blob: 47d4d5f04527e37eaac2943ffd5f95d05b8d3506 [file] [log] [blame]
#include <stdint.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <sys/socket.h>
#include <termios.h>
#include <cutils/sockets.h>
/*
* the qemud program is only used within the Android emulator as a bridge
* between the emulator program and the emulated system. it really works as
* a simple stream multiplexer that works as follows:
*
* - qemud communicates with the emulator program through a single serial
* port, whose name is passed through a kernel boot parameter
* (e.g. android.qemud=ttyS1)
*
* - qemud setups one or more unix local stream sockets in the
* emulated system each one of these represent a different communication
* 'channel' between the emulator program and the emulated system.
*
* as an example, one channel is used for the emulated GSM modem
* (AT command channel), another channel is used for the emulated GPS,
* etc...
*
* - the protocol used on the serial connection is pretty simple:
*
* offset size description
* 0 4 4-char hex string giving the payload size
* 4 2 2-char hex string giving the destination or
* source channel
* 6 n the message payload
*
* for emulator->system messages, the 'channel' index indicates
* to which channel the payload must be sent
*
* for system->emulator messages, the 'channel' index indicates from
* which channel the payload comes from.
*
* - a special channel index (0) is used to communicate with the qemud
* program directly from the emulator. this is used for the following
* commands: (content of the payload):
*
* request: connect:<name>
* answer: ok:connect:<name>:XX // succesful name lookup
* answer: ko:connect:bad name // failed lookup
*
* the emulator queries the index of a given channel given
* its human-readable name. the answer contains a 2-char hex
* string for the channel index.
*
* not all emulated systems may need the same communication
* channels, so this function may fail.
*
* any invalid request will get an answer of:
*
* ko:unknown command
*
*
* here's a diagram of how things work:
*
*
* _________
* _____________ creates | |
* ________ | |==========>| Channel |--*--
* | |---->| Multiplexer | |_________|
* --*--| Serial | |_____________| || creates
* |________| | _____v___
* A +--------------->| |
* | | Client |--*--
* +---------------------------------|_________|
*
* which really means that:
*
* - the multiplexer creates one Channel object per control socket qemud
* handles (e.g. /dev/socket/qemud_gsm, /dev/socket/qemud_gps)
*
* - each Channel object has a numerical index that is >= 1, and waits
* for client connection. it will create a Client object when this
* happens
*
* - the Serial object receives packets from the serial port and sends them
* to the multiplexer
*
* - the multiplexer tries to find a channel the packet is addressed to,
* and will send the packet to all clients that correspond to it
*
* - when a Client receives data, it sends it directly to the Serial object
*
* - there are two kinds of Channel objects:
*
* CHANNEL_BROADCAST :: used for emulator -> clients broadcasts only
*
* CHANNEL_DUPLEX :: used for bidirectional communication with the
* emulator, with only *one* client allowed per
* duplex channel
*/
#define DEBUG 0
#if DEBUG
# define LOG_TAG "qemud"
# include <cutils/log.h>
# define D(...) LOGD(__VA_ARGS__)
#else
# define D(...) ((void)0)
#endif
/** UTILITIES
**/
static void
fatal( const char* fmt, ... )
{
va_list args;
va_start(args, fmt);
fprintf(stderr, "PANIC: ");
vfprintf(stderr, fmt, args);
