blob: b0e6b38c1904130fe34d7fa13feac7bce80cff03 [file] [log] [blame]
Dan Albert287553d2017-02-16 10:47:51 -08001/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)queue.h 8.5 (Berkeley) 8/20/94
30 */
31
32#ifndef _SYS_QUEUE_H_
33#define _SYS_QUEUE_H_
34
35/*
36 * This file defines five types of data structures: singly-linked lists,
37 * lists, simple queues, tail queues, and circular queues.
38 *
39 * A singly-linked list is headed by a single forward pointer. The
40 * elements are singly linked for minimum space and pointer manipulation
41 * overhead at the expense of O(n) removal for arbitrary elements. New
42 * elements can be added to the list after an existing element or at the
43 * head of the list. Elements being removed from the head of the list
44 * should use the explicit macro for this purpose for optimum
45 * efficiency. A singly-linked list may only be traversed in the forward
46 * direction. Singly-linked lists are ideal for applications with large
47 * datasets and few or no removals or for implementing a LIFO queue.
48 *
49 * A list is headed by a single forward pointer (or an array of forward
50 * pointers for a hash table header). The elements are doubly linked
51 * so that an arbitrary element can be removed without a need to
52 * traverse the list. New elements can be added to the list before
53 * or after an existing element or at the head of the list. A list
54 * may only be traversed in the forward direction.
55 *
56 * A simple queue is headed by a pair of pointers, one the head of the
57 * list and the other to the tail of the list. The elements are singly
58 * linked to save space, so elements can only be removed from the
59 * head of the list. New elements can be added to the list after
60 * an existing element, at the head of the list, or at the end of the
61 * list. A simple queue may only be traversed in the forward direction.
62 *
63 * A tail queue is headed by a pair of pointers, one to the head of the
64 * list and the other to the tail of the list. The elements are doubly
65 * linked so that an arbitrary element can be removed without a need to
66 * traverse the list. New elements can be added to the list before or
67 * after an existing element, at the head of the list, or at the end of
68 * the list. A tail queue may be traversed in either direction.
69 *
70 * A circle queue is headed by a pair of pointers, one to the head of the
71 * list and the other to the tail of the list. The elements are doubly
72 * linked so that an arbitrary element can be removed without a need to
73 * traverse the list. New elements can be added to the list before or after
74 * an existing element, at the head of the list, or at the end of the list.
75 * A circle queue may be traversed in either direction, but has a more
76 * complex end of list detection.
77 *
78 * For details on the use of these macros, see the queue(3) manual page.
79 */
80
81/*
82 * List definitions.
83 */
84#define LIST_HEAD(name, type) \
85struct name { \
86 struct type *lh_first; /* first element */ \
87}
88
89#define LIST_HEAD_INITIALIZER(head) \
90 { NULL }
91
92#define LIST_ENTRY(type) \
93struct { \
94 struct type *le_next; /* next element */ \
95 struct type **le_prev; /* address of previous next element */ \
96}
97
98/*
99 * List functions.
100 */
101#define LIST_INIT(head) do { \
102 (head)->lh_first = NULL; \
103} while (/*CONSTCOND*/0)
104
105#define LIST_INSERT_AFTER(listelm, elm, field) do { \
106 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
107 (listelm)->field.le_next->field.le_prev = \
108 &(elm)->field.le_next; \
109 (listelm)->field.le_next = (elm); \
110 (elm)->field.le_prev = &(listelm)->field.le_next; \
111} while (/*CONSTCOND*/0)
112
113#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
114 (elm)->field.le_prev = (listelm)->field.le_prev; \
115 (elm)->field.le_next = (listelm); \
116 *(listelm)->field.le_prev = (elm); \
117 (listelm)->field.le_prev = &(elm)->field.le_next; \
118} while (/*CONSTCOND*/0)
119
120#define LIST_INSERT_HEAD(head, elm, field) do { \
121 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
122 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
123 (head)->lh_first = (elm); \
124 (elm)->field.le_prev = &(head)->lh_first; \
125} while (/*CONSTCOND*/0)
126
127#define LIST_REMOVE(elm, field) do { \
128 if ((elm)->field.le_next != NULL) \
129 (elm)->field.le_next->field.le_prev = \
130 (elm)->field.le_prev; \
131 *(elm)->field.le_prev = (elm)->field.le_next; \
132} while (/*CONSTCOND*/0)
133
134#define LIST_FOREACH(var, head, field) \
135 for ((var) = ((head)->lh_first); \
136 (var); \
137 (var) = ((var)->field.le_next))
138
139/*
140 * List access methods.
