blob: 8f92afd60cfebc9db04ec63eef2984383b68f287 [file] [log] [blame]
/*
* Create a squashfs filesystem. This is a highly compressed read only filesystem.
*
* Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
* Phillip Lougher <phillip@lougher.demon.co.uk>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2,
* or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* mksquashfs.c
*/
#define FALSE 0
#define TRUE 1
#include <pwd.h>
#include <grp.h>
#include <time.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <dirent.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include <setjmp.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <pthread.h>
#include <math.h>
#include <regex.h>
#include <fnmatch.h>
#include <sys/wait.h>
#ifndef linux
#define __BYTE_ORDER BYTE_ORDER
#define __BIG_ENDIAN BIG_ENDIAN
#define __LITTLE_ENDIAN LITTLE_ENDIAN
#include <sys/sysctl.h>
#else
#include <endian.h>
#include <sys/sysinfo.h>
#endif
#include "squashfs_fs.h"
#include "squashfs_swap.h"
#include "mksquashfs.h"
#include "global.h"
#include "sort.h"
#include "pseudo.h"
#include "compressor.h"
#ifdef SQUASHFS_TRACE
#define TRACE(s, args...) do { \
if(progress_enabled) \
printf("\n"); \
printf("mksquashfs: "s, ## args); \
} while(0)
#else
#define TRACE(s, args...)
#endif
#define INFO(s, args...) do {\
if(!silent)\
printf("mksquashfs: "s, ## args);\
} while(0)
#define ERROR(s, args...) do {\
pthread_mutex_lock(&progress_mutex); \
if(progress_enabled) \
fprintf(stderr, "\n"); \
fprintf(stderr, s, ## args);\
pthread_mutex_unlock(&progress_mutex); \
} while(0)
#define EXIT_MKSQUASHFS() do {\
if(restore)\
restorefs();\
if(delete && destination_file && !block_device)\
unlink(destination_file);\
exit(1);\
} while(0)
#define BAD_ERROR(s, args...) do {\
pthread_mutex_lock(&progress_mutex); \
if(progress_enabled) \
fprintf(stderr, "\n"); \
fprintf(stderr, "FATAL ERROR:" s, ##args);\
pthread_mutex_unlock(&progress_mutex); \
EXIT_MKSQUASHFS();\
} while(0)
/* offset of data in compressed metadata blocks (allowing room for
* compressed size */
#define BLOCK_OFFSET 2
int delete = FALSE;
int fd;
int cur_uncompressed = 0, estimated_uncompressed = 0;
int columns;
/* filesystem flags for building */
int duplicate_checking = 1, noF = 0, no_fragments = 0, always_use_fragments = 0;
int noI = 0, noD = 0;
int silent = TRUE;
long long global_uid = -1, global_gid = -1;
int exportable = TRUE;
int progress = TRUE;
int progress_enabled = FALSE;
int sparse_files = TRUE;
int old_exclude = TRUE;
int use_regex = FALSE;
int first_freelist = TRUE;
/* superblock attributes */
int block_size = SQUASHFS_FILE_SIZE, block_log;
unsigned int id_count = 0;
int file_count = 0, sym_count = 0, dev_count = 0, dir_count = 0, fifo_count = 0,
sock_count = 0;
/* write position within data section */
long long bytes = 0, total_bytes = 0;
/* in memory directory table - possibly compressed */
char *directory_table = NULL;
unsigned int directory_bytes = 0, directory_size = 0, total_directory_bytes = 0;
/* cached directory table */
char *directory_data_cache = NULL;
unsigned int directory_cache_bytes = 0, directory_cache_size = 0;
/* in memory inode table - possibly compressed */
char *inode_table = NULL;
unsigned int inode_bytes = 0, inode_size = 0, total_inode_bytes = 0;
/* cached inode table */
char *data_cache = NULL;
unsigned int cache_bytes = 0, cache_size = 0, inode_count = 0;
/* inode lookup table */
squashfs_inode *inode_lookup_table = NULL;
/* in memory directory data */
#define I_COUNT_SIZE 128
#define DIR_ENTRIES 32
#define INODE_HASH_SIZE 65536
#define INODE_HASH_MASK (INODE_HASH_SIZE - 1)
#define INODE_HASH(dev, ino) (ino & INODE_HASH_MASK)
struct cached_dir_index {
squashfs_dir_index index;
char *name;
};
struct directory {
unsigned int start_block;
unsigned int size;
unsigned char *buff;
unsigned char *p;
unsigned int entry_count;
unsigned char *entry_count_p;
unsigned int i_count;
unsigned int i_size;
struct cached_dir_index *index;
unsigned char *index_count_p;
unsigned int inode_number;
};
struct inode_info *inode_info[INODE_HASH_SIZE];
/* hash tables used to do fast duplicate searches in duplicate check */
struct file_info *dupl[65536];
int dup_files = 0;
/* exclude file handling */
/* list of exclude dirs/files */
struct exclude_info {
dev_t st_dev;
ino_t st_ino;
};
#define EXCLUDE_SIZE 8192
int exclude = 0;
struct exclude_info *exclude_paths = NULL;
int old_excluded(char *filename, struct stat *buf);
struct path_entry {
char *name;
regex_t *preg;
struct pathname *paths;
};
struct pathname {
int names;
struct path_entry *name;
};
struct pathnames {
int count;
struct pathname *path[0];
};
#define PATHS_ALLOC_SIZE 10
struct pathnames *paths = NULL;
struct pathname *path = NULL;
struct pathname *stickypath = NULL;
int excluded(struct pathnames *paths, char *name, struct pathnames **new);
/* fragment block data structures */
int fragments = 0;
struct file_buffer *fragment_data = NULL;
int fragment_size = 0;
struct fragment {
unsigned int index;
int offset;
int size;
};
#define FRAG_SIZE 32768
#define FRAG_INDEX (1LL << 32)
squashfs_fragment_entry *fragment_table = NULL;
int fragments_outstanding = 0;
/* current inode number for directories and non directories */
unsigned int dir_inode_no = 1;
unsigned int inode_no = 0;
unsigned int root_inode_number = 0;
/* list of source dirs/files */
int source = 0;
char **source_path;
/* list of root directory entries read from original filesystem */
int old_root_entries = 0;
struct old_root_entry_info {
char *name;
struct inode_info inode;
};
struct old_root_entry_info *old_root_entry;
/* in memory file info */
struct file_info {
long long file_size;
long long bytes;
unsigned short checksum;
unsigned short fragment_checksum;
long long start;
unsigned int *block_list;
struct file_info *next;
struct fragment *fragment;
char checksum_flag;
};
/* count of how many times SIGINT or SIGQUIT has been sent */
int interrupted = 0;
/* restore orignal filesystem state if appending to existing filesystem is
* cancelled */
jmp_buf env;
char *sdata_cache, *sdirectory_data_cache, *sdirectory_compressed;
long long sbytes, stotal_bytes;
unsigned int sinode_bytes, scache_bytes, sdirectory_bytes,
sdirectory_cache_bytes, sdirectory_compressed_bytes,
stotal_inode_bytes, stotal_directory_bytes,
sinode_count = 0, sfile_count, ssym_count, sdev_count,
sdir_count, sfifo_count, ssock_count, sdup_files;
int sfragments;
int restore = 0;
int threads;
/* flag whether destination file is a block device */
int block_device = 0;
/* flag indicating whether files are sorted using sort list(s) */
int sorted = 0;
/* save destination file name for deleting on error */
char *destination_file = NULL;
/* recovery file for abnormal exit on appending */
char recovery_file[1024] = "";
int recover = TRUE;
/* struct describing a cache entry passed between threads */
struct file_buffer {
struct cache *cache;
int keep;
long long file_size;
long long index;
long long block;
long long sequence;
int size;
int c_byte;
int used;
int fragment;
int error;
struct file_buffer *hash_next;
struct file_buffer *hash_prev;
struct file_buffer *free_next;
struct file_buffer *free_prev;
struct file_buffer *next;
char data[0];
};
/* struct describing queues used to pass data between threads */
struct queue {
int size;
int readp;
int writep;
pthread_mutex_t mutex;
pthread_cond_t empty;
pthread_cond_t full;
void **data;
};
/* in memory uid tables */
#define ID_ENTRIES 256
#define ID_HASH(id) (id & (ID_ENTRIES - 1))
#define ISA_UID 1
#define ISA_GID 2
struct id {
unsigned int id;
int index;
char flags;
struct id *next;
};
struct id *id_hash_table[ID_ENTRIES];
struct id *id_table[SQUASHFS_IDS], *sid_table[SQUASHFS_IDS];
unsigned int uid_count = 0, guid_count = 0;
unsigned int sid_count = 0, suid_count = 0, sguid_count = 0;
struct cache *reader_buffer, *writer_buffer, *fragment_buffer;
struct queue *to_reader, *from_reader, *to_writer, *from_writer, *from_deflate,
*to_frag;
pthread_t *thread, *deflator_thread, *frag_deflator_thread, progress_thread;
pthread_mutex_t fragment_mutex;
pthread_cond_t fragment_waiting;
pthread_mutex_t pos_mutex;
pthread_mutex_t progress_mutex;
pthread_cond_t progress_wait;
int rotate = 0;
struct pseudo *pseudo = NULL;
/* user options that control parallelisation */
int processors = -1;
/* default size of output buffer in Mbytes */
#define WRITER_BUFFER_DEFAULT 512
/* default size of input buffer in Mbytes */
#define READER_BUFFER_DEFAULT 64
/* default size of fragment buffer in Mbytes */
#define FRAGMENT_BUFFER_DEFAULT 64
int writer_buffer_size;
int reader_buffer_size;
int fragment_buffer_size;
/* compression operations structure */
static struct compressor *comp;
char *comp_name = COMP_DEFAULT;
char *read_from_disk(long long start, unsigned int avail_bytes);
void add_old_root_entry(char *name, squashfs_inode inode, int inode_number,
int type);
extern struct compressor *read_super(int fd, squashfs_super_block *sBlk,
char *source);
extern long long read_filesystem(char *root_name, int fd,
squashfs_super_block *sBlk, char **cinode_table, char **data_cache,
char **cdirectory_table, char **directory_data_cache,
unsigned int *last_directory_block, unsigned int *inode_dir_offset,
unsigned int *inode_dir_file_size, unsigned int *root_inode_size,
unsigned int *inode_dir_start_block, int *file_count, int *sym_count,
int *dev_count, int *dir_count, int *fifo_count, int *sock_count,
long long *uncompressed_file, unsigned int *uncompressed_inode,
unsigned int *uncompressed_directory,
unsigned int *inode_dir_inode_number,
unsigned int *inode_dir_parent_inode,
void (push_directory_entry)(char *, squashfs_inode, int, int),
squashfs_fragment_entry **fragment_table,
squashfs_inode **inode_lookup_table);
extern int read_sort_file(char *filename, int source, char *source_path[]);
extern void sort_files_and_write(struct dir_info *dir);
struct file_info *duplicate(long long file_size, long long bytes,
unsigned int **block_list, long long *start, struct fragment **fragment,
struct file_buffer *file_buffer, int blocks, unsigned short checksum,
unsigned short fragment_checksum, int checksum_flag);
struct dir_info *dir_scan1(char *, struct pathnames *, int (_readdir)(char *,
char *, struct dir_info *));
struct dir_info *dir_scan2(struct dir_info *dir, struct pseudo *pseudo);
void dir_scan3(squashfs_inode *inode, struct dir_info *dir_info);
struct file_info *add_non_dup(long long file_size, long long bytes,
unsigned int *block_list, long long start, struct fragment *fragment,
unsigned short checksum, unsigned short fragment_checksum,
int checksum_flag);
extern void generate_file_priorities(struct dir_info *dir, int priority,
struct stat *buf);
extern struct priority_entry *priority_list[65536];
void progress_bar(long long current, long long max, int columns);
