blob: 92e69cc366ac2b4b19645d141590a8bb68e45770 [file] [log] [blame]
/* Ordered set data type implemented by an array.
Copyright (C) 2006-2007, 2009-2016 Free Software Foundation, Inc.
Written by Bruno Haible <bruno@clisp.org>, 2006.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include <config.h>
/* Specification. */
#include "gl_array_oset.h"
#include <stdlib.h>
/* Checked size_t computations. */
#include "xsize.h"
/* -------------------------- gl_oset_t Data Type -------------------------- */
/* Concrete gl_oset_impl type, valid for this file only. */
struct gl_oset_impl
{
struct gl_oset_impl_base base;
/* An array of ALLOCATED elements, of which the first COUNT are used.
0 <= COUNT <= ALLOCATED. */
const void **elements;
size_t count;
size_t allocated;
};
static gl_oset_t
gl_array_nx_create_empty (gl_oset_implementation_t implementation,
gl_setelement_compar_fn compar_fn,
gl_setelement_dispose_fn dispose_fn)
{
struct gl_oset_impl *set =
(struct gl_oset_impl *) malloc (sizeof (struct gl_oset_impl));
if (set == NULL)
return NULL;
set->base.vtable = implementation;
set->base.compar_fn = compar_fn;
set->base.dispose_fn = dispose_fn;
set->elements = NULL;
set->count = 0;
set->allocated = 0;
return set;
}
static size_t
gl_array_size (gl_oset_t set)
{
return set->count;
}
static size_t
gl_array_indexof (gl_oset_t set, const void *elt)
{
size_t count = set->count;
if (count > 0)
{
gl_setelement_compar_fn compar = set->base.compar_fn;
size_t low = 0;
size_t high = count;
/* At each loop iteration, low < high; for indices < low the values
are smaller than ELT; for indices >= high the values are greater
than ELT. So, if the element occurs in the list, it is at
low <= position < high. */
do
{
size_t mid = low + (high - low) / 2; /* low <= mid < high */
int cmp = (compar != NULL
? compar (set->elements[mid], elt)
: (set->elements[mid] > elt ? 1 :
set->elements[mid] < elt ? -1 : 0));
if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid;
else /* cmp == 0 */
/* We have an element equal to ELT at index MID. */
return mid;
}
while (low < high);
}
return (size_t)(-1);
}
static bool
gl_array_search (gl_oset_t set, const void *elt)
{
return gl_array_indexof (set, elt) != (size_t)(-1);
}
static bool
gl_array_search_atleast (gl_oset_t set,
gl_setelement_threshold_fn threshold_fn,
const void *threshold,
const void **eltp)
{
size_t count = set->count;
if (count > 0)
{
size_t low = 0;
size_t high = count;
/* At each loop iteration, low < high; for indices < low the values are
smaller than THRESHOLD; for indices >= high the values are nonexistent.
So, if an element >= THRESHOLD occurs in the list, it is at
low <= position < high. */
do
{
size_t mid = low + (high - low) / 2; /* low <= mid < high */
if (! threshold_fn (set->elements[mid], threshold))
low = mid + 1;
else
{
/* We have an element >= THRESHOLD at index MID. But we need the
minimal such index. */
high = mid;
/* At each loop iteration, low <= high and
compar (list->elements[high], value) >= 0,
and we know that the first occurrence of the element is at
low <= position <= high. */
while (low < high)
{
size_t mid2 = low + (high - low) / 2; /* low <= mid2 < high */
if (! threshold_fn (set->elements[mid2], threshold))
low = mid2 + 1;
else
high = mid2;
}
*eltp = set->elements[low];
return true;
}
}
while (low < high);
}
return false;
}
/* Ensure that set->allocated > set->count.
Return 0 upon success, -1 upon out-of-memory. */
static int
grow (gl_oset_t set)
{
size_t new_allocated;
size_t memory_size;
const void **memory;
new_allocated = xtimes (set->allocated, 2);
new_allocated = xsum (new_allocated, 1);
memory_size = xtimes (new_allocated, sizeof (const void *));
if (size_overflow_p (memory_size))
/* Overflow, would lead to out of memory. */
return -1;
memory = (const void **) realloc (set->elements, memory_size);
if (memory == NULL)
/* Out of memory. */
return -1;
set->elements = memory;
set->allocated = new_allocated;
return 0;
}
/* Add the given element ELT at the given position,
0 <= position <= gl_oset_size (set).