fprintf(stderr, "\n" );
va_end(args);
exit(1);
}
static void*
xalloc( size_t sz )
{
void* p;
if (sz == 0)
return NULL;
p = malloc(sz);
if (p == NULL)
fatal( "not enough memory" );
return p;
}
#define xnew(p) (p) = xalloc(sizeof(*(p)))
static void*
xalloc0( size_t sz )
{
void* p = xalloc(sz);
memset( p, 0, sz );
return p;
}
#define xnew0(p) (p) = xalloc0(sizeof(*(p)))
#define xfree(p) ({ free((p)), (p) = NULL; })
static void*
xrealloc( void* block, size_t size )
{
void* p = realloc( block, size );
if (p == NULL && size > 0)
fatal( "not enough memory" );
return p;
}
#define xrenew(p,count) (p) = xrealloc((p),sizeof(*(p))*(count))
static int
hex2int( const uint8_t* data, int len )
{
int result = 0;
while (len > 0) {
int c = *data++;
unsigned d;
result <<= 4;
do {
d = (unsigned)(c - '0');
if (d < 10)
break;
d = (unsigned)(c - 'a');
if (d < 6) {
d += 10;
break;
}
d = (unsigned)(c - 'A');
if (d < 6) {
d += 10;
break;
}
return -1;
}
while (0);
result |= d;
len -= 1;
}
return result;
}
static void
int2hex( int value, uint8_t* to, int width )
{
int nn = 0;
static const char hexchars[16] = "0123456789abcdef";
for ( --width; width >= 0; width--, nn++ ) {
to[nn] = hexchars[(value >> (width*4)) & 15];
}
}
static int
fd_read(int fd, void* to, int len)
{
int ret;
do {
ret = read(fd, to, len);
} while (ret < 0 && errno == EINTR);
return ret;
}
static int
fd_write(int fd, const void* from, int len)
{
int ret;
do {
ret = write(fd, from, len);
} while (ret < 0 && errno == EINTR);
return ret;
}
static void
fd_setnonblock(int fd)
{
int ret, flags;
do {
flags = fcntl(fd, F_GETFD);
} while (flags < 0 && errno == EINTR);
if (flags < 0) {
fatal( "%s: could not get flags for fd %d: %s",
__FUNCTION__, fd, strerror(errno) );
}
do {
ret = fcntl(fd, F_SETFD, flags | O_NONBLOCK);
} while (ret < 0 && errno == EINTR);
if (ret < 0) {
fatal( "%s: could not set fd %d to non-blocking: %s",
__FUNCTION__, fd, strerror(errno) );
}
}
/** FD EVENT LOOP
**/
#include <sys/epoll.h>
#define MAX_CHANNELS 16
#define MAX_EVENTS (MAX_CHANNELS+1) /* each channel + the serial fd */
typedef void (*EventFunc)( void* user, int events );
enum {
HOOK_PENDING = (1 << 0),
HOOK_CLOSING = (1 << 1),
};
typedef struct {
int fd;
int wanted;
int events;
int state;
void* ev_user;
EventFunc ev_func;
} LoopHook;
typedef struct {
int epoll_fd;
int num_fds;
int max_fds;
struct epoll_event* events;
LoopHook* hooks;
} Looper;
static void
looper_init( Looper* l )
{
l->epoll_fd = epoll_create(4);
l->num_fds = 0;
l->max_fds = 0;
l->events = NULL;
l->hooks = NULL;
}
static void
looper_done( Looper* l )
{
xfree(l->events);
xfree(l->hooks);
l->max_fds = 0;
l->num_fds = 0;
close(l->epoll_fd);
l->epoll_fd = -1;
}
static LoopHook*
looper_find( Looper* l, int fd )
{
LoopHook* hook = l->hooks;
LoopHook* end = hook + l->num_fds;
for ( ; hook < end; hook++ ) {
if (hook->fd == fd)
return hook;
}
return NULL;
}
static void
looper_grow( Looper* l )
{
int old_max = l->max_fds;
int new_max = old_max + (old_max >> 1) + 4;
int n;
xrenew( l->events, new_max );
xrenew( l->hooks, new_max );
l->max_fds = new_max;
/* now change the handles to all events */
for (n = 0; n < l->num_fds; n++) {
struct epoll_event ev;
LoopHook* hook = l->hooks + n;
ev.events = hook->wanted;
ev.data.ptr = hook;
epoll_ctl( l->epoll_fd, EPOLL_CTL_MOD, hook->fd, &ev );
}
}
static void
looper_add( Looper* l, int fd, EventFunc func, void* user )
{
struct epoll_event ev;
LoopHook* hook;
if (l->num_fds >= l->max_fds)
looper_grow(l);
hook = l->hooks + l->num_fds;
hook->fd = fd;
hook->ev_user = user;