141 */
142#define LIST_EMPTY(head) ((head)->lh_first == NULL)
143#define LIST_FIRST(head) ((head)->lh_first)
144#define LIST_NEXT(elm, field) ((elm)->field.le_next)
145
146
147/*
148 * Singly-linked List definitions.
149 */
150#define SLIST_HEAD(name, type) \
151struct name { \
152 struct type *slh_first; /* first element */ \
153}
154
155#define SLIST_HEAD_INITIALIZER(head) \
156 { NULL }
157
158#define SLIST_ENTRY(type) \
159struct { \
160 struct type *sle_next; /* next element */ \
161}
162
163/*
164 * Singly-linked List functions.
165 */
166#define SLIST_INIT(head) do { \
167 (head)->slh_first = NULL; \
168} while (/*CONSTCOND*/0)
169
170#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
171 (elm)->field.sle_next = (slistelm)->field.sle_next; \
172 (slistelm)->field.sle_next = (elm); \
173} while (/*CONSTCOND*/0)
174
175#define SLIST_INSERT_HEAD(head, elm, field) do { \
176 (elm)->field.sle_next = (head)->slh_first; \
177 (head)->slh_first = (elm); \
178} while (/*CONSTCOND*/0)
179
180#define SLIST_REMOVE_HEAD(head, field) do { \
181 (head)->slh_first = (head)->slh_first->field.sle_next; \
182} while (/*CONSTCOND*/0)
183
184#define SLIST_REMOVE(head, elm, type, field) do { \
185 if ((head)->slh_first == (elm)) { \
186 SLIST_REMOVE_HEAD((head), field); \
187 } \
188 else { \
189 struct type *curelm = (head)->slh_first; \
190 while(curelm->field.sle_next != (elm)) \
191 curelm = curelm->field.sle_next; \
192 curelm->field.sle_next = \
193 curelm->field.sle_next->field.sle_next; \
194 } \
195} while (/*CONSTCOND*/0)
196
197#define SLIST_FOREACH(var, head, field) \
198 for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
199
200/*
201 * Singly-linked List access methods.
202 */
203#define SLIST_EMPTY(head) ((head)->slh_first == NULL)
204#define SLIST_FIRST(head) ((head)->slh_first)
205#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
206
207
208/*
209 * Singly-linked Tail queue declarations.
210 */
211#define STAILQ_HEAD(name, type) \
212struct name { \
213 struct type *stqh_first; /* first element */ \
214 struct type **stqh_last; /* addr of last next element */ \
215}
216
217#define STAILQ_HEAD_INITIALIZER(head) \
218 { NULL, &(head).stqh_first }
219
220#define STAILQ_ENTRY(type) \
221struct { \
222 struct type *stqe_next; /* next element */ \
223}
224
225/*
226 * Singly-linked Tail queue functions.