long long generic_write_table(int length, char *buffer, int uncompressed);
struct queue *queue_init(int size)
{
struct queue *queue = malloc(sizeof(struct queue));
if(queue == NULL)
return NULL;
if((queue->data = malloc(sizeof(void *) * (size + 1))) == NULL) {
free(queue);
return NULL;
}
queue->size = size + 1;
queue->readp = queue->writep = 0;
pthread_mutex_init(&queue->mutex, NULL);
pthread_cond_init(&queue->empty, NULL);
pthread_cond_init(&queue->full, NULL);
return queue;
}
void queue_put(struct queue *queue, void *data)
{
int nextp;
pthread_mutex_lock(&queue->mutex);
while((nextp = (queue->writep + 1) % queue->size) == queue->readp)
pthread_cond_wait(&queue->full, &queue->mutex);
queue->data[queue->writep] = data;
queue->writep = nextp;
pthread_cond_signal(&queue->empty);
pthread_mutex_unlock(&queue->mutex);
}
void *queue_get(struct queue *queue)
{
void *data;
pthread_mutex_lock(&queue->mutex);
while(queue->readp == queue->writep)
pthread_cond_wait(&queue->empty, &queue->mutex);
data = queue->data[queue->readp];
queue->readp = (queue->readp + 1) % queue->size;
pthread_cond_signal(&queue->full);
pthread_mutex_unlock(&queue->mutex);
return data;
}
/* Cache status struct. Caches are used to keep
track of memory buffers passed between different threads */
struct cache {
int max_buffers;
int count;
int buffer_size;
pthread_mutex_t mutex;
pthread_cond_t wait_for_free;
struct file_buffer *free_list;
struct file_buffer *hash_table[65536];
};
#define INSERT_LIST(NAME, TYPE) \
void insert_##NAME##_list(TYPE **list, TYPE *entry) { \
if(*list) { \
entry->NAME##_next = *list; \
entry->NAME##_prev = (*list)->NAME##_prev; \
(*list)->NAME##_prev->NAME##_next = entry; \
(*list)->NAME##_prev = entry; \
} else { \
*list = entry; \
entry->NAME##_prev = entry->NAME##_next = entry; \
} \
}
#define REMOVE_LIST(NAME, TYPE) \
void remove_##NAME##_list(TYPE **list, TYPE *entry) { \
if(entry->NAME##_prev == entry && entry->NAME##_next == entry) { \
/* only this entry in the list */ \
*list = NULL; \
} else if(entry->NAME##_prev != NULL && entry->NAME##_next != NULL) { \
/* more than one entry in the list */ \
entry->NAME##_next->NAME##_prev = entry->NAME##_prev; \
entry->NAME##_prev->NAME##_next = entry->NAME##_next; \
if(*list == entry) \
*list = entry->NAME##_next; \
} \
entry->NAME##_prev = entry->NAME##_next = NULL; \
}
#define CALCULATE_HASH(start) (start & 0xffff) \
/* Called with the cache mutex held */
void insert_hash_table(struct cache *cache, struct file_buffer *entry)
{
int hash = CALCULATE_HASH(entry->index);
entry->hash_next = cache->hash_table[hash];
cache->hash_table[hash] = entry;
entry->hash_prev = NULL;
if(entry->hash_next)
entry->hash_next->hash_prev = entry;
}
/* Called with the cache mutex held */
void remove_hash_table(struct cache *cache, struct file_buffer *entry)
{
if(entry->hash_prev)
entry->hash_prev->hash_next = entry->hash_next;
else
cache->hash_table[CALCULATE_HASH(entry->index)] =
entry->hash_next;
if(entry->hash_next)
entry->hash_next->hash_prev = entry->hash_prev;
entry->hash_prev = entry->hash_next = NULL;
}
/* Called with the cache mutex held */
INSERT_LIST(free, struct file_buffer)
/* Called with the cache mutex held */
REMOVE_LIST(free, struct file_buffer)
struct cache *cache_init(int buffer_size, int max_buffers)
{
struct cache *cache = malloc(sizeof(struct cache));
if(cache == NULL)
return NULL;
cache->max_buffers = max_buffers;
cache->buffer_size = buffer_size;
cache->count = 0;
cache->free_list = NULL;
memset(cache->hash_table, 0, sizeof(struct file_buffer *) * 65536);
pthread_mutex_init(&cache->mutex, NULL);
pthread_cond_init(&cache->wait_for_free, NULL);
return cache;
}
struct file_buffer *cache_lookup(struct cache *cache, long long index)
{
/* Lookup block in the cache, if found return with usage count
* incremented, if not found return NULL */
int hash = CALCULATE_HASH(index);
struct file_buffer *entry;
pthread_mutex_lock(&cache->mutex);
for(entry = cache->hash_table[hash]; entry; entry = entry->hash_next)
if(entry->index == index)
break;
if(entry) {
/* found the block in the cache, increment used count and
* if necessary remove from free list so it won't disappear
*/
entry->used ++;
remove_free_list(&cache->free_list, entry);
}
pthread_mutex_unlock(&cache->mutex);
return entry;
}
struct file_buffer *cache_get(struct cache *cache, long long index, int keep)
{
/* Get a free block out of the cache indexed on index. */
struct file_buffer *entry;
pthread_mutex_lock(&cache->mutex);
while(1) {
/* first try to get a block from the free list */
if(first_freelist && cache->free_list) {
/* a block on the free_list is a "keep" block */
entry = cache->free_list;
remove_free_list(&cache->free_list, entry);
remove_hash_table(cache, entry);
break;
} else if(cache->count < cache->max_buffers) {
/* next try to allocate new block */
entry = malloc(sizeof(struct file_buffer) +
cache->buffer_size);
if(entry == NULL)
goto failed;
entry->cache = cache;
entry->free_prev = entry->free_next = NULL;
cache->count ++;
break;
} else if(!first_freelist && cache->free_list) {
/* a block on the free_list is a "keep" block */
entry = cache->free_list;
remove_free_list(&cache->free_list, entry);
remove_hash_table(cache, entry);
break;
} else
/* wait for a block */
pthread_cond_wait(&cache->wait_for_free, &cache->mutex);
}
/* initialise block and if a keep block insert into the hash table */
entry->used = 1;
entry->error = FALSE;
entry->keep = keep;
if(keep) {
entry->index = index;
insert_hash_table(cache, entry);
}
pthread_mutex_unlock(&cache->mutex);
return entry;
failed:
pthread_mutex_unlock(&cache->mutex);
return NULL;
}
void cache_rehash(struct file_buffer *entry, long long index)
{
struct cache *cache = entry->cache;
pthread_mutex_lock(&cache->mutex);
if(entry->keep)
remove_hash_table(cache, entry);
entry->keep = TRUE;
entry->index = index;
insert_hash_table(cache, entry);
pthread_mutex_unlock(&cache->mutex);
}
void cache_block_put(struct file_buffer *entry)
{
struct cache *cache;
/* finished with this cache entry, once the usage count reaches zero it
* can be reused and if a keep block put onto the free list. As keep
* blocks remain accessible via the hash table they can be found
* getting a new lease of life before they are reused. */
if(entry == NULL)
return;
cache = entry->cache;
pthread_mutex_lock(&cache->mutex);
entry->used --;
if(entry->used == 0) {
if(entry->keep)
insert_free_list(&cache->free_list, entry);
else {
free(entry);
cache->count --;
}
/* One or more threads may be waiting on this block */
pthread_cond_signal(&cache->wait_for_free);
}
pthread_mutex_unlock(&cache->mutex);
}
#define MKINODE(A) ((squashfs_inode)(((squashfs_inode) inode_bytes << 16) \
+ (((char *)A) - data_cache)))
inline void inc_progress_bar()
{
cur_uncompressed ++;
}
inline void update_progress_bar()
{
pthread_mutex_lock(&progress_mutex);
pthread_cond_signal(&progress_wait);
pthread_mutex_unlock(&progress_mutex);
}
inline void waitforthread(int i)
{
TRACE("Waiting for thread %d\n", i);
while(thread[i] != 0)
sched_yield();
}
void restorefs()
{
int i;
if(thread == NULL || thread[0] == 0)
return;
ERROR("Exiting - restoring original filesystem!\n\n");
for(i = 0; i < 2 + processors * 2; i++)
if(thread[i])
pthread_kill(thread[i], SIGUSR1);
for(i = 0; i < 2 + processors * 2; i++)
waitforthread(i);
TRACE("All threads in signal handler\n");
bytes = sbytes;
memcpy(data_cache, sdata_cache, cache_bytes = scache_bytes);
memcpy(directory_data_cache, sdirectory_data_cache,
sdirectory_cache_bytes);
directory_cache_bytes = sdirectory_cache_bytes;
inode_bytes = sinode_bytes;
directory_bytes = sdirectory_bytes;
memcpy(directory_table + directory_bytes, sdirectory_compressed,
sdirectory_compressed_bytes);
directory_bytes += sdirectory_compressed_bytes;
total_bytes = stotal_bytes;
total_inode_bytes = stotal_inode_bytes;
total_directory_bytes = stotal_directory_bytes;
inode_count = sinode_count;
file_count = sfile_count;
sym_count = ssym_count;
dev_count = sdev_count;
dir_count = sdir_count;
fifo_count = sfifo_count;
sock_count = ssock_count;
dup_files = sdup_files;
fragments = sfragments;
fragment_size = 0;
id_count = sid_count;
longjmp(env, 1);
}
void sighandler()
{
if(++interrupted > 2)
return;
if(interrupted == 2)
restorefs();
else {
ERROR("Interrupting will restore original filesystem!\n");
ERROR("Interrupt again to quit\n");
}
}
void sighandler2()
{
EXIT_MKSQUASHFS();
}
void sigusr1_handler()
{
int i;
sigset_t sigmask;
pthread_t thread_id = pthread_self();
for(i = 0; i < (2 + processors * 2) && thread[i] != thread_id; i++);
thread[i] = (pthread_t) 0;
TRACE("Thread %d(%p) in sigusr1_handler\n", i, &thread_id);
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGINT);
sigaddset(&sigmask, SIGQUIT);
sigaddset(&sigmask, SIGUSR1);
while(1) {
sigsuspend(&sigmask);
TRACE("After wait in sigusr1_handler :(\n");
}
}
void sigwinch_handler()
{
struct winsize winsize;
if(ioctl(1, TIOCGWINSZ, &winsize) == -1) {
if(isatty(STDOUT_FILENO))
printf("TIOCGWINSZ ioctl failed, defaulting to 80 "
"columns\n");
columns = 80;
} else
columns = winsize.ws_col;
}
void sigalrm_handler()
{
rotate = (rotate + 1) % 4;
}
int mangle2(void **strm, char *d, char *s, int size,
int block_size, int uncompressed, int data_block)
{
int error, c_byte = 0;
if(!uncompressed) {
c_byte = comp->compress(strm, d, s, size, block_size, &error);
if(c_byte == -1)
BAD_ERROR("mangle2:: %s compress failed with error "
"code %d\n", comp->name, error);
}
if(c_byte == 0 || c_byte >= size) {
memcpy(d, s, size);
return size | (data_block ? SQUASHFS_COMPRESSED_BIT_BLOCK :
SQUASHFS_COMPRESSED_BIT);
}
return c_byte;
}
int mangle(char *d, char *s, int size, int block_size,
int uncompressed, int data_block)
{
static void *stream = NULL;
return mangle2(&stream, d, s, size, block_size, uncompressed,
data_block);
}
squashfs_base_inode_header *get_inode(int req_size)
{
int data_space;
unsigned short c_byte;
while(cache_bytes >= SQUASHFS_METADATA_SIZE) {
if((inode_size - inode_bytes) <
((SQUASHFS_METADATA_SIZE << 1)) + 2) {
inode_table = realloc(inode_table, inode_size +
(SQUASHFS_METADATA_SIZE << 1) + 2);
if(inode_table == NULL) {
goto failed;
}
inode_size += (SQUASHFS_METADATA_SIZE << 1) + 2;
}
c_byte = mangle(inode_table + inode_bytes + BLOCK_OFFSET,
data_cache, SQUASHFS_METADATA_SIZE,
SQUASHFS_METADATA_SIZE, noI, 0);
TRACE("Inode block @ 0x%x, size %d\n", inode_bytes, c_byte);
SQUASHFS_SWAP_SHORTS(&c_byte,
(unsigned short *) (inode_table + inode_bytes), 1);
inode_bytes += SQUASHFS_COMPRESSED_SIZE(c_byte) + BLOCK_OFFSET;
total_inode_bytes += SQUASHFS_METADATA_SIZE + BLOCK_OFFSET;
memcpy(data_cache, data_cache + SQUASHFS_METADATA_SIZE,
cache_bytes - SQUASHFS_METADATA_SIZE);
cache_bytes -= SQUASHFS_METADATA_SIZE;
}
data_space = (cache_size - cache_bytes);
if(data_space < req_size) {
int realloc_size = cache_size == 0 ?