hook->ev_func = func;
hook->state = 0;
hook->wanted = 0;
hook->events = 0;
fd_setnonblock(fd);
ev.events = 0;
ev.data.ptr = hook;
epoll_ctl( l->epoll_fd, EPOLL_CTL_ADD, fd, &ev );
l->num_fds += 1;
}
static void
looper_del( Looper* l, int fd )
{
LoopHook* hook = looper_find( l, fd );
if (!hook) {
D( "%s: invalid fd: %d", __FUNCTION__, fd );
return;
}
/* don't remove the hook yet */
hook->state |= HOOK_CLOSING;
epoll_ctl( l->epoll_fd, EPOLL_CTL_DEL, fd, NULL );
}
static void
looper_enable( Looper* l, int fd, int events )
{
LoopHook* hook = looper_find( l, fd );
if (!hook) {
D("%s: invalid fd: %d", __FUNCTION__, fd );
return;
}
if (events & ~hook->wanted) {
struct epoll_event ev;
hook->wanted |= events;
ev.events = hook->wanted;
ev.data.ptr = hook;
epoll_ctl( l->epoll_fd, EPOLL_CTL_MOD, fd, &ev );
}
}
static void
looper_disable( Looper* l, int fd, int events )
{
LoopHook* hook = looper_find( l, fd );
if (!hook) {
D("%s: invalid fd: %d", __FUNCTION__, fd );
return;
}
if (events & hook->wanted) {
struct epoll_event ev;
hook->wanted &= ~events;
ev.events = hook->wanted;
ev.data.ptr = hook;
epoll_ctl( l->epoll_fd, EPOLL_CTL_MOD, fd, &ev );
}
}
static void
looper_loop( Looper* l )
{
for (;;) {
int n, count;
do {
count = epoll_wait( l->epoll_fd, l->events, l->num_fds, -1 );
} while (count < 0 && errno == EINTR);
if (count < 0) {
D("%s: error: %s", __FUNCTION__, strerror(errno) );
return;
}
/* mark all pending hooks */
for (n = 0; n < count; n++) {
LoopHook* hook = l->events[n].data.ptr;
hook->state = HOOK_PENDING;
hook->events = l->events[n].events;
}
/* execute hook callbacks. this may change the 'hooks'
* and 'events' array, as well as l->num_fds, so be careful */
for (n = 0; n < l->num_fds; n++) {
LoopHook* hook = l->hooks + n;
if (hook->state & HOOK_PENDING) {
hook->state &= ~HOOK_PENDING;
hook->ev_func( hook->ev_user, hook->events );
}
}
/* now remove all the hooks that were closed by
* the callbacks */
for (n = 0; n < l->num_fds;) {
LoopHook* hook = l->hooks + n;
if (!(hook->state & HOOK_CLOSING)) {
n++;
continue;
}
hook[0] = l->hooks[l->num_fds-1];
l->num_fds -= 1;
}
}
}
/** PACKETS
**/
typedef struct Packet Packet;
/* we want to ensure that Packet is no more than a single page */
#define MAX_PAYLOAD (4096-16-6)
struct Packet {
Packet* next;
int len;
int channel;
uint8_t data[ MAX_PAYLOAD ];
};
static Packet* _free_packets;
static Packet*
packet_alloc(void)
{
Packet* p = _free_packets;
if (p != NULL) {
_free_packets = p->next;
} else {
xnew(p);
}
p->next = NULL;
p->len = 0;
p->channel = -1;
return p;
}
static void
packet_free( Packet* *ppacket )
{
Packet* p = *ppacket;
if (p) {
p->next = _free_packets;
_free_packets = p;
*ppacket = NULL;
}
}
static Packet*
packet_dup( Packet* p )
{
Packet* p2 = packet_alloc();
p2->len = p->len;
p2->channel = p->channel;
memcpy(p2->data, p->data, p->len);
return p2;
}
/** PACKET RECEIVER
**/
typedef void (*PostFunc) ( void* user, Packet* p );
typedef void (*CloseFunc)( void* user );
typedef struct {
PostFunc post;
CloseFunc close;
void* user;
} Receiver;
static __inline__ void
receiver_post( Receiver* r, Packet* p )
{
r->post( r->user, p );
}
static __inline__ void
receiver_close( Receiver* r )
{
r->close( r->user );
}
/** FD HANDLERS
**
** these are smart listeners that send incoming packets to a receiver
** and can queue one or more outgoing packets and send them when possible
**/
typedef struct FDHandler {
int fd;
Looper* looper;
Receiver receiver[1];
int out_pos;
Packet* out_first;
Packet** out_ptail;
} FDHandler;