227 */
228#define STAILQ_INIT(head) do { \
229 (head)->stqh_first = NULL; \
230 (head)->stqh_last = &(head)->stqh_first; \
231} while (/*CONSTCOND*/0)
232
233#define STAILQ_INSERT_HEAD(head, elm, field) do { \
234 if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
235 (head)->stqh_last = &(elm)->field.stqe_next; \
236 (head)->stqh_first = (elm); \
237} while (/*CONSTCOND*/0)
238
239#define STAILQ_INSERT_TAIL(head, elm, field) do { \
240 (elm)->field.stqe_next = NULL; \
241 *(head)->stqh_last = (elm); \
242 (head)->stqh_last = &(elm)->field.stqe_next; \
243} while (/*CONSTCOND*/0)
244
245#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
246 if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
247 (head)->stqh_last = &(elm)->field.stqe_next; \
248 (listelm)->field.stqe_next = (elm); \
249} while (/*CONSTCOND*/0)
250
251#define STAILQ_REMOVE_HEAD(head, field) do { \
252 if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
253 (head)->stqh_last = &(head)->stqh_first; \
254} while (/*CONSTCOND*/0)
255
256#define STAILQ_REMOVE(head, elm, type, field) do { \
257 if ((head)->stqh_first == (elm)) { \
258 STAILQ_REMOVE_HEAD((head), field); \
259 } else { \
260 struct type *curelm = (head)->stqh_first; \
261 while (curelm->field.stqe_next != (elm)) \
262 curelm = curelm->field.stqe_next; \
263 if ((curelm->field.stqe_next = \
264 curelm->field.stqe_next->field.stqe_next) == NULL) \
265 (head)->stqh_last = &(curelm)->field.stqe_next; \
266 } \
267} while (/*CONSTCOND*/0)
268
269#define STAILQ_FOREACH(var, head, field) \
270 for ((var) = ((head)->stqh_first); \
271 (var); \
272 (var) = ((var)->field.stqe_next))
273
274/*
275 * Singly-linked Tail queue access methods.
276 */
277#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
278#define STAILQ_FIRST(head) ((head)->stqh_first)
279#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
280
281
282/*
283 * Simple queue definitions.
284 */
285#define SIMPLEQ_HEAD(name, type) \
286struct name { \
287 struct type *sqh_first; /* first element */ \
288 struct type **sqh_last; /* addr of last next element */ \
289}
290
291#define SIMPLEQ_HEAD_INITIALIZER(head) \
292 { NULL, &(head).sqh_first }
293
294#define SIMPLEQ_ENTRY(type) \
295struct { \
296 struct type *sqe_next; /* next element */ \
297}
298
299/*
300 * Simple queue functions.
301 */
302#define SIMPLEQ_INIT(head) do { \
303 (head)->sqh_first = NULL; \
304 (head)->sqh_last = &(head)->sqh_first; \
305} while (/*CONSTCOND*/0)
306
307#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
308 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
309 (head)->sqh_last = &(elm)->field.sqe_next; \
310 (head)->sqh_first = (elm); \
311} while (/*CONSTCOND*/0)
312
313#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
314 (elm)->field.sqe_next = NULL; \
315 *(head)->sqh_last = (elm); \
316 (head)->sqh_last = &(elm)->field.sqe_next; \
317} while (/*CONSTCOND*/0)
318
319#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
320 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
321 (head)->sqh_last = &(elm)->field.sqe_next; \
322 (listelm)->field.sqe_next = (elm); \
323} while (/*CONSTCOND*/0)
324
325#define SIMPLEQ_REMOVE_HEAD(head, field) do { \
326 if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
327 (head)->sqh_last = &(head)->sqh_first; \
328} while (/*CONSTCOND*/0)
329
330#define SIMPLEQ_REMOVE(head, elm, type, field) do { \
331 if ((head)->sqh_first == (elm)) { \
332 SIMPLEQ_REMOVE_HEAD((head), field); \
333 } else { \
334 struct type *curelm = (head)->sqh_first; \
335 while (curelm->field.sqe_next != (elm)) \
336 curelm = curelm->field.sqe_next; \
337 if ((curelm->field.sqe_next = \
338 curelm->field.sqe_next->field.sqe_next) == NULL) \
339 (head)->sqh_last = &(curelm)->field.sqe_next; \
340 } \
341} while (/*CONSTCOND*/0)
342
343#define SIMPLEQ_FOREACH(var, head, field) \
344 for ((var) = ((head)->sqh_first); \
345 (var); \
346 (var) = ((var)->field.sqe_next))
347
348/*
349 * Simple queue access methods.
