLE_CONST]);
impl NonCopyConst {
pub fn new(ignore_interior_mutability: Vec<String>) -> Self {
Self {
ignore_interior_mutability,
ignore_mut_def_ids: FxHashSet::default(),
}
}
fn is_ty_ignored(&self, ty: Ty<'_>) -> bool {
matches!(ty.ty_adt_id(), Some(adt_id) if self.ignore_mut_def_ids.contains(&adt_id))
}
fn is_unfrozen<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
// Ignore types whose layout is unknown since `is_freeze` reports every generic types as `!Freeze`,
// making it indistinguishable from `UnsafeCell`. i.e. it isn't a tool to prove a type is
// 'unfrozen'. However, this code causes a false negative in which
// a type contains a layout-unknown type, but also an unsafe cell like `const CELL: Cell<T>`.
// Yet, it's better than `ty.has_type_flags(TypeFlags::HAS_TY_PARAM | TypeFlags::HAS_PROJECTION)`
// since it works when a pointer indirection involves (`Cell<*const T>`).
// Making up a `ParamEnv` where every generic params and assoc types are `Freeze`is another option;
// but I'm not sure whether it's a decent way, if possible.
cx.tcx.layout_of(cx.param_env.and(ty)).is_ok() && !ty.is_freeze(cx.tcx, cx.param_env)
}
fn is_value_unfrozen_raw_inner<'tcx>(&self, cx: &LateContext<'tcx>, val: ty::ValTree<'tcx>, ty: Ty<'tcx>) -> bool {
if self.is_ty_ignored(ty) {
return false;
}
match *ty.kind() {
// the fact that we have to dig into every structs to search enums
// leads us to the point checking `UnsafeCell` directly is the only option.
ty::Adt(ty_def, ..) if ty_def.is_unsafe_cell() => true,
// As of 2022-09-08 miri doesn't track which union field is active so there's no safe way to check the
// contained value.
ty::Adt(def, ..) if def.is_union() => false,
ty::Array(ty, _) => val
.unwrap_branch()
.iter()
.any(|field| self.is_value_unfrozen_raw_inner(cx, *field, ty)),
ty::Adt(def, _) if def.is_union() => false,
ty::Adt(def, args) if def.is_enum() => {
let (&variant_index, fields) = val.unwrap_branch().split_first().unwrap();
let variant_index = VariantIdx::from_u32(variant_index.unwrap_leaf().try_to_u32().ok().unwrap());
fields
.iter()
.copied()
.zip(
def.variants()[variant_index]
.fields
.iter()
.map(|field| field.ty(cx.tcx, args)),
)
.any(|(field, ty)| self.is_value_unfrozen_raw_inner(cx, field, ty))
},
ty::Adt(def, args) => val
.unwrap_branch()
.iter()
.zip(def.non_enum_variant().fields.iter().map(|field| field.ty(cx.tcx, args)))
.any(|(field, ty)| self.is_value_unfrozen_raw_inner(cx, *field, ty)),
ty::Tuple(tys) => val
.unwrap_branch()
.iter()
.zip(tys)
.any(|(field, ty)| self.is_value_unfrozen_raw_inner(cx, *field, ty)),
_ => false,
}
}
fn is_value_unfrozen_raw<'tcx>(
&self,
cx: &LateContext<'tcx>,
result: Result<Option<ty::ValTree<'tcx>>, ErrorHandled>,
ty: Ty<'tcx>,
) -> bool {
result.map_or_else(
|err| {
// Consider `TooGeneric` cases as being unfrozen.
// This causes a false positive where an assoc const whose type is unfrozen
// have a value that is a frozen variant with a generic param (an example is
// `declare_interior_mutable_const::enums::BothOfCellAndGeneric::GENERIC_VARIANT`).
// However, it prevents a number of false negatives that is, I think, important:
// 1. assoc consts in trait defs referring to consts of themselves (an example is
// `declare_interior_mutable_const::traits::ConcreteTypes::ANOTHER_ATOMIC`).
// 2. a path expr referring to assoc consts whose type is doesn't have any frozen variants in trait
// defs (i.e. without substitute for `Self`). (e.g. borrowing
// `borrow_interior_mutable_const::trait::ConcreteTypes::ATOMIC`)
// 3. similar to the false positive above; but the value is an unfrozen variant, or the type has no
// enums. (An example is
// `declare_interior_mutable_const::enums::BothOfCellAndGeneric::UNFROZEN_VARIANT` and
// `declare_interior_mutable_const::enums::BothOfCellAndGeneric::NO_ENUM`).
// One might be able to prevent these FNs correctly, and replace this with `false`;
// e.g. implementing `has_frozen_variant` described above, and not running this function
// when the type doesn't have any frozen variants would be the 'correct' way for the 2nd
// case (that actually removes another suboptimal behavior (I won't say 'false positive') where,
// similar to 2., but with the a frozen variant) (e.g. borrowing
// `borrow_interior_mutable_const::enums::AssocConsts::TO_BE_FROZEN_VARIANT`).