((req_size + SQUASHFS_METADATA_SIZE) &
~(SQUASHFS_METADATA_SIZE - 1)) : req_size -
data_space;
data_cache = realloc(data_cache, cache_size +
realloc_size);
if(data_cache == NULL) {
goto failed;
}
cache_size += realloc_size;
}
cache_bytes += req_size;
return (squashfs_base_inode_header *)
(data_cache + (cache_bytes - req_size));
failed:
BAD_ERROR("Out of memory in inode table reallocation!\n");
}
int read_bytes(int fd, void *buff, int bytes)
{
int res, count;
for(count = 0; count < bytes; count += res) {
res = read(fd, buff + count, bytes - count);
if(res < 1) {
if(res == 0)
goto bytes_read;
else if(errno != EINTR) {
ERROR("Read failed because %s\n",
strerror(errno));
return -1;
} else
res = 0;
}
}
bytes_read:
return count;
}
void read_destination(int fd, long long byte, int bytes, char *buff)
{
off_t off = byte;
TRACE("read_destination: reading from position 0x%llx, bytes %d\n",
byte, bytes);
pthread_mutex_lock(&pos_mutex);
if(lseek(fd, off, SEEK_SET) == -1)
BAD_ERROR("Lseek on destination failed because %s\n",
strerror(errno));
if(read_bytes(fd, buff, bytes) < bytes)
BAD_ERROR("Read on destination failed\n");
pthread_mutex_unlock(&pos_mutex);
}
int write_bytes(int fd, void *buff, int bytes)
{
int res, count;
for(count = 0; count < bytes; count += res) {
res = write(fd, buff + count, bytes - count);
if(res == -1) {
if(errno != EINTR) {
ERROR("Write failed because %s\n",
strerror(errno));
return -1;
}
res = 0;
}
}
return 0;
}
void write_destination(int fd, long long byte, int bytes, char *buff)
{
off_t off = byte;
if(interrupted < 2)
pthread_mutex_lock(&pos_mutex);
if(lseek(fd, off, SEEK_SET) == -1)
BAD_ERROR("Lseek on destination failed because %s\n",
strerror(errno));
if(write_bytes(fd, buff, bytes) == -1)
BAD_ERROR("Write on destination failed\n");
if(interrupted < 2)
pthread_mutex_unlock(&pos_mutex);
}
long long write_inodes()
{
unsigned short c_byte;
int avail_bytes;
char *datap = data_cache;
long long start_bytes = bytes;
while(cache_bytes) {
if(inode_size - inode_bytes <
((SQUASHFS_METADATA_SIZE << 1) + 2)) {
inode_table = realloc(inode_table, inode_size +
((SQUASHFS_METADATA_SIZE << 1) + 2));
if(inode_table == NULL) {
BAD_ERROR("Out of memory in inode table "
"reallocation!\n");
}
inode_size += (SQUASHFS_METADATA_SIZE << 1) + 2;
}
avail_bytes = cache_bytes > SQUASHFS_METADATA_SIZE ?
SQUASHFS_METADATA_SIZE : cache_bytes;
c_byte = mangle(inode_table + inode_bytes + BLOCK_OFFSET, datap,
avail_bytes, SQUASHFS_METADATA_SIZE, noI, 0);
TRACE("Inode block @ 0x%x, size %d\n", inode_bytes, c_byte);
SQUASHFS_SWAP_SHORTS(&c_byte,
(unsigned short *) (inode_table + inode_bytes), 1);
inode_bytes += SQUASHFS_COMPRESSED_SIZE(c_byte) + BLOCK_OFFSET;
total_inode_bytes += avail_bytes + BLOCK_OFFSET;
datap += avail_bytes;
cache_bytes -= avail_bytes;
}
write_destination(fd, bytes, inode_bytes, (char *) inode_table);
bytes += inode_bytes;
return start_bytes;
}
long long write_directories()
{
unsigned short c_byte;
int avail_bytes;
char *directoryp = directory_data_cache;
long long start_bytes = bytes;
while(directory_cache_bytes) {
if(directory_size - directory_bytes <
((SQUASHFS_METADATA_SIZE << 1) + 2)) {
directory_table = realloc(directory_table,
directory_size + ((SQUASHFS_METADATA_SIZE << 1)
+ 2));
if(directory_table == NULL) {
BAD_ERROR("Out of memory in directory table "
"reallocation!\n");
}
directory_size += (SQUASHFS_METADATA_SIZE << 1) + 2;
}
avail_bytes = directory_cache_bytes > SQUASHFS_METADATA_SIZE ?
SQUASHFS_METADATA_SIZE : directory_cache_bytes;
c_byte = mangle(directory_table + directory_bytes +
BLOCK_OFFSET, directoryp, avail_bytes,
SQUASHFS_METADATA_SIZE, noI, 0);
TRACE("Directory block @ 0x%x, size %d\n", directory_bytes,
c_byte);
SQUASHFS_SWAP_SHORTS(&c_byte, (unsigned short *)
(directory_table + directory_bytes), 1);
directory_bytes += SQUASHFS_COMPRESSED_SIZE(c_byte) +
BLOCK_OFFSET;
total_directory_bytes += avail_bytes + BLOCK_OFFSET;
directoryp += avail_bytes;
directory_cache_bytes -= avail_bytes;
}
write_destination(fd, bytes, directory_bytes, (char *) directory_table);
bytes += directory_bytes;
return start_bytes;
}
long long write_id_table()
{
unsigned int id_bytes = SQUASHFS_ID_BYTES(id_count);
char buffer[id_bytes];
unsigned int *p = (unsigned int *) buffer;
int i;
TRACE("write_id_table: ids %d, id_bytes %d\n", id_count, id_bytes);
for(i = 0; i < id_count; i++, p++) {
TRACE("write_id_table: id index %d, id %d", i, id_table[i]->id);
SQUASHFS_SWAP_INTS(&id_table[i]->id, p, 1);
}
return generic_write_table(id_bytes, buffer, 1);
}
struct id *get_id(unsigned int id)
{
int hash = ID_HASH(id);
struct id *entry = id_hash_table[hash];
for(; entry; entry = entry->next)
if(entry->id == id)
break;
return entry;
}
struct id *create_id(unsigned int id)
{
int hash = ID_HASH(id);
struct id *entry = malloc(sizeof(struct id));
if(entry == NULL)
BAD_ERROR("Out of memory in create_id\n");
entry->id = id;
entry->index = id_count ++;
entry->flags = 0;
entry->next = id_hash_table[hash];
id_hash_table[hash] = entry;
id_table[entry->index] = entry;
return entry;
}
unsigned int get_uid(unsigned int uid)
{
struct id *entry = get_id(uid);
if(entry == NULL) {
if(id_count == SQUASHFS_IDS)
BAD_ERROR("Out of uids!\n");
entry = create_id(uid);
}
if((entry->flags & ISA_UID) == 0) {
entry->flags |= ISA_UID;
uid_count ++;
}
return entry->index;
}
unsigned int get_guid(unsigned int guid)
{
struct id *entry = get_id(guid);
if(entry == NULL) {
if(id_count == SQUASHFS_IDS)
BAD_ERROR("Out of gids!\n");
entry = create_id(guid);
}
if((entry->flags & ISA_GID) == 0) {
entry->flags |= ISA_GID;
guid_count ++;
}
return entry->index;
}
int create_inode(squashfs_inode *i_no, struct dir_ent *dir_ent, int type,
long long byte_size, long long start_block, unsigned int offset,
unsigned int *block_list, struct fragment *fragment,
struct directory *dir_in, unsigned int sparse)
{
struct stat *buf = &dir_ent->inode->buf;
squashfs_inode_header inode_header;
squashfs_base_inode_header *inode, *base = &inode_header.base;
char *filename = dir_ent->pathname;
int nlink = dir_ent->inode->nlink;
int inode_number = (type == SQUASHFS_LDIR_TYPE ||
type == SQUASHFS_DIR_TYPE) ? dir_ent->inode->inode_number :
dir_ent->inode->inode_number + dir_inode_no;
base->mode = SQUASHFS_MODE(buf->st_mode);
base->uid = get_uid((unsigned int) global_uid == -1 ?
buf->st_uid : global_uid);
base->inode_type = type;
base->guid = get_guid((unsigned int) global_gid == -1 ?