static void
fdhandler_done( FDHandler* f )
{
/* get rid of unsent packets */
if (f->out_first) {
Packet* p;
while ((p = f->out_first) != NULL) {
f->out_first = p->next;
packet_free(&p);
}
}
/* get rid of file descriptor */
if (f->fd >= 0) {
looper_del( f->looper, f->fd );
close(f->fd);
f->fd = -1;
}
f->looper = NULL;
}
static void
fdhandler_enqueue( FDHandler* f, Packet* p )
{
Packet* first = f->out_first;
p->next = NULL;
f->out_ptail[0] = p;
f->out_ptail = &p->next;
if (first == NULL) {
f->out_pos = 0;
looper_enable( f->looper, f->fd, EPOLLOUT );
}
}
static void
fdhandler_event( FDHandler* f, int events )
{
int len;
if (events & (EPOLLHUP|EPOLLERR)) {
/* disconnection */
D("%s: disconnect on fd %d", __FUNCTION__, f->fd);
receiver_close( f->receiver );
return;
}
if (events & EPOLLIN) {
Packet* p = packet_alloc();
int len;
if ((len = fd_read(f->fd, p->data, MAX_PAYLOAD)) < 0) {
D("%s: can't recv: %s", __FUNCTION__, strerror(errno));
packet_free(&p);
} else {
p->len = len;
p->channel = -101; /* special debug value */
receiver_post( f->receiver, p );
}
}
if (events & EPOLLOUT && f->out_first) {
Packet* p = f->out_first;
int avail, len;
avail = p->len - f->out_pos;
if ((len = fd_write(f->fd, p->data + f->out_pos, avail)) < 0) {
D("%s: can't send: %s", __FUNCTION__, strerror(errno));
} else {
f->out_pos += len;
if (f->out_pos >= p->len) {
f->out_pos = 0;
f->out_first = p->next;
packet_free(&p);
if (f->out_first == NULL) {
f->out_ptail = &f->out_first;
looper_disable( f->looper, f->fd, EPOLLOUT );
}
}
}
}
}
static void
fdhandler_init( FDHandler* f,
int fd,
Looper* looper,
Receiver* receiver )
{
f->fd = fd;
f->looper = looper;
f->receiver[0] = receiver[0];
f->out_first = NULL;
f->out_ptail = &f->out_first;
f->out_pos = 0;
looper_add( looper, fd, (EventFunc) fdhandler_event, f );
looper_enable( looper, fd, EPOLLIN );
}
static void
fdhandler_accept_event( FDHandler* f, int events )
{
if (events & (EPOLLHUP|EPOLLERR)) {
/* disconnecting !! */
D("%s: closing fd %d", __FUNCTION__, f->fd);
receiver_close( f->receiver );
return;
}
if (events & EPOLLIN) {
/* this is an accept - send a dummy packet to the receiver */
Packet* p = packet_alloc();
D("%s: accepting on fd %d", __FUNCTION__, f->fd);
p->data[0] = 1;
p->len = 1;
receiver_post( f->receiver, p );
}
}
static void
fdhandler_init_accept( FDHandler* f,
int fd,
Looper* looper,
Receiver* receiver )
{
f->fd = fd;
f->looper = looper;
f->receiver[0] = receiver[0];
looper_add( looper, fd, (EventFunc) fdhandler_accept_event, f );
looper_enable( looper, fd, EPOLLIN );
}
/** CLIENTS
**/
typedef struct Client {
struct Client* next;
struct Client** pref;
int channel;
FDHandler fdhandler[1];
Receiver receiver[1];
} Client;
static Client* _free_clients;
static void
client_free( Client* c )
{
c->pref[0] = c->next;
c->next = NULL;
c->pref = &c->next;
fdhandler_done( c->fdhandler );
free(c);
}
static void
client_receive( Client* c, Packet* p )
{
p->channel = c->channel;
receiver_post( c->receiver, p );
}
static void
client_send( Client* c, Packet* p )
{
fdhandler_enqueue( c->fdhandler, p );
}
static void
client_close( Client* c )
{
D("disconnecting client on fd %d", c->fdhandler->fd);
client_free(c);
}
static Client*
client_new( int fd,
int channel,
Looper* looper,
Receiver* receiver )
{
Client* c;
Receiver recv;
xnew(c);
c->next = NULL;
c->pref = &c->next;
c->channel = channel;
c->receiver[0] = receiver[0];
recv.user = c;
recv.post = (PostFunc) client_receive;
recv.close = (CloseFunc) client_close;
fdhandler_init( c->fdhandler, fd, looper, &recv );