// I chose this way because unfrozen enums as assoc consts are rare (or, hopefully, none).
matches!(err, ErrorHandled::TooGeneric(..))
},
|val| val.map_or(true, |val| self.is_value_unfrozen_raw_inner(cx, val, ty)),
)
}
fn is_value_unfrozen_poly<'tcx>(&self, cx: &LateContext<'tcx>, body_id: BodyId, ty: Ty<'tcx>) -> bool {
let def_id = body_id.hir_id.owner.to_def_id();
let args = ty::GenericArgs::identity_for_item(cx.tcx, def_id);
let instance = ty::Instance::new(def_id, args);
let cid = rustc_middle::mir::interpret::GlobalId {
instance,
promoted: None,
};
let param_env = cx.tcx.param_env(def_id).with_reveal_all_normalized(cx.tcx);
let result = cx.tcx.const_eval_global_id_for_typeck(param_env, cid, None);
self.is_value_unfrozen_raw(cx, result, ty)
}
fn is_value_unfrozen_expr<'tcx>(&self, cx: &LateContext<'tcx>, hir_id: HirId, def_id: DefId, ty: Ty<'tcx>) -> bool {
let args = cx.typeck_results().node_args(hir_id);
let result = Self::const_eval_resolve(cx.tcx, cx.param_env, ty::UnevaluatedConst::new(def_id, args), None);
self.is_value_unfrozen_raw(cx, result, ty)
}
pub fn const_eval_resolve<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
ct: ty::UnevaluatedConst<'tcx>,
span: Option<Span>,
) -> EvalToValTreeResult<'tcx> {
match ty::Instance::resolve(tcx, param_env, ct.def, ct.args) {
Ok(Some(instance)) => {
let cid = GlobalId {
instance,
promoted: None,
};
tcx.const_eval_global_id_for_typeck(param_env, cid, span)
},
Ok(None) => Err(ErrorHandled::TooGeneric(span.unwrap_or(rustc_span::DUMMY_SP))),
Err(err) => Err(ErrorHandled::Reported(err.into(), span.unwrap_or(rustc_span::DUMMY_SP))),
}
}
}
impl<'tcx> LateLintPass<'tcx> for NonCopyConst {
fn check_crate(&mut self, cx: &LateContext<'tcx>) {
self.ignore_mut_def_ids.clear();
let mut path = Vec::new();
for ty in &self.ignore_interior_mutability {
path.extend(ty.split("::"));
for id in def_path_def_ids(cx, &path[..]) {
self.ignore_mut_def_ids.insert(id);
}
path.clear();
}
}
fn check_item(&mut self, cx: &LateContext<'tcx>, it: &'tcx Item<'_>) {
if let ItemKind::Const(.., body_id) = it.kind {
let ty = cx.tcx.type_of(it.owner_id).instantiate_identity();
if !ignored_macro(cx, it)
&& !self.is_ty_ignored(ty)
&& Self::is_unfrozen(cx, ty)
&& self.is_value_unfrozen_poly(cx, body_id, ty)
{
lint(cx, Source::Item { item: it.span });
}
}
}
fn check_trait_item(&mut self, cx: &LateContext<'tcx>, trait_item: &'tcx TraitItem<'_>) {
if let TraitItemKind::Const(_, body_id_opt) = &trait_item.kind {
let ty = cx.tcx.type_of(trait_item.owner_id).instantiate_identity();
// Normalize assoc types because ones originated from generic params
// bounded other traits could have their bound.
let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
if !self.is_ty_ignored(ty) && Self::is_unfrozen(cx, normalized)
// When there's no default value, lint it only according to its type;
// in other words, lint consts whose value *could* be unfrozen, not definitely is.
// This feels inconsistent with how the lint treats generic types,
// which avoids linting types which potentially become unfrozen.
// One could check whether an unfrozen type have a *frozen variant*
// (like `body_id_opt.map_or_else(|| !has_frozen_variant(...), ...)`),
// and do the same as the case of generic types at impl items.
// Note that it isn't sufficient to check if it has an enum
// since all of that enum's variants can be unfrozen:
// i.e. having an enum doesn't necessary mean a type has a frozen variant.
// And, implementing it isn't a trivial task; it'll probably end up
// re-implementing the trait predicate evaluation specific to `Freeze`.
&& body_id_opt.map_or(true, |body_id| self.is_value_unfrozen_poly(cx, body_id, normalized))
{
lint(cx, Source::Assoc { item: trait_item.span });
}
}
}
fn check_impl_item(&mut self, cx: &LateContext<'tcx>, impl_item: &'tcx ImplItem<'_>) {
if let ImplItemKind::Const(_, body_id) = &impl_item.kind {
let item_def_id = cx.tcx.hir().get_parent_item(impl_item.hir_id()).def_id;
let item = cx.tcx.hir().expect_item(item_def_id);
match &item.kind {
ItemKind::Impl(Impl {
of_trait: Some(of_trait_ref),
..