Return 1 upon success, -1 upon out-of-memory. */
static int
gl_array_nx_add_at (gl_oset_t set, size_t position, const void *elt)
{
size_t count = set->count;
const void **elements;
size_t i;
if (count == set->allocated)
if (grow (set) < 0)
return -1;
elements = set->elements;
for (i = count; i > position; i--)
elements[i] = elements[i - 1];
elements[position] = elt;
set->count = count + 1;
return 1;
}
/* Remove the element at the given position,
0 <= position < gl_oset_size (set). */
static void
gl_array_remove_at (gl_oset_t set, size_t position)
{
size_t count = set->count;
const void **elements;
size_t i;
elements = set->elements;
if (set->base.dispose_fn != NULL)
set->base.dispose_fn (elements[position]);
for (i = position + 1; i < count; i++)
elements[i - 1] = elements[i];
set->count = count - 1;
}
static int
gl_array_nx_add (gl_oset_t set, const void *elt)
{
size_t count = set->count;
size_t low = 0;
if (count > 0)
{
gl_setelement_compar_fn compar = set->base.compar_fn;
size_t high = count;
/* At each loop iteration, low < high; for indices < low the values
are smaller than ELT; for indices >= high the values are greater
than ELT. So, if the element occurs in the list, it is at
low <= position < high. */
do
{
size_t mid = low + (high - low) / 2; /* low <= mid < high */
int cmp = (compar != NULL
? compar (set->elements[mid], elt)
: (set->elements[mid] > elt ? 1 :
set->elements[mid] < elt ? -1 : 0));
if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid;
else /* cmp == 0 */
return false;
}
while (low < high);
}
return gl_array_nx_add_at (set, low, elt);
}
static bool
gl_array_remove (gl_oset_t set, const void *elt)
{
size_t index = gl_array_indexof (set, elt);
if (index != (size_t)(-1))
{
gl_array_remove_at (set, index);
return true;
}
else
return false;
}
static void
gl_array_free (gl_oset_t set)
{
if (set->elements != NULL)
{
if (set->base.dispose_fn != NULL)
{
size_t count = set->count;
if (count > 0)
{
gl_setelement_dispose_fn dispose = set->base.dispose_fn;
const void **elements = set->elements;
do
dispose (*elements++);
while (--count > 0);
}
}
free (set->elements);
}
free (set);
}
/* --------------------- gl_oset_iterator_t Data Type --------------------- */
static gl_oset_iterator_t
gl_array_iterator (gl_oset_t set)
{
gl_oset_iterator_t result;
result.vtable = set->base.vtable;
result.set = set;
result.count = set->count;
result.p = set->elements + 0;
result.q = set->elements + set->count;
#if defined GCC_LINT || defined lint
result.i = 0;
result.j = 0;
#endif
return result;
}
static bool
gl_array_iterator_next (gl_oset_iterator_t *iterator, const void **eltp)
{
gl_oset_t set = iterator->set;
if (iterator->count != set->count)
{
if (iterator->count != set->count + 1)
/* Concurrent modifications were done on the set. */
abort ();
/* The last returned element was removed. */
iterator->count--;
iterator->p = (const void **) iterator->p - 1;
iterator->q = (const void **) iterator->q - 1;
}
if (iterator->p < iterator->q)
{
const void **p = (const void **) iterator->p;
*eltp = *p;
iterator->p = p + 1;
return true;
}
else
return false;
}
static void
gl_array_iterator_free (gl_oset_iterator_t *iterator)
{
}
const struct gl_oset_implementation gl_array_oset_implementation =
{
gl_array_nx_create_empty,
gl_array_size,
gl_array_search,
gl_array_search_atleast,
gl_array_nx_add,
gl_array_remove,
gl_array_free,
gl_array_iterator,
gl_array_iterator_next,
gl_array_iterator_free
};