buf->st_gid : global_gid);
base->mtime = buf->st_mtime;
base->inode_number = inode_number;
if(type == SQUASHFS_FILE_TYPE) {
int i;
squashfs_reg_inode_header *reg = &inode_header.reg, *inodep;
inode = get_inode(sizeof(*reg) + offset * sizeof(unsigned int));
inodep = (squashfs_reg_inode_header *) inode;
reg->file_size = byte_size;
reg->start_block = start_block;
reg->fragment = fragment->index;
reg->offset = fragment->offset;
SQUASHFS_SWAP_REG_INODE_HEADER(reg, inodep);
SQUASHFS_SWAP_INTS(block_list, inodep->block_list, offset);
TRACE("File inode, file_size %lld, start_block 0x%llx, blocks "
"%d, fragment %d, offset %d, size %d\n", byte_size,
start_block, offset, fragment->index, fragment->offset,
fragment->size);
for(i = 0; i < offset; i++)
TRACE("Block %d, size %d\n", i, block_list[i]);
}
else if(type == SQUASHFS_LREG_TYPE) {
int i;
squashfs_lreg_inode_header *reg = &inode_header.lreg, *inodep;
inode = get_inode(sizeof(*reg) + offset * sizeof(unsigned int));
inodep = (squashfs_lreg_inode_header *) inode;
reg->nlink = nlink;
reg->file_size = byte_size;
reg->start_block = start_block;
reg->fragment = fragment->index;
reg->offset = fragment->offset;
if(sparse && sparse >= byte_size)
sparse = byte_size - 1;
reg->sparse = sparse;
SQUASHFS_SWAP_LREG_INODE_HEADER(reg, inodep);
SQUASHFS_SWAP_INTS(block_list, inodep->block_list, offset);
TRACE("Long file inode, file_size %lld, start_block 0x%llx, "
"blocks %d, fragment %d, offset %d, size %d, nlink %d"
"\n", byte_size, start_block, offset, fragment->index,
fragment->offset, fragment->size, nlink);
for(i = 0; i < offset; i++)
TRACE("Block %d, size %d\n", i, block_list[i]);
}
else if(type == SQUASHFS_LDIR_TYPE) {
int i;
unsigned char *p;
squashfs_ldir_inode_header *dir = &inode_header.ldir, *inodep;
struct cached_dir_index *index = dir_in->index;
unsigned int i_count = dir_in->i_count;
unsigned int i_size = dir_in->i_size;
if(byte_size >= 1 << 27)
BAD_ERROR("directory greater than 2^27-1 bytes!\n");
inode = get_inode(sizeof(*dir) + i_size);
inodep = (squashfs_ldir_inode_header *) inode;
dir->inode_type = SQUASHFS_LDIR_TYPE;
dir->nlink = dir_ent->dir->directory_count + 2;
dir->file_size = byte_size;
dir->offset = offset;
dir->start_block = start_block;
dir->i_count = i_count;
dir->parent_inode = dir_ent->our_dir ?
dir_ent->our_dir->dir_ent->inode->inode_number :
dir_inode_no + inode_no;
SQUASHFS_SWAP_LDIR_INODE_HEADER(dir, inodep);
p = (unsigned char *) inodep->index;
for(i = 0; i < i_count; i++) {
SQUASHFS_SWAP_DIR_INDEX(&index[i].index,
(squashfs_dir_index *) p);
memcpy(((squashfs_dir_index *)p)->name, index[i].name,
index[i].index.size + 1);
p += sizeof(squashfs_dir_index) + index[i].index.size
+ 1;
}
TRACE("Long directory inode, file_size %lld, start_block "
"0x%llx, offset 0x%x, nlink %d\n", byte_size,
start_block, offset, dir_ent->dir->directory_count + 2);
}
else if(type == SQUASHFS_DIR_TYPE) {
squashfs_dir_inode_header *dir = &inode_header.dir;
inode = get_inode(sizeof(*dir));
dir->nlink = dir_ent->dir->directory_count + 2;
dir->file_size = byte_size;
dir->offset = offset;
dir->start_block = start_block;
dir->parent_inode = dir_ent->our_dir ?
dir_ent->our_dir->dir_ent->inode->inode_number :
dir_inode_no + inode_no;
SQUASHFS_SWAP_DIR_INODE_HEADER(dir,
(squashfs_dir_inode_header *) inode);
TRACE("Directory inode, file_size %lld, start_block 0x%llx, "
"offset 0x%x, nlink %d\n", byte_size, start_block,
offset, dir_ent->dir->directory_count + 2);
}
else if(type == SQUASHFS_CHRDEV_TYPE || type == SQUASHFS_BLKDEV_TYPE) {
squashfs_dev_inode_header *dev = &inode_header.dev;
unsigned int major = major(buf->st_rdev);
unsigned int minor = minor(buf->st_rdev);
if(major > 0xfff) {
ERROR("Major %d out of range in device node %s, "
"truncating to %d\n", major, filename,
major & 0xfff);
major &= 0xfff;
}
if(minor > 0xfffff) {
ERROR("Minor %d out of range in device node %s, "
"truncating to %d\n", minor, filename,
minor & 0xfffff);
minor &= 0xfffff;
}
inode = get_inode(sizeof(*dev));
dev->nlink = nlink;
dev->rdev = (major << 8) | (minor & 0xff) |
((minor & ~0xff) << 12);
SQUASHFS_SWAP_DEV_INODE_HEADER(dev,
(squashfs_dev_inode_header *) inode);
TRACE("Device inode, rdev 0x%x, nlink %d\n", dev->rdev, nlink);
}
else if(type == SQUASHFS_SYMLINK_TYPE) {
squashfs_symlink_inode_header *symlink = &inode_header.symlink,
*inodep;
int byte;
char buff[65536];
if((byte = readlink(filename, buff, 65536)) == -1) {
ERROR("Failed to read symlink %s, creating empty "
"symlink\n", filename);
byte = 0;
}
if(byte == 65536) {
ERROR("Symlink %s is greater than 65536 bytes! "
"Creating empty symlink\n", filename);
byte = 0;
}
inode = get_inode(sizeof(*symlink) + byte);
symlink->nlink = nlink;
inodep = (squashfs_symlink_inode_header *) inode;
symlink->symlink_size = byte;
SQUASHFS_SWAP_SYMLINK_INODE_HEADER(symlink, inodep);
strncpy(inodep->symlink, buff, byte);
TRACE("Symbolic link inode, symlink_size %d, nlink %d\n", byte,
nlink);
}
else if(type == SQUASHFS_FIFO_TYPE || type == SQUASHFS_SOCKET_TYPE) {
squashfs_ipc_inode_header *ipc = &inode_header.ipc;
inode = get_inode(sizeof(*ipc));
ipc->nlink = nlink;
SQUASHFS_SWAP_IPC_INODE_HEADER(ipc,
(squashfs_ipc_inode_header *) inode);
TRACE("ipc inode, type %s, nlink %d\n", type ==
SQUASHFS_FIFO_TYPE ? "fifo" : "socket", nlink);
} else
BAD_ERROR("Unrecognised inode %d in create_inode\n", type);
*i_no = MKINODE(inode);
inode_count ++;
TRACE("Created inode 0x%llx, type %d, uid %d, guid %d\n", *i_no, type,
base->uid, base->guid);
return TRUE;
}
void scan3_init_dir(struct directory *dir)
{
if((dir->buff = malloc(SQUASHFS_METADATA_SIZE)) == NULL) {
BAD_ERROR("Out of memory allocating directory buffer\n");
}
dir->size = SQUASHFS_METADATA_SIZE;
dir->p = dir->index_count_p = dir->buff;
dir->entry_count = 256;
dir->entry_count_p = NULL;
dir->index = NULL;
dir->i_count = dir->i_size = 0;
}
void add_dir(squashfs_inode inode, unsigned int inode_number, char *name,
int type, struct directory *dir)
{
unsigned char *buff;
squashfs_dir_entry idir, *idirp;
unsigned int start_block = inode >> 16;
unsigned int offset = inode & 0xffff;
unsigned int size;
if((size = strlen(name)) > SQUASHFS_NAME_LEN) {
size = SQUASHFS_NAME_LEN;
ERROR("Filename is greater than %d characters, truncating! ..."
"\n", SQUASHFS_NAME_LEN);
}
if(dir->p + sizeof(squashfs_dir_entry) + size +
sizeof(squashfs_dir_header) >= dir->buff + dir->size) {
buff = realloc(dir->buff, dir->size += SQUASHFS_METADATA_SIZE);
if(buff == NULL) {
BAD_ERROR("Out of memory reallocating directory buffer"
"\n");
}
dir->p = (dir->p - dir->buff) + buff;
if(dir->entry_count_p)
dir->entry_count_p = (dir->entry_count_p - dir->buff +
buff);
dir->index_count_p = dir->index_count_p - dir->buff + buff;
dir->buff = buff;
}
if(dir->entry_count == 256 || start_block != dir->start_block ||
((dir->entry_count_p != NULL) &&
((dir->p + sizeof(squashfs_dir_entry) + size -
dir->index_count_p) > SQUASHFS_METADATA_SIZE)) ||
((long long) inode_number - dir->inode_number) > 32767
|| ((long long) inode_number - dir->inode_number)
< -32768) {
if(dir->entry_count_p) {
squashfs_dir_header dir_header;
if((dir->p + sizeof(squashfs_dir_entry) + size -
dir->index_count_p) >
SQUASHFS_METADATA_SIZE) {
if(dir->i_count % I_COUNT_SIZE == 0) {
dir->index = realloc(dir->index,
(dir->i_count + I_COUNT_SIZE) *
sizeof(struct cached_dir_index));
if(dir->index == NULL)
BAD_ERROR("Out of memory in "
"directory index table "
"reallocation!\n");
}
dir->index[dir->i_count].index.index =
dir->p - dir->buff;
dir->index[dir->i_count].index.size = size - 1;
dir->index[dir->i_count++].name = name;
dir->i_size += sizeof(squashfs_dir_index) +
size;
dir->index_count_p = dir->p;
}
dir_header.count = dir->entry_count - 1;
dir_header.start_block = dir->start_block;
dir_header.inode_number = dir->inode_number;
SQUASHFS_SWAP_DIR_HEADER(&dir_header,
(squashfs_dir_header *) dir->entry_count_p);
}
dir->entry_count_p = dir->p;
dir->start_block = start_block;
dir->entry_count = 0;
dir->inode_number = inode_number;
dir->p += sizeof(squashfs_dir_header);
}
idirp = (squashfs_dir_entry *) dir->p;
idir.offset = offset;
idir.type = type;
idir.size = size - 1;
idir.inode_number = ((long long) inode_number - dir->inode_number);
SQUASHFS_SWAP_DIR_ENTRY(&idir, idirp);
strncpy(idirp->name, name, size);
dir->p += sizeof(squashfs_dir_entry) + size;
dir->entry_count ++;
}
void write_dir(squashfs_inode *inode, struct dir_info *dir_info,
struct directory *dir)
{
unsigned int dir_size = dir->p - dir->buff;
int data_space = (directory_cache_size - directory_cache_bytes);
unsigned int directory_block, directory_offset, i_count, index;
unsigned short c_byte;
if(data_space < dir_size) {
int realloc_size = directory_cache_size == 0 ?