}) => {
if_chain! {
// Lint a trait impl item only when the definition is a generic type,
// assuming an assoc const is not meant to be an interior mutable type.
if let Some(of_trait_def_id) = of_trait_ref.trait_def_id();
if let Some(of_assoc_item) = cx
.tcx
.associated_item(impl_item.owner_id)
.trait_item_def_id;
if cx
.tcx
.layout_of(cx.tcx.param_env(of_trait_def_id).and(
// Normalize assoc types because ones originated from generic params
// bounded other traits could have their bound at the trait defs;
// and, in that case, the definition is *not* generic.
cx.tcx.normalize_erasing_regions(
cx.tcx.param_env(of_trait_def_id),
cx.tcx.type_of(of_assoc_item).instantiate_identity(),
),
))
.is_err();
// If there were a function like `has_frozen_variant` described above,
// we should use here as a frozen variant is a potential to be frozen
// similar to unknown layouts.
// e.g. `layout_of(...).is_err() || has_frozen_variant(...);`
let ty = cx.tcx.type_of(impl_item.owner_id).instantiate_identity();
let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
if !self.is_ty_ignored(ty) && Self::is_unfrozen(cx, normalized);
if self.is_value_unfrozen_poly(cx, *body_id, normalized);
then {
lint(
cx,
Source::Assoc {
item: impl_item.span,
},
);
}
}
},
ItemKind::Impl(Impl { of_trait: None, .. }) => {
let ty = cx.tcx.type_of(impl_item.owner_id).instantiate_identity();
// Normalize assoc types originated from generic params.
let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
if !self.is_ty_ignored(ty)
&& Self::is_unfrozen(cx, ty)
&& self.is_value_unfrozen_poly(cx, *body_id, normalized)
{
lint(cx, Source::Assoc { item: impl_item.span });
}
},
_ => (),
}
}
}
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if let ExprKind::Path(qpath) = &expr.kind {
// Only lint if we use the const item inside a function.
if in_constant(cx, expr.hir_id) {
return;
}
// Make sure it is a const item.
let Res::Def(DefKind::Const | DefKind::AssocConst, item_def_id) = cx.qpath_res(qpath, expr.hir_id) else {
return;
};
// Climb up to resolve any field access and explicit referencing.
let mut cur_expr = expr;
let mut dereferenced_expr = expr;
let mut needs_check_adjustment = true;
loop {
let parent_id = cx.tcx.hir().parent_id(cur_expr.hir_id);
if parent_id == cur_expr.hir_id {
break;
}
if let Some(Node::Expr(parent_expr)) = cx.tcx.hir().find(parent_id) {
match &parent_expr.kind {
ExprKind::AddrOf(..) => {
// `&e` => `e` must be referenced.
needs_check_adjustment = false;
},
ExprKind::Field(..) => {
needs_check_adjustment = true;
// Check whether implicit dereferences happened;
// if so, no need to go further up
// because of the same reason as the `ExprKind::Unary` case.
if cx
.typeck_results()
.expr_adjustments(dereferenced_expr)
.iter()
.any(|adj| matches!(adj.kind, Adjust::Deref(_)))
{
break;
}
dereferenced_expr = parent_expr;
},
ExprKind::Index(e, _, _) if ptr::eq(&**e, cur_expr) => {
// `e[i]` => desugared to `*Index::index(&e, i)`,
// meaning `e` must be referenced.
// no need to go further up since a method call is involved now.
needs_check_adjustment = false;
break;
},
ExprKind::Unary(UnOp::Deref, _) => {
// `*e` => desugared to `*Deref::deref(&e)`,
// meaning `e` must be referenced.
// no need to go further up since a method call is involved now.
needs_check_adjustment = false;
break;
},
_ => break,
}
cur_expr = parent_expr;
} else {
break;
}
}
let ty = if needs_check_adjustment {
let adjustments = cx.typeck_results().expr_adjustments(dereferenced_expr);
if let Some(i) = adjustments
.iter()
.position(|adj| matches!(adj.kind, Adjust::Borrow(_) | Adjust::Deref(_)))
{
if i == 0 {
cx.typeck_results().expr_ty(dereferenced_expr)
} else {
adjustments[i - 1].target
}
} else {
// No borrow adjustments means the entire const is moved.
return;
}
} else {
cx.typeck_results().expr_ty(dereferenced_expr)
};
if !self.is_ty_ignored(ty)
&& Self::is_unfrozen(cx, ty)
&& self.is_value_unfrozen_expr(cx, expr.hir_id, item_def_id, ty)
{
lint(cx, Source::Expr { expr: expr.span });
}
}
}
}
fn ignored_macro(cx: &LateContext<'_>, it: &rustc_hir::Item<'_>) -> bool {
macro_backtrace(it.span).any(|macro_call| {
matches!(
cx.tcx.get_diagnostic_name(macro_call.def_id),
Some(sym::thread_local_macro)
)
})
}