return c;
}
static void
client_link( Client* c, Client** plist )
{
c->next = plist[0];
c->pref = plist;
plist[0] = c;
}
/** CHANNELS
**/
typedef enum {
CHANNEL_BROADCAST = 0,
CHANNEL_DUPLEX,
CHANNEL_MAX /* do not remove */
} ChannelType;
#define CHANNEL_CONTROL 0
typedef struct Channel {
struct Channel* next;
struct Channel** pref;
FDHandler fdhandler[1];
ChannelType ctype;
const char* name;
int index;
Receiver receiver[1];
Client* clients;
} Channel;
static void
channel_free( Channel* c )
{
while (c->clients)
client_free(c->clients);
c->pref[0] = c->next;
c->pref = &c->next;
c->next = NULL;
fdhandler_done( c->fdhandler );
free(c);
}
static void
channel_close( Channel* c )
{
D("closing channel '%s' on fd %d", c->name, c->fdhandler->fd);
channel_free(c);
}
static void
channel_accept( Channel* c, Packet* p )
{
int fd;
struct sockaddr from;
socklen_t fromlen = sizeof(from);
/* get rid of dummy packet (see fdhandler_event_accept) */
packet_free(&p);
do {
fd = accept( c->fdhandler->fd, &from, &fromlen );
} while (fd < 0 && errno == EINTR);
if (fd >= 0) {
Client* client;
/* DUPLEX channels can only have one client at a time */
if (c->ctype == CHANNEL_DUPLEX && c->clients != NULL) {
D("refusing client connection on duplex channel '%s'", c->name);
close(fd);
return;
}
client = client_new( fd, c->index, c->fdhandler->looper, c->receiver );
client_link( client, &c->clients );
D("new client for channel '%s' on fd %d", c->name, fd);
}
else
D("could not accept connection: %s", strerror(errno));
}
static Channel*
channel_new( int fd,
ChannelType ctype,
const char* name,
int index,
Looper* looper,
Receiver* receiver )
{
Channel* c;
Receiver recv;
xnew(c);
c->next = NULL;
c->pref = &c->next;
c->ctype = ctype;
c->name = name;
c->index = index;
/* saved for future clients */
c->receiver[0] = receiver[0];
recv.user = c;
recv.post = (PostFunc) channel_accept;
recv.close = (CloseFunc) channel_close;
fdhandler_init_accept( c->fdhandler, fd, looper, &recv );
listen( fd, 5 );
return c;
}
static void
channel_link( Channel* c, Channel** plist )
{
c->next = plist[0];
c->pref = plist;
plist[0] = c;
}
static void
channel_send( Channel* c, Packet* p )
{
Client* client = c->clients;
for ( ; client; client = client->next ) {
Packet* q = packet_dup(p);
client_send( client, q );
}
packet_free( &p );
}
/* each packet is made of a 6 byte header followed by a payload
* the header looks like:
*
* offset size description
* 0 4 a 4-char hex string for the size of the payload
* 4 2 a 2-byte hex string for the channel number
* 6 n the payload itself
*/
#define HEADER_SIZE 6
#define LENGTH_OFFSET 0
#define LENGTH_SIZE 4
#define CHANNEL_OFFSET 4
#define CHANNEL_SIZE 2
#define CHANNEL_INDEX_NONE 0
#define CHANNEL_INDEX_CONTROL 1
#define TOSTRING(x) _TOSTRING(x)
#define _TOSTRING(x) #x
/** SERIAL HANDLER
**/
typedef struct Serial {
FDHandler fdhandler[1];
Receiver receiver[1];
int in_len;
int in_datalen;
int in_channel;
Packet* in_packet;
} Serial;
static void
serial_done( Serial* s )
{
packet_free(&s->in_packet);
s->in_len = 0;
s->in_datalen = 0;
s->in_channel = 0;
fdhandler_done(s->fdhandler);
}
static void
serial_close( Serial* s )
{
fatal("unexpected serial port close !!");
}
/* receive packets from the serial port */
static void
serial_receive( Serial* s, Packet* p )
{
int rpos = 0, rcount = p->len;
Packet* inp = s->in_packet;
int inpos = s->in_len;
//D("received from serial: %d bytes: '%.*s'", p->len, p->len, p->data);
while (rpos < rcount)
{
int avail = rcount - rpos;