((dir_size + SQUASHFS_METADATA_SIZE) &
~(SQUASHFS_METADATA_SIZE - 1)) : dir_size - data_space;
directory_data_cache = realloc(directory_data_cache,
directory_cache_size + realloc_size);
if(directory_data_cache == NULL) {
goto failed;
}
directory_cache_size += realloc_size;
}
if(dir_size) {
squashfs_dir_header dir_header;
dir_header.count = dir->entry_count - 1;
dir_header.start_block = dir->start_block;
dir_header.inode_number = dir->inode_number;
SQUASHFS_SWAP_DIR_HEADER(&dir_header,
(squashfs_dir_header *) dir->entry_count_p);
memcpy(directory_data_cache + directory_cache_bytes, dir->buff,
dir_size);
}
directory_offset = directory_cache_bytes;
directory_block = directory_bytes;
directory_cache_bytes += dir_size;
i_count = 0;
index = SQUASHFS_METADATA_SIZE - directory_offset;
while(1) {
while(i_count < dir->i_count &&
dir->index[i_count].index.index < index)
dir->index[i_count++].index.start_block =
directory_bytes;
index += SQUASHFS_METADATA_SIZE;
if(directory_cache_bytes < SQUASHFS_METADATA_SIZE)
break;
if((directory_size - directory_bytes) <
((SQUASHFS_METADATA_SIZE << 1) + 2)) {
directory_table = realloc(directory_table,
directory_size + (SQUASHFS_METADATA_SIZE << 1)
+ 2);
if(directory_table == NULL) {
goto failed;
}
directory_size += SQUASHFS_METADATA_SIZE << 1;
}
c_byte = mangle(directory_table + directory_bytes +
BLOCK_OFFSET, directory_data_cache,
SQUASHFS_METADATA_SIZE, SQUASHFS_METADATA_SIZE,
noI, 0);
TRACE("Directory block @ 0x%x, size %d\n", directory_bytes,
c_byte);
SQUASHFS_SWAP_SHORTS(&c_byte, (unsigned short *)
(directory_table + directory_bytes), 1);
directory_bytes += SQUASHFS_COMPRESSED_SIZE(c_byte) +
BLOCK_OFFSET;
total_directory_bytes += SQUASHFS_METADATA_SIZE + BLOCK_OFFSET;
memcpy(directory_data_cache, directory_data_cache +
SQUASHFS_METADATA_SIZE, directory_cache_bytes -
SQUASHFS_METADATA_SIZE);
directory_cache_bytes -= SQUASHFS_METADATA_SIZE;
}
if(dir_info->dir_is_ldir)
create_inode(inode, dir_info->dir_ent, SQUASHFS_LDIR_TYPE,
dir_size + 3, directory_block, directory_offset, NULL,
NULL, dir, 0);
else
create_inode(inode, dir_info->dir_ent, SQUASHFS_DIR_TYPE,
dir_size + 3, directory_block, directory_offset, NULL,
NULL, NULL, 0);
#ifdef SQUASHFS_TRACE
{
unsigned char *dirp;
int count;
TRACE("Directory contents of inode 0x%llx\n", *inode);
dirp = dir->buff;
while(dirp < dir->p) {
char buffer[SQUASHFS_NAME_LEN + 1];
squashfs_dir_entry idir, *idirp;
squashfs_dir_header dirh;
SQUASHFS_SWAP_DIR_HEADER((squashfs_dir_header *) dirp,
&dirh);
count = dirh.count + 1;
dirp += sizeof(squashfs_dir_header);
TRACE("\tStart block 0x%x, count %d\n",
dirh.start_block, count);
while(count--) {
idirp = (squashfs_dir_entry *) dirp;
SQUASHFS_SWAP_DIR_ENTRY(idirp, &idir);
strncpy(buffer, idirp->name, idir.size + 1);
buffer[idir.size + 1] = '\0';
TRACE("\t\tname %s, inode offset 0x%x, type "
"%d\n", buffer, idir.offset, idir.type);
dirp += sizeof(squashfs_dir_entry) + idir.size + 1;
}
}
}
#endif
dir_count ++;
return;
failed:
BAD_ERROR("Out of memory in directory table reallocation!\n");
}
struct file_buffer *get_fragment(struct fragment *fragment)
{
squashfs_fragment_entry *disk_fragment;
int size;
long long start_block;
struct file_buffer *buffer, *compressed_buffer;
if(fragment->index == SQUASHFS_INVALID_FRAG)
return NULL;
buffer = cache_lookup(fragment_buffer, fragment->index);
if(buffer)
return buffer;
compressed_buffer = cache_lookup(writer_buffer, fragment->index +
FRAG_INDEX);
buffer = cache_get(fragment_buffer, fragment->index, 1);
pthread_mutex_lock(&fragment_mutex);
disk_fragment = &fragment_table[fragment->index];
size = SQUASHFS_COMPRESSED_SIZE_BLOCK(disk_fragment->size);
start_block = disk_fragment->start_block;
pthread_mutex_unlock(&fragment_mutex);
if(SQUASHFS_COMPRESSED_BLOCK(disk_fragment->size)) {
int error, res;
char *data;
if(compressed_buffer)
data = compressed_buffer->data;
else
data = read_from_disk(start_block, size);
res = comp->uncompress(buffer->data, data, size, block_size,
&error);
if(res == -1)
BAD_ERROR("%s uncompress failed with error code %d\n",
comp->name, error);
} else if(compressed_buffer)
memcpy(buffer->data, compressed_buffer->data, size);
else
read_destination(fd, start_block, size, buffer->data);
cache_block_put(compressed_buffer);
return buffer;
}
struct frag_locked {
struct file_buffer *buffer;
int c_byte;
int fragment;
struct frag_locked *fragment_prev;
struct frag_locked *fragment_next;
};
int fragments_locked = FALSE;
struct frag_locked *frag_locked_list = NULL;
INSERT_LIST(fragment, struct frag_locked)
REMOVE_LIST(fragment, struct frag_locked)
int lock_fragments()
{
int count;
pthread_mutex_lock(&fragment_mutex);
fragments_locked = TRUE;
count = fragments_outstanding;
pthread_mutex_unlock(&fragment_mutex);
return count;
}
void unlock_fragments()
{
struct frag_locked *entry;
int compressed_size;
pthread_mutex_lock(&fragment_mutex);
while(frag_locked_list) {
entry = frag_locked_list;
remove_fragment_list(&frag_locked_list, entry);
compressed_size = SQUASHFS_COMPRESSED_SIZE_BLOCK(entry->c_byte);
fragment_table[entry->fragment].size = entry->c_byte;
fragment_table[entry->fragment].start_block = bytes;
entry->buffer->block = bytes;
bytes += compressed_size;
fragments_outstanding --;
queue_put(to_writer, entry->buffer);
TRACE("fragment_locked writing fragment %d, compressed size %d"
"\n", entry->fragment, compressed_size);
free(entry);
}
fragments_locked = FALSE;
pthread_mutex_unlock(&fragment_mutex);
}
int add_pending_fragment(struct file_buffer *write_buffer, int c_byte,
int fragment)
{
struct frag_locked *entry = malloc(sizeof(struct frag_locked));
if(entry == NULL)
return FALSE;
entry->buffer = write_buffer;
entry->c_byte = c_byte;
entry->fragment = fragment;
entry->fragment_prev = entry->fragment_next = NULL;
pthread_mutex_lock(&fragment_mutex);
insert_fragment_list(&frag_locked_list, entry);
pthread_mutex_unlock(&fragment_mutex);
return TRUE;
}
void write_fragment()
{
if(fragment_size == 0)
return;
pthread_mutex_lock(&fragment_mutex);
if(fragments % FRAG_SIZE == 0) {
fragment_table = realloc(fragment_table, (fragments +
FRAG_SIZE) * sizeof(squashfs_fragment_entry));
if(fragment_table == NULL) {
pthread_mutex_unlock(&fragment_mutex);
BAD_ERROR("Out of memory in fragment table\n");
}
}
fragment_data->size = fragment_size;
fragment_data->block = fragments;
fragment_table[fragments].unused = 0;
fragments_outstanding ++;
queue_put(to_frag, fragment_data);
fragments ++;
fragment_size = 0;
pthread_mutex_unlock(&fragment_mutex);
}
static struct fragment empty_fragment = {SQUASHFS_INVALID_FRAG, 0, 0};
struct fragment *get_and_fill_fragment(struct file_buffer *file_buffer)
{
struct fragment *ffrg;
if(file_buffer == NULL || file_buffer->size == 0)
return &empty_fragment;
if(fragment_size + file_buffer->size > block_size)
write_fragment();
if((ffrg = malloc(sizeof(struct fragment))) == NULL)
BAD_ERROR("Out of memory in fragment block allocation!\n");
if(fragment_size == 0)
fragment_data = cache_get(fragment_buffer, fragments, 1);
ffrg->index = fragments;
ffrg->offset = fragment_size;
ffrg->size = file_buffer->size;
memcpy(fragment_data->data + fragment_size, file_buffer->data,
file_buffer->size);
fragment_size += file_buffer->size;
return ffrg;
}
long long generic_write_table(int length, char *buffer, int uncompressed)
{
int meta_blocks = (length + SQUASHFS_METADATA_SIZE - 1) /
SQUASHFS_METADATA_SIZE;
long long list[meta_blocks], start_bytes;
int compressed_size, i;
unsigned short c_byte;
char cbuffer[(SQUASHFS_METADATA_SIZE << 2) + 2];
#ifdef SQUASHFS_TRACE
long long obytes = bytes;
#endif
for(i = 0; i < meta_blocks; i++) {
int avail_bytes = length > SQUASHFS_METADATA_SIZE ?