350 */
351#define SIMPLEQ_EMPTY(head) ((head)->sqh_first == NULL)
352#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
353#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
354
355
356/*
357 * Tail queue definitions.
358 */
359#define _TAILQ_HEAD(name, type, qual) \
360struct name { \
361 qual type *tqh_first; /* first element */ \
362 qual type *qual *tqh_last; /* addr of last next element */ \
363}
364#define TAILQ_HEAD(name, type) _TAILQ_HEAD(name, struct type,)
365
366#define TAILQ_HEAD_INITIALIZER(head) \
367 { NULL, &(head).tqh_first }
368
369#define _TAILQ_ENTRY(type, qual) \
370struct { \
371 qual type *tqe_next; /* next element */ \
372 qual type *qual *tqe_prev; /* address of previous next element */\
373}
374#define TAILQ_ENTRY(type) _TAILQ_ENTRY(struct type,)
375
376/*
377 * Tail queue functions.
378 */
379#define TAILQ_INIT(head) do { \
380 (head)->tqh_first = NULL; \
381 (head)->tqh_last = &(head)->tqh_first; \
382} while (/*CONSTCOND*/0)
383
384#define TAILQ_INSERT_HEAD(head, elm, field) do { \
385 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
386 (head)->tqh_first->field.tqe_prev = \
387 &(elm)->field.tqe_next; \
388 else \
389 (head)->tqh_last = &(elm)->field.tqe_next; \
390 (head)->tqh_first = (elm); \
391 (elm)->field.tqe_prev = &(head)->tqh_first; \
392} while (/*CONSTCOND*/0)
393
394#define TAILQ_INSERT_TAIL(head, elm, field) do { \
395 (elm)->field.tqe_next = NULL; \
396 (elm)->field.tqe_prev = (head)->tqh_last; \
397 *(head)->tqh_last = (elm); \
398 (head)->tqh_last = &(elm)->field.tqe_next; \
399} while (/*CONSTCOND*/0)
400
401#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
402 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
403 (elm)->field.tqe_next->field.tqe_prev = \
404 &(elm)->field.tqe_next; \
405 else \
406 (head)->tqh_last = &(elm)->field.tqe_next; \
407 (listelm)->field.tqe_next = (elm); \
408 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
409} while (/*CONSTCOND*/0)
410
411#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
412 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
413 (elm)->field.tqe_next = (listelm); \
414 *(listelm)->field.tqe_prev = (elm); \
415 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
416} while (/*CONSTCOND*/0)
417
418#define TAILQ_REMOVE(head, elm, field) do { \
419 if (((elm)->field.tqe_next) != NULL) \
420 (elm)->field.tqe_next->field.tqe_prev = \
421 (elm)->field.tqe_prev; \
422 else \
423 (head)->tqh_last = (elm)->field.tqe_prev; \
424 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
425} while (/*CONSTCOND*/0)
426
427#define TAILQ_FOREACH(var, head, field) \
428 for ((var) = ((head)->tqh_first); \
429 (var); \
430 (var) = ((var)->field.tqe_next))
431
432#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
433 for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last)); \
434 (var); \
435 (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
436
437/*
438 * Tail queue access methods.
439 */
440#define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
441#define TAILQ_FIRST(head) ((head)->tqh_first)
442#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
443
444#define TAILQ_LAST(head, headname) \
445 (*(((struct headname *)((head)->tqh_last))->tqh_last))
446#define TAILQ_PREV(elm, headname, field) \
447 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
448
449
450/*
451 * Circular queue definitions.