/* first, try to read the header */
if (s->in_datalen == 0) {
int wanted = HEADER_SIZE - inpos;
if (avail > wanted)
avail = wanted;
memcpy( inp->data + inpos, p->data + rpos, avail );
inpos += avail;
rpos += avail;
if (inpos == HEADER_SIZE) {
s->in_datalen = hex2int( inp->data + LENGTH_OFFSET, LENGTH_SIZE );
s->in_channel = hex2int( inp->data + CHANNEL_OFFSET, CHANNEL_SIZE );
if (s->in_datalen <= 0)
D("ignoring empty packet from serial port");
//D("received %d bytes packet for channel %d", s->in_datalen, s->in_channel);
inpos = 0;
}
}
else /* then, populate the packet itself */
{
int wanted = s->in_datalen - inpos;
if (avail > wanted)
avail = wanted;
memcpy( inp->data + inpos, p->data + rpos, avail );
inpos += avail;
rpos += avail;
if (inpos == s->in_datalen) {
if (s->in_channel < 0) {
D("ignoring %d bytes addressed to channel %d",
inpos, s->in_channel);
} else {
inp->len = inpos;
inp->channel = s->in_channel;
receiver_post( s->receiver, inp );
s->in_packet = inp = packet_alloc();
}
s->in_datalen = 0;
inpos = 0;
}
}
}
s->in_len = inpos;
packet_free(&p);
}
/* send a packet to the serial port */
static void
serial_send( Serial* s, Packet* p )
{
Packet* h = packet_alloc();
//D("sending to serial %d bytes from channel %d: '%.*s'", p->len, p->channel, p->len, p->data);
/* insert a small header before this packet */
h->len = HEADER_SIZE;
int2hex( p->len, h->data + LENGTH_OFFSET, LENGTH_SIZE );
int2hex( p->channel, h->data + CHANNEL_OFFSET, CHANNEL_SIZE );
fdhandler_enqueue( s->fdhandler, h );
fdhandler_enqueue( s->fdhandler, p );
}
static void
serial_init( Serial* s,
int fd,
Looper* looper,
Receiver* receiver )
{
Receiver recv;
recv.user = s;
recv.post = (PostFunc) serial_receive;
recv.close = (CloseFunc) serial_close;
s->receiver[0] = receiver[0];
fdhandler_init( s->fdhandler, fd, looper, &recv );
s->in_len = 0;
s->in_datalen = 0;
s->in_channel = 0;
s->in_packet = packet_alloc();
}
/** GLOBAL MULTIPLEXER
**/
typedef struct {
Looper looper[1];
Serial serial[1];
Channel* channels;
uint16_t channel_last;
} Multiplexer;
/* receive a packet from the serial port, send it to the relevant client/channel */
static void multiplexer_receive_serial( Multiplexer* m, Packet* p );
static void
multiplexer_init( Multiplexer* m, const char* serial_dev )
{
int fd;
Receiver recv;
looper_init( m->looper );
fd = open(serial_dev, O_RDWR);
if (fd < 0) {
fatal( "%s: could not open '%s': %s", __FUNCTION__, serial_dev,
strerror(errno) );
}
// disable echo on serial lines
if ( !memcmp( serial_dev, "/dev/ttyS", 9 ) ) {
struct termios ios;
tcgetattr( fd, &ios );
ios.c_lflag = 0; /* disable ECHO, ICANON, etc... */
tcsetattr( fd, TCSANOW, &ios );
}
recv.user = m;
recv.post = (PostFunc) multiplexer_receive_serial;
recv.close = NULL;
serial_init( m->serial, fd, m->looper, &recv );
m->channels = NULL;
m->channel_last = CHANNEL_CONTROL+1;
}
static void
multiplexer_add_channel( Multiplexer* m, int fd, const char* name, ChannelType ctype )
{
Channel* c;
Receiver recv;
/* send channel client data directly to the serial port */
recv.user = m->serial;
recv.post = (PostFunc) serial_send;
recv.close = (CloseFunc) client_close;
/* connect each channel directly to the serial port */
c = channel_new( fd, ctype, name, m->channel_last, m->looper, &recv );
channel_link( c, &m->channels );
m->channel_last += 1;
if (m->channel_last <= CHANNEL_CONTROL)
m->channel_last += 1;
}
static void
multiplexer_done( Multiplexer* m )
{
while (m->channels)
channel_close(m->channels);
serial_done( m->serial );
looper_done( m->looper );
}