SQUASHFS_METADATA_SIZE : length;
c_byte = mangle(cbuffer + BLOCK_OFFSET, buffer + i *
SQUASHFS_METADATA_SIZE , avail_bytes,
SQUASHFS_METADATA_SIZE, uncompressed, 0);
SQUASHFS_SWAP_SHORTS(&c_byte, (unsigned short *) cbuffer, 1);
list[i] = bytes;
compressed_size = SQUASHFS_COMPRESSED_SIZE(c_byte) +
BLOCK_OFFSET;
TRACE("block %d @ 0x%llx, compressed size %d\n", i, bytes,
compressed_size);
write_destination(fd, bytes, compressed_size, cbuffer);
bytes += compressed_size;
length -= avail_bytes;
}
SQUASHFS_INSWAP_LONG_LONGS(list, meta_blocks);
write_destination(fd, bytes, sizeof(list), (char *) list);
start_bytes = bytes;
bytes += sizeof(list);
TRACE("total uncompressed %d compressed %lld\n", inode_count *
sizeof(squashfs_inode), bytes - obytes);
return start_bytes;
}
long long write_fragment_table()
{
unsigned int frag_bytes = SQUASHFS_FRAGMENT_BYTES(fragments);
char buffer[frag_bytes];
squashfs_fragment_entry *p = (squashfs_fragment_entry *) buffer;
int i;
TRACE("write_fragment_table: fragments %d, frag_bytes %d\n", fragments,
frag_bytes);
for(i = 0; i < fragments; i++, p++) {
TRACE("write_fragment_table: fragment %d, start_block 0x%llx, "
"size %d\n", i, fragment_table[i].start_block,
fragment_table[i].size);
SQUASHFS_SWAP_FRAGMENT_ENTRY(&fragment_table[i], p);
}
return generic_write_table(frag_bytes, buffer, noF);
}
char read_from_file_buffer[SQUASHFS_FILE_MAX_SIZE];
char *read_from_disk(long long start, unsigned int avail_bytes)
{
read_destination(fd, start, avail_bytes, read_from_file_buffer);
return read_from_file_buffer;
}
char read_from_file_buffer2[SQUASHFS_FILE_MAX_SIZE];
char *read_from_disk2(long long start, unsigned int avail_bytes)
{
read_destination(fd, start, avail_bytes, read_from_file_buffer2);
return read_from_file_buffer2;
}
/*
* Compute 16 bit BSD checksum over the data
*/
unsigned short get_checksum(char *buff, int bytes, unsigned short chksum)
{
unsigned char *b = (unsigned char *) buff;
while(bytes --) {
chksum = (chksum & 1) ? (chksum >> 1) | 0x8000 : chksum >> 1;
chksum += *b++;
}
return chksum;
}
unsigned short get_checksum_disk(long long start, long long l,
unsigned int *blocks)
{
unsigned short chksum = 0;
unsigned int bytes;
struct file_buffer *write_buffer;
int i;
for(i = 0; l; i++) {
bytes = SQUASHFS_COMPRESSED_SIZE_BLOCK(blocks[i]);
if(bytes == 0) /* sparse block */
continue;
write_buffer = cache_lookup(writer_buffer, start);
if(write_buffer) {
chksum = get_checksum(write_buffer->data, bytes,
chksum);
cache_block_put(write_buffer);
} else
chksum = get_checksum(read_from_disk(start, bytes),
bytes, chksum);
l -= bytes;
start += bytes;
}
return chksum;
}
unsigned short get_checksum_mem(char *buff, int bytes)
{
return get_checksum(buff, bytes, 0);
}
unsigned short get_checksum_mem_buffer(struct file_buffer *file_buffer)
{
if(file_buffer == NULL)
return 0;
else
return get_checksum(file_buffer->data, file_buffer->size, 0);
}
#define DUP_HASH(a) (a & 0xffff)
void add_file(long long start, long long file_size, long long file_bytes,
unsigned int *block_listp, int blocks, unsigned int fragment,
int offset, int bytes)
{
struct fragment *frg;
unsigned int *block_list = block_listp;
struct file_info *dupl_ptr = dupl[DUP_HASH(file_size)];
if(!duplicate_checking || file_size == 0)
return;
for(; dupl_ptr; dupl_ptr = dupl_ptr->next) {
if(file_size != dupl_ptr->file_size)
continue;
if(blocks != 0 && start != dupl_ptr->start)
continue;
if(fragment != dupl_ptr->fragment->index)
continue;
if(fragment != SQUASHFS_INVALID_FRAG && (offset !=
dupl_ptr->fragment->offset || bytes !=
dupl_ptr->fragment->size))
continue;
return;
}
if((frg = malloc(sizeof(struct fragment))) == NULL)
BAD_ERROR("Out of memory in fragment block allocation!\n");
frg->index = fragment;
frg->offset = offset;
frg->size = bytes;
add_non_dup(file_size, file_bytes, block_list, start, frg, 0, 0, FALSE);
}
int pre_duplicate(long long file_size)
{
struct file_info *dupl_ptr = dupl[DUP_HASH(file_size)];
for(; dupl_ptr; dupl_ptr = dupl_ptr->next)
if(dupl_ptr->file_size == file_size)
return TRUE;
return FALSE;
}
int pre_duplicate_frag(long long file_size, unsigned short checksum)
{
struct file_info *dupl_ptr = dupl[DUP_HASH(file_size)];
for(; dupl_ptr; dupl_ptr = dupl_ptr->next)
if(file_size == dupl_ptr->file_size && file_size ==
dupl_ptr->fragment->size) {
if(dupl_ptr->checksum_flag == FALSE) {
struct file_buffer *frag_buffer =
get_fragment(dupl_ptr->fragment);
dupl_ptr->checksum =
get_checksum_disk(dupl_ptr->start,
dupl_ptr->bytes, dupl_ptr->block_list);
dupl_ptr->fragment_checksum =
get_checksum_mem(frag_buffer->data +
dupl_ptr->fragment->offset, file_size);
cache_block_put(frag_buffer);
dupl_ptr->checksum_flag = TRUE;
}
if(dupl_ptr->fragment_checksum == checksum)
return TRUE;
}
return FALSE;
}
struct file_info *add_non_dup(long long file_size, long long bytes,
unsigned int *block_list, long long start, struct fragment *fragment,
unsigned short checksum, unsigned short fragment_checksum,
int checksum_flag)
{
struct file_info *dupl_ptr;
if((dupl_ptr = malloc(sizeof(struct file_info))) == NULL) {
BAD_ERROR("Out of memory in dup_files allocation!\n");
}
dupl_ptr->file_size = file_size;
dupl_ptr->bytes = bytes;
dupl_ptr->block_list = block_list;
dupl_ptr->start = start;
dupl_ptr->fragment = fragment;
dupl_ptr->checksum = checksum;
dupl_ptr->fragment_checksum = fragment_checksum;
dupl_ptr->checksum_flag = checksum_flag;
dupl_ptr->next = dupl[DUP_HASH(file_size)];
dupl[DUP_HASH(file_size)] = dupl_ptr;
dup_files ++;
return dupl_ptr;
}
struct file_info *duplicate(long long file_size, long long bytes,
unsigned int **block_list, long long *start, struct fragment **fragment,
struct file_buffer *file_buffer, int blocks, unsigned short checksum,
unsigned short fragment_checksum, int checksum_flag)
{
struct file_info *dupl_ptr = dupl[DUP_HASH(file_size)];
int frag_bytes = file_buffer ? file_buffer->size : 0;
for(; dupl_ptr; dupl_ptr = dupl_ptr->next)
if(file_size == dupl_ptr->file_size && bytes == dupl_ptr->bytes &&
frag_bytes == dupl_ptr->fragment->size) {
long long target_start, dup_start = dupl_ptr->start;
int block;
if(memcmp(*block_list, dupl_ptr->block_list, blocks *
sizeof(unsigned int)) != 0)
continue;
if(checksum_flag == FALSE) {
checksum = get_checksum_disk(*start, bytes,
*block_list);
fragment_checksum =
get_checksum_mem_buffer(file_buffer);
checksum_flag = TRUE;
}
if(dupl_ptr->checksum_flag == FALSE) {
struct file_buffer *frag_buffer =
get_fragment(dupl_ptr->fragment);
dupl_ptr->checksum =
get_checksum_disk(dupl_ptr->start,
dupl_ptr->bytes, dupl_ptr->block_list);
dupl_ptr->fragment_checksum =
get_checksum_mem(frag_buffer->data +
dupl_ptr->fragment->offset, frag_bytes);
cache_block_put(frag_buffer);
dupl_ptr->checksum_flag = TRUE;
}
if(checksum != dupl_ptr->checksum ||
fragment_checksum !=
dupl_ptr->fragment_checksum)
continue;
target_start = *start;
for(block = 0; block < blocks; block ++) {
int size = SQUASHFS_COMPRESSED_SIZE_BLOCK
((*block_list)[block]);
struct file_buffer *target_buffer = NULL;
struct file_buffer *dup_buffer = NULL;
char *target_data, *dup_data;
int res;
if(size == 0)
continue;
target_buffer = cache_lookup(writer_buffer,
target_start);
if(target_buffer)
target_data = target_buffer->data;
else
target_data =
read_from_disk(target_start,
size);
dup_buffer = cache_lookup(writer_buffer,
dup_start);
if(dup_buffer)
dup_data = dup_buffer->data;
else
dup_data = read_from_disk2(dup_start,
size);
res = memcmp(target_data, dup_data, size);
cache_block_put(target_buffer);
cache_block_put(dup_buffer);
if(res != 0)
break;
target_start += size;
dup_start += size;
}
if(block == blocks) {
struct file_buffer *frag_buffer =
get_fragment(dupl_ptr->fragment);
if(frag_bytes == 0 ||
memcmp(file_buffer->data,
frag_buffer->data +
dupl_ptr->fragment->offset,
frag_bytes) == 0) {
TRACE("Found duplicate file, start "
"0x%llx, size %lld, checksum "
"0x%x, fragment %d, size %d, "
"offset %d, checksum 0x%x\n",
dupl_ptr->start,
dupl_ptr->bytes,
dupl_ptr->checksum,
dupl_ptr->fragment->index,
frag_bytes,
dupl_ptr->fragment->offset,
fragment_checksum);
*block_list = dupl_ptr->block_list;
*start = dupl_ptr->start;
*fragment = dupl_ptr->fragment;
cache_block_put(frag_buffer);
return 0;
}
cache_block_put(frag_buffer);
}
}
return add_non_dup(file_size, bytes, *block_list, *start, *fragment,
checksum, fragment_checksum, checksum_flag);
}
static int seq = 0;
void reader_read_process(struct dir_ent *dir_ent)
{
struct file_buffer *prev_buffer = NULL, *file_buffer;
int status, res, byte, count = 0;
int file = get_pseudo_file(dir_ent->inode->pseudo_id)->fd;
int child = get_pseudo_file(dir_ent->inode->pseudo_id)->child;
long long bytes = 0;
while(1) {
file_buffer = cache_get(reader_buffer, 0, 0);
file_buffer->sequence = seq ++;
byte = read_bytes(file, file_buffer->data, block_size);
if(byte == -1)
goto read_err;
file_buffer->size = byte;
file_buffer->file_size = -1;
file_buffer->block = count ++;
file_buffer->error = FALSE;
file_buffer->fragment = FALSE;
bytes += byte;
if(byte == 0)
break;
/*
* Update estimated_uncompressed block count. This is done
* on every block rather than waiting for all blocks to be
* read incase write_file_process() is running in parallel
* with this. Otherwise cur uncompressed block count may
* get ahead of the total uncompressed block count.
*/
estimated_uncompressed ++;
if(prev_buffer)
queue_put(from_reader, prev_buffer);
prev_buffer = file_buffer;
}
/*
* Update inode file size now that the size of the dynamic pseudo file
* is known. This is needed for the -info option.