452 */
453#define CIRCLEQ_HEAD(name, type) \
454struct name { \
455 struct type *cqh_first; /* first element */ \
456 struct type *cqh_last; /* last element */ \
457}
458
459#define CIRCLEQ_HEAD_INITIALIZER(head) \
460 { (void *)&head, (void *)&head }
461
462#define CIRCLEQ_ENTRY(type) \
463struct { \
464 struct type *cqe_next; /* next element */ \
465 struct type *cqe_prev; /* previous element */ \
466}
467
468/*
469 * Circular queue functions.
470 */
471#define CIRCLEQ_INIT(head) do { \
472 (head)->cqh_first = (void *)(head); \
473 (head)->cqh_last = (void *)(head); \
474} while (/*CONSTCOND*/0)
475
476#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
477 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
478 (elm)->field.cqe_prev = (listelm); \
479 if ((listelm)->field.cqe_next == (void *)(head)) \
480 (head)->cqh_last = (elm); \
481 else \
482 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
483 (listelm)->field.cqe_next = (elm); \
484} while (/*CONSTCOND*/0)
485
486#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
487 (elm)->field.cqe_next = (listelm); \
488 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
489 if ((listelm)->field.cqe_prev == (void *)(head)) \
490 (head)->cqh_first = (elm); \
491 else \
492 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
493 (listelm)->field.cqe_prev = (elm); \
494} while (/*CONSTCOND*/0)
495
496#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
497 (elm)->field.cqe_next = (head)->cqh_first; \
498 (elm)->field.cqe_prev = (void *)(head); \
499 if ((head)->cqh_last == (void *)(head)) \
500 (head)->cqh_last = (elm); \
501 else \
502 (head)->cqh_first->field.cqe_prev = (elm); \
503 (head)->cqh_first = (elm); \
504} while (/*CONSTCOND*/0)
505
506#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
507 (elm)->field.cqe_next = (void *)(head); \
508 (elm)->field.cqe_prev = (head)->cqh_last; \
509 if ((head)->cqh_first == (void *)(head)) \
510 (head)->cqh_first = (elm); \
511 else \
512 (head)->cqh_last->field.cqe_next = (elm); \
513 (head)->cqh_last = (elm); \
514} while (/*CONSTCOND*/0)
515
516#define CIRCLEQ_REMOVE(head, elm, field) do { \
517 if ((elm)->field.cqe_next == (void *)(head)) \
518 (head)->cqh_last = (elm)->field.cqe_prev; \
519 else \
520 (elm)->field.cqe_next->field.cqe_prev = \
521 (elm)->field.cqe_prev; \
522 if ((elm)->field.cqe_prev == (void *)(head)) \
523 (head)->cqh_first = (elm)->field.cqe_next; \
524 else \
525 (elm)->field.cqe_prev->field.cqe_next = \
526 (elm)->field.cqe_next; \
527} while (/*CONSTCOND*/0)
528
529#define CIRCLEQ_FOREACH(var, head, field) \
530 for ((var) = ((head)->cqh_first); \
531 (var) != (const void *)(head); \
532 (var) = ((var)->field.cqe_next))
533
534#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
535 for ((var) = ((head)->cqh_last); \
536 (var) != (const void *)(head); \
537 (var) = ((var)->field.cqe_prev))
538
539/*
540 * Circular queue access methods.
541 */
542#define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
543#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
544#define CIRCLEQ_LAST(head) ((head)->cqh_last)
545#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
546#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
547
548#define CIRCLEQ_LOOP_NEXT(head, elm, field) \
549 (((elm)->field.cqe_next == (void *)(head)) \
550 ? ((head)->cqh_first) \
551 : (elm->field.cqe_next))
552#define CIRCLEQ_LOOP_PREV(head, elm, field) \
553 (((elm)->field.cqe_prev == (void *)(head)) \
554 ? ((head)->cqh_last) \
555 : (elm->field.cqe_prev))
556
557#endif /* sys/queue.h */