static void
multiplexer_send_answer( Multiplexer* m, Packet* p, const char* answer )
{
p->len = strlen( answer );
if (p->len >= MAX_PAYLOAD)
p->len = MAX_PAYLOAD-1;
memcpy( (char*)p->data, answer, p->len );
p->channel = CHANNEL_CONTROL;
serial_send( m->serial, p );
}
static void
multiplexer_handle_connect( Multiplexer* m, Packet* p, char* name )
{
int n;
Channel* c;
if (p->len >= MAX_PAYLOAD) {
multiplexer_send_answer( m, p, "ko:connect:bad name" );
return;
}
p->data[p->len] = 0;
for (c = m->channels; c != NULL; c = c->next)
if ( !strcmp(c->name, name) )
break;
if (c == NULL) {
D("can't connect to unknown channel '%s'", name);
multiplexer_send_answer( m, p, "ko:connect:bad name" );
return;
}
p->channel = CHANNEL_CONTROL;
p->len = snprintf( (char*)p->data, MAX_PAYLOAD,
"ok:connect:%s:%02x", c->name, c->index );
serial_send( m->serial, p );
}
static void
multiplexer_receive_serial( Multiplexer* m, Packet* p )
{
Channel* c = m->channels;
/* check the destination channel index */
if (p->channel != CHANNEL_CONTROL) {
Channel* c;
for (c = m->channels; c; c = c->next ) {
if (c->index == p->channel) {
channel_send( c, p );
break;
}
}
if (c == NULL) {
D("ignoring %d bytes packet for unknown channel index %d",
p->len, p->channel );
packet_free(&p);
}
}
else /* packet addressed to the control channel */
{
D("received control message: '%.*s'", p->len, p->data);
if (p->len > 8 && strncmp( (char*)p->data, "connect:", 8) == 0) {
multiplexer_handle_connect( m, p, (char*)p->data + 8 );
} else {
/* unknown command */
multiplexer_send_answer( m, p, "ko:unknown command" );
}
return;
}
}
/** MAIN LOOP
**/
static Multiplexer _multiplexer[1];
#define QEMUD_PREFIX "qemud_"
static const struct { const char* name; ChannelType ctype; } default_channels[] = {
{ "gsm", CHANNEL_DUPLEX }, /* GSM AT command channel, used by commands/rild/rild.c */
{ "gps", CHANNEL_BROADCAST }, /* GPS NMEA commands, used by libs/hardware/qemu_gps.c */
{ NULL, 0 }
};
int main( void )
{
Multiplexer* m = _multiplexer;
/* extract the name of our serial device from the kernel
* boot options that are stored in /proc/cmdline
*/
#define KERNEL_OPTION "android.qemud="
{
char buff[1024];
int fd, len;
char* p;
char* q;
fd = open( "/proc/cmdline", O_RDONLY );
if (fd < 0) {
D("%s: can't open /proc/cmdline !!: %s", __FUNCTION__,
strerror(errno));
exit(1);
}
len = fd_read( fd, buff, sizeof(buff)-1 );
close(fd);
if (len < 0) {
D("%s: can't read /proc/cmdline: %s", __FUNCTION__,
strerror(errno));
exit(1);
}
buff[len] = 0;
p = strstr( buff, KERNEL_OPTION );
if (p == NULL) {
D("%s: can't find '%s' in /proc/cmdline",
__FUNCTION__, KERNEL_OPTION );
exit(1);
}
p += sizeof(KERNEL_OPTION)-1; /* skip option */
q = p;
while ( *q && *q != ' ' && *q != '\t' )
q += 1;
snprintf( buff, sizeof(buff), "/dev/%.*s", q-p, p );
multiplexer_init( m, buff );
}
D("multiplexer inited, creating default channels");
/* now setup all default channels */
{
int nn;
for (nn = 0; default_channels[nn].name != NULL; nn++) {
char control_name[32];
int fd;
Channel* chan;
const char* name = default_channels[nn].name;
ChannelType ctype = default_channels[nn].ctype;
snprintf(control_name, sizeof(control_name), "%s%s",
QEMUD_PREFIX, name);
if ((fd = android_get_control_socket(control_name)) < 0) {
D("couldn't get fd for control socket '%s'", name);
continue;
}
D( "got control socket '%s' on fd %d", control_name, fd);
multiplexer_add_channel( m, fd, name, ctype );
}
}
D( "entering main loop");
looper_loop( m->looper );
D( "unexpected termination !!" );
return 0;
}