*/
dir_ent->inode->buf.st_size = bytes;
res = waitpid(child, &status, 0);
if(res == -1 || !WIFEXITED(status) || WEXITSTATUS(status) != 0)
goto read_err;
if(prev_buffer == NULL)
prev_buffer = file_buffer;
else {
cache_block_put(file_buffer);
seq --;
}
prev_buffer->file_size = bytes;
prev_buffer->fragment = !no_fragments &&
(count == 2 || always_use_fragments) && (byte < block_size);
queue_put(from_reader, prev_buffer);
return;
read_err:
if(prev_buffer) {
cache_block_put(file_buffer);
seq --;
file_buffer = prev_buffer;
}
file_buffer->error = TRUE;
queue_put(from_deflate, file_buffer);
}
void reader_read_file(struct dir_ent *dir_ent)
{
struct stat *buf = &dir_ent->inode->buf, buf2;
struct file_buffer *file_buffer;
int blocks, byte, count, expected, file, frag_block;
long long bytes, read_size;
if(dir_ent->inode->read)
return;
dir_ent->inode->read = TRUE;
again:
bytes = 0;
count = 0;
file_buffer = NULL;
read_size = buf->st_size;
blocks = (read_size + block_size - 1) >> block_log;
frag_block = !no_fragments && (always_use_fragments ||
(read_size < block_size)) ? read_size >> block_log : -1;
if((file = open(dir_ent->pathname, O_RDONLY)) == -1)
goto read_err;
do {
expected = read_size - ((long long) count * block_size) >
block_size ? block_size :
read_size - ((long long) count * block_size);
if(file_buffer)
queue_put(from_reader, file_buffer);
file_buffer = cache_get(reader_buffer, 0, 0);
file_buffer->sequence = seq ++;
byte = file_buffer->size = read_bytes(file, file_buffer->data,
block_size);
file_buffer->file_size = read_size;
if(byte != expected)
goto restat;
file_buffer->block = count;
file_buffer->error = FALSE;
file_buffer->fragment = (file_buffer->block == frag_block);
bytes += byte;
count ++;
} while(count < blocks);
if(read_size != bytes)
goto restat;
if(expected == block_size) {
char buffer;
if(read_bytes(file, &buffer, 1) == 1)
goto restat;
}
queue_put(from_reader, file_buffer);
close(file);
return;
read_err:
file_buffer = cache_get(reader_buffer, 0, 0);
file_buffer->sequence = seq ++;
read_err2:
file_buffer->error = TRUE;
queue_put(from_deflate, file_buffer);
return;
restat:
fstat(file, &buf2);
close(file);
if(read_size != buf2.st_size) {
memcpy(buf, &buf2, sizeof(struct stat));
file_buffer->error = 2;
queue_put(from_deflate, file_buffer);
goto again;
}
goto read_err2;
}
void reader_scan(struct dir_info *dir) {
int i;
for(i = 0; i < dir->count; i++) {
struct dir_ent *dir_ent = dir->list[i];
struct stat *buf = &dir_ent->inode->buf;
if(dir_ent->inode->root_entry)
continue;
if(dir_ent->inode->pseudo_file) {
reader_read_process(dir_ent);
continue;
}
switch(buf->st_mode & S_IFMT) {
case S_IFREG:
reader_read_file(dir_ent);
break;
case S_IFDIR:
reader_scan(dir_ent->dir);
break;
}
}
}
void *reader(void *arg)
{
int oldstate;
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &oldstate);
if(!sorted)
reader_scan(queue_get(to_reader));
else {
int i;
struct priority_entry *entry;
queue_get(to_reader);
for(i = 65535; i >= 0; i--)
for(entry = priority_list[i]; entry; entry = entry->next)
reader_read_file(entry->dir);
}
thread[0] = 0;
pthread_exit(NULL);
}
void *writer(void *arg)
{
int write_error = FALSE;
int oldstate;
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &oldstate);
while(1) {
struct file_buffer *file_buffer = queue_get(to_writer);
off_t off;
if(file_buffer == NULL) {
queue_put(from_writer,
write_error ? (void *) &write_error : NULL);
continue;
}
off = file_buffer->block;
pthread_mutex_lock(&pos_mutex);
if(!write_error && lseek(fd, off, SEEK_SET) == -1) {
ERROR("Lseek on destination failed because %s\n",
strerror(errno));
write_error = TRUE;
}
if(!write_error && write_bytes(fd, file_buffer->data,
file_buffer->size) == -1) {
ERROR("Write on destination failed because %s\n",
strerror(errno));
write_error = TRUE;
}
pthread_mutex_unlock(&pos_mutex);
cache_block_put(file_buffer);
}
}
int all_zero(struct file_buffer *file_buffer)
{
int i;
long entries = file_buffer->size / sizeof(long);
long *p = (long *) file_buffer->data;
for(i = 0; i < entries && p[i] == 0; i++);
if(i == entries) {
for(i = file_buffer->size & ~(sizeof(long) - 1);
i < file_buffer->size && file_buffer->data[i] == 0;
i++);
return i == file_buffer->size;
}
return 0;
}
void *deflator(void *arg)
{
void *stream = NULL;
int oldstate;
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &oldstate);
while(1) {
struct file_buffer *file_buffer = queue_get(from_reader);
struct file_buffer *write_buffer;
if(sparse_files && all_zero(file_buffer)) {
file_buffer->c_byte = 0;
queue_put(from_deflate, file_buffer);
} else if(file_buffer->fragment) {
file_buffer->c_byte = file_buffer->size;
queue_put(from_deflate, file_buffer);
} else {
write_buffer = cache_get(writer_buffer, 0, 0);
write_buffer->c_byte = mangle2(&stream,
write_buffer->data, file_buffer->data,
file_buffer->size, block_size, noD, 1);
write_buffer->sequence = file_buffer->sequence;
write_buffer->file_size = file_buffer->file_size;
write_buffer->block = file_buffer->block;
write_buffer->size = SQUASHFS_COMPRESSED_SIZE_BLOCK
(write_buffer->c_byte);
write_buffer->fragment = FALSE;
write_buffer->error = FALSE;
cache_block_put(file_buffer);
queue_put(from_deflate, write_buffer);
}
}
}
void *frag_deflator(void *arg)
{
void *stream = NULL;
int oldstate;
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &oldstate);
while(1) {
int c_byte, compressed_size;
struct file_buffer *file_buffer = queue_get(to_frag);
struct file_buffer *write_buffer =
cache_get(writer_buffer, file_buffer->block +
FRAG_INDEX, 1);
c_byte = mangle2(&stream, write_buffer->data, file_buffer->data,
file_buffer->size, block_size, noF, 1);
compressed_size = SQUASHFS_COMPRESSED_SIZE_BLOCK(c_byte);
write_buffer->size = compressed_size;
pthread_mutex_lock(&fragment_mutex);
if(fragments_locked == FALSE) {
fragment_table[file_buffer->block].size = c_byte;
fragment_table[file_buffer->block].start_block = bytes;
write_buffer->block = bytes;
bytes += compressed_size;
fragments_outstanding --;
queue_put(to_writer, write_buffer);
pthread_mutex_unlock(&fragment_mutex);
TRACE("Writing fragment %lld, uncompressed size %d, "
"compressed size %d\n", file_buffer->block,
file_buffer->size, compressed_size);
} else {
pthread_mutex_unlock(&fragment_mutex);
add_pending_fragment(write_buffer, c_byte,
file_buffer->block);
}
cache_block_put(file_buffer);
}
}
#define HASH_ENTRIES 256
#define BLOCK_HASH(a) (a % HASH_ENTRIES)
struct file_buffer *block_hash[HASH_ENTRIES];
void push_buffer(struct file_buffer *file_buffer)
{
int hash = BLOCK_HASH(file_buffer->sequence);
file_buffer->next = block_hash[hash];
block_hash[hash] = file_buffer;
}
struct file_buffer *get_file_buffer(struct queue *queue)
{
static unsigned int sequence = 0;
int hash = BLOCK_HASH(sequence);
struct file_buffer *file_buffer = block_hash[hash], *prev = NULL;
for(;file_buffer; prev = file_buffer, file_buffer = file_buffer->next)
if(file_buffer->sequence == sequence)
break;
if(file_buffer) {
if(prev)
prev->next = file_buffer->next;
else
block_hash[hash] = file_buffer->next;
} else {
while(1) {
file_buffer = queue_get(queue);
if(file_buffer->sequence == sequence)
break;
push_buffer(file_buffer);
}
}
sequence ++;
return file_buffer;
}
void *progress_thrd(void *arg)
{
struct timeval timeval;
struct timespec timespec;
struct itimerval itimerval;
struct winsize winsize;
if(ioctl(1, TIOCGWINSZ, &winsize) == -1) {
if(isatty(STDOUT_FILENO))
printf("TIOCGWINSZ ioctl failed, defaulting to 80 "
"columns\n");
columns = 80;
} else
columns = winsize.ws_col;
signal(SIGWINCH, sigwinch_handler);
signal(SIGALRM, sigalrm_handler);
itimerval.it_value.tv_sec = 0;
itimerval.it_value.tv_usec = 250000;
itimerval.it_interval.tv_sec = 0;
itimerval.it_interval.tv_usec = 250000;
setitimer(ITIMER_REAL, &itimerval, NULL);
pthread_cond_init(&progress_wait, NULL);
pthread_mutex_lock(&progress_mutex);
while(1) {
gettimeofday(&timeval, NULL);
timespec.tv_sec = timeval.tv_sec;
if(timeval.tv_usec + 250000 > 999999)
timespec.tv_sec++;
timespec.tv_nsec = ((timeval.tv_usec + 250000) % 1000000) *
1000;
pthread_cond_timedwait(&progress_wait, &progress_mutex,
&timespec);
if(progress_enabled && estimated_uncompressed)
progress_bar(cur_uncompressed, estimated_uncompressed,
columns);
}
}
void enable_progress_bar()
{
pthread_mutex_lock(&progress_mutex);
progress_enabled = TRUE;
pthread_mutex_unlock(&progress_mutex);
}
void disable_progress_bar()
{
pthread_mutex_lock(&progress_mutex);
progress_enabled = FALSE;
pthread_mutex_unlock(&progress_mutex);
}
void progress_bar(long long current, long long max, int columns)
{
char rotate_list[] = { '|', '/', '-', '\\' };
int max_digits = floor(log10(max)) + 1;
int used = max_digits * 2 + 11;
int hashes = (current * (columns - used)) / max;
int spaces = columns - used - hashes;
static int tty = -1;
if((current > max) || (columns - used < 0))
return;
if(tty == -1)
tty = isatty(STDOUT_FILENO);
if(!tty) {
static long long previous = -1;
/* Updating much more frequently than this results in huge
* log files. */
if((current % 100) != 0 && current != max)
return;
/* Don't update just to rotate the spinner. */
if(current == previous)
return;
previous = current;
}
printf("\r[");
while (hashes --)
putchar('=');
putchar(rotate_list[rotate]);
while(spaces --)
putchar(' ');
printf("] %*lld/%*lld", max_digits, current, max_digits, max);
printf(" %3lld%%", current * 100 / max);
fflush(stdout);
}
void write_file_empty(squashfs_inode *inode, struct dir_ent *dir_ent,
int *duplicate_file)
{
file_count ++;
*duplicate_file = FALSE;
if(dir_ent->inode->nlink == 1)
create_inode(inode, dir_ent, SQUASHFS_FILE_TYPE, 0, 0, 0, NULL,
&empty_fragment, NULL, 0);
else
create_inode(inode, dir_ent, SQUASHFS_LREG_TYPE, 0, 0, 0, NULL,
&empty_fragment, NULL, 0);
}
void write_file_frag_dup(squashfs_inode *inode, struct dir_ent *dir_ent,
int size, int *duplicate_file, struct file_buffer *file_buffer,
unsigned short checksum)
{
struct file_info *dupl_ptr;
struct fragment *fragment;
unsigned int *block_listp = NULL;
long long start = 0;
dupl_ptr = duplicate(size, 0, &block_listp, &start, &fragment,
file_buffer, 0, 0, checksum, TRUE);
if(dupl_ptr) {
*duplicate_file = FALSE;
fragment = get_and_fill_fragment(file_buffer);
dupl_ptr->fragment = fragment;
} else
*duplicate_file = TRUE;
cache_block_put(file_buffer);
total_bytes += size;
file_count ++;
inc_progress_bar();
if(dir_ent->inode->nlink == 1)
create_inode(inode, dir_ent, SQUASHFS_FILE_TYPE, size, 0, 0,
NULL, fragment, NULL, 0);
else
create_inode(inode, dir_ent, SQUASHFS_LREG_TYPE, size, 0, 0,
NULL, fragment, NULL, 0);
}
void write_file_frag(squashfs_inode *inode, struct dir_ent *dir_ent, int size,
struct file_buffer *file_buffer, int *duplicate_file)
{
struct fragment *fragment;
unsigned short checksum;
checksum = get_checksum_mem_buffer(file_buffer);
if(pre_duplicate_frag(size, checksum)) {
write_file_frag_dup(inode, dir_ent, size, duplicate_file,
file_buffer, checksum);
return;
}
fragment = get_and_fill_fragment(file_buffer);
cache_block_put(file_buffer);
if(duplicate_checking)
add_non_dup(size, 0, NULL, 0, fragment, 0, checksum, TRUE);
total_bytes += size;
file_count ++;
*duplicate_file = FALSE;
inc_progress_bar();
if(dir_ent->inode->nlink == 1)
create_inode(inode, dir_ent, SQUASHFS_FILE_TYPE, size, 0, 0,
NULL, fragment, NULL, 0);
else
create_inode(inode, dir_ent, SQUASHFS_LREG_TYPE, size, 0, 0,
NULL, fragment, NULL, 0);
return;
}
int write_file_process(squashfs_inode *inode, struct dir_ent *dir_ent,
struct file_buffer *read_buffer, int *duplicate_file)
{
long long read_size, file_bytes, start;
struct fragment *fragment;
unsigned int *block_list = NULL;
int block = 0, status;
long long sparse = 0;
struct file_buffer *fragment_buffer = NULL;
*duplicate_file = FALSE;
lock_fragments();
file_bytes = 0;
start = bytes;
while (1) {
read_size = read_buffer->file_size;
if(read_buffer->fragment && read_buffer->c_byte)
fragment_buffer = read_buffer;
else {
block_list = realloc(block_list, (block + 1) *
sizeof(unsigned int));
if(block_list == NULL)
BAD_ERROR("Out of memory allocating block_list"
"\n");
block_list[block ++] = read_buffer->c_byte;
if(read_buffer->c_byte) {
read_buffer->block = bytes;
bytes += read_buffer->size;
cache_rehash(read_buffer, read_buffer->block);
file_bytes += read_buffer->size;
queue_put(to_writer, read_buffer);
} else {
sparse += read_buffer->size;
cache_block_put(read_buffer);
}
}
inc_progress_bar();
if(read_size != -1)
break;
read_buffer = get_file_buffer(from_deflate);
if(read_buffer->error)
goto read_err;
}
unlock_fragments();
fragment = get_and_fill_fragment(fragment_buffer);
cache_block_put(fragment_buffer);
if(duplicate_checking)
add_non_dup(read_size, file_bytes, block_list, start, fragment,
0, 0, FALSE);
file_count ++;
total_bytes += read_size;
if(read_size < (1LL << 32) && start < (1LL << 32) && sparse == 0)
create_inode(inode, dir_ent, SQUASHFS_FILE_TYPE, read_size,
start, block, block_list, fragment, NULL, 0);
else
create_inode(inode, dir_ent, SQUASHFS_LREG_TYPE, read_size,
start, block, block_list, fragment, NULL, sparse);
if(duplicate_checking == FALSE)
free(block_list);
return 0;
read_err:
cur_uncompressed -= block;
status = read_buffer->error;
bytes = start;
if(!block_device) {
int res;
queue_put(to_writer, NULL);
if(queue_get(from_writer) != 0)
EXIT_MKSQUASHFS();
res = ftruncate(fd, bytes);
if(res != 0)
BAD_ERROR("Failed to truncate dest file because %s\n",
strerror(errno));
}
unlock_fragments();
free(block_list);
cache_block_put(read_buffer);
return status;
}
int write_file_blocks(squashfs_inode *inode, struct dir_ent *dir_ent,
long long read_size, struct file_buffer *read_buffer,
int *duplicate_file)
{
long long file_bytes, start;
struct fragment *fragment;
unsigned int *block_list;
int block, status;
int blocks = (read_size + block_size - 1) >> block_log;
long long sparse = 0;
struct file_buffer *fragment_buffer = NULL;
*duplicate_file = FALSE;
if((block_list = malloc(blocks * sizeof(unsigned int))) == NULL)
BAD_ERROR("Out of memory allocating block_list\n");
lock_fragments();
file_bytes = 0;
start = bytes;
for(block = 0; block < blocks;) {
if(read_buffer->fragment && read_buffer->c_byte) {
fragment_buffer = read_buffer;
blocks = read_size >> block_log;
} else {
block_list[block] = read_buffer->c_byte;
if(read_buffer->c_byte) {
read_buffer->block = bytes;
bytes += read_buffer->size;
cache_rehash(read_buffer, read_buffer->block);
file_bytes += read_buffer->size;
queue_put(to_writer, read_buffer);
} else {
sparse += read_buffer->size;
cache_block_put(read_buffer);
}
}
inc_progress_bar();
if(++block < blocks) {
read_buffer = get_file_buffer(from_deflate);
if(read_buffer->error)
goto read_err;
}
}
unlock_fragments();
fragment = get_and_fill_fragment(fragment_buffer);
cache_block_put(fragment_buffer);
if(duplicate_checking)
add_non_dup(read_size, file_bytes, block_list, start, fragment,
0, 0, FALSE);
file_count ++;
total_bytes += read_size;
/*
* sparse count is needed to ensure squashfs correctly reports a
* a smaller block count on stat calls to sparse files. This is
* to ensure intelligent applications like cp correctly handle the
* file as a sparse file. If the file in the original filesystem isn't
* stored as a sparse file then still store it sparsely in squashfs, but
* report it as non-sparse on stat calls to preserve semantics
*/
if(sparse && (dir_ent->inode->buf.st_blocks << 9) >= read_size)
sparse = 0;
if(dir_ent->inode->nlink == 1 && read_size < (1LL << 32) && start <
(1LL << 32) && sparse == 0)
create_inode(inode, dir_ent, SQUASHFS_FILE_TYPE, read_size,
start, blocks, block_list, fragment, NULL, 0);
else
create_inode(inode, dir_ent, SQUASHFS_LREG_TYPE, read_size,
start, blocks, block_list, fragment, NULL, sparse);
if(duplicate_checking == FALSE)
free(block_list);
return 0;
read_err:
cur_uncompressed -= block;
status = read_buffer->error;
bytes = start;
if(!block_device) {
int res;
queue_put(to_writer, NULL);
if(queue_get(from_writer) != 0)
EXIT_MKSQUASHFS();
res = ftruncate(fd, bytes);
if(res != 0)
BAD_ERROR("Failed to truncate dest file because %s\n",
strerror(errno));
}
unlock_fragments();
free(block_list);
cache_block_put(read_buffer);
return status;
}
int write_file_blocks_dup(squashfs_inode *inode, struct dir_ent *dir_ent,
long long read_size, struct file_buffer *read_buffer,
int *duplicate_file)
{
int block, thresh;
long long file_bytes, dup_start, start;
struct fragment *fragment;
struct file_info *dupl_ptr;
int blocks = (read_size + block_size - 1) >> block_log;
unsigned int *block_list, *block_listp;
struct file_buffer **buffer_list;
int status, num_locked_fragments;
long long sparse = 0;
struct file_buffer *fragment_buffer = NULL;
block_list = malloc(blocks * sizeof(unsigned int));
if(block_list == NULL)
BAD_ERROR("Out of memory allocating block_list\n");
block_listp = block_list;
buffer_list = malloc(blocks * sizeof(struct file_buffer *));
if(buffer_list == NULL)
BAD_ERROR("Out of memory allocating file block list\n");
num_locked_fragments = lock_fragments();
file_bytes = 0;
start = dup_start = bytes;
thresh = blocks > (writer_buffer_size - num_locked_fragments) ?
blocks - (writer_buffer_size - num_locked_fragments): 0;
for(block = 0; block < blocks;) {
if(read_buffer->fragment && read_buffer->c_byte) {
fragment_buffer = read_buffer;
blocks = read_size >> block_log;
} else {
block_list[block] = read_buffer->c_byte;
if(read_buffer->c_byte) {
read_buffer->block = bytes;
bytes += read_buffer->size;
file_bytes += read_buffer->size;
cache_rehash(read_buffer, read_buffer->block);
if(block < thresh) {
buffer_list[block] = NULL;
queue_put(to_writer, read_buffer);
} else
buffer_list[block] = read_buffer;
} else {
buffer_list[block] = NULL;
sparse += read_buffer->size;
cache_block_put(read_buffer);
}
}
inc_progress_bar();
if(++block < blocks) {
read_buffer = get_file_buffer(from_deflate);
if(read_buffer->error)
goto read_err;
}
}
dupl_ptr = duplicate(read_size, file_bytes, &block_listp, &dup_start,
&fragment, fragment_buffer, blocks, 0, 0, FALSE);
if(dupl_ptr) {
*duplicate_file = FALSE;
for(block = thresh; block < blocks; block ++)
if(buffer_list[block])
queue_put(to_writer, buffer_list[block]);
fragment = get_and_fill_fragment(fragment_buffer);
dupl_ptr->fragment = fragment;
} else {
*duplicate_file = TRUE;
for(block = thresh; block < blocks; block ++)
cache_block_put(buffer_list[block]);
bytes = start;
if(thresh && !block_device) {
int res;
queue_put(to_writer, NULL);
if(queue_get(from_writer) != 0)
EXIT_MKSQUASHFS();
res = ftruncate(fd, bytes);
if(res != 0)
BAD_ERROR("Failed to truncate dest file because"
" %s\n", strerror(errno));
}
}
unlock_fragments();
cache_block_put(fragment_buffer);
free(buffer_list);
file_count ++;
total_bytes += read_size;
/*
* sparse count is needed to ensure squashfs correctly reports a
* a smaller block count on stat calls to sparse files. This is
* to ensure intelligent applications like cp correctly handle the
* file as a sparse file. If the file in the original filesystem isn't
* stored as a sparse file then still store it sparsely in squashfs, but
* report it as non-sparse on stat calls to preserve semantics
*/
if(sparse && (dir_ent->inode->buf.st_blocks << 9) >= read_size)
sparse = 0;
if(dir_ent->inode->nlink == 1 && read_size < (1LL << 32) && dup_start <
(1LL << 32) && sparse == 0)
create_inode(inode, dir_ent, SQUASHFS_FILE_TYPE, read_size,
dup_start, blocks, block_listp, fragment, NULL, 0);
else
create_inode(inode, dir_ent, SQUASHFS_LREG_TYPE, read_size,
dup_start, blocks, block_listp, fragment, NULL, sparse);
if(*duplicate_file == TRUE)
free(block_list);
return 0;
read_err:
cur_uncompressed -= block;
status = read_buffer->error;
bytes = start;
if(thresh && !block_device) {
int res;
queue_put(to_writer, NULL);
if(queue_get(from_writer) != 0)
EXIT_MKSQUASHFS();
res = ftruncate(fd, bytes);
if(res != 0)
BAD_ERROR("Failed to truncate dest file because %s\n",
strerror(errno));
}
unlock_fragments();
for(blocks = thresh; blocks < block; blocks ++)
cache_block_put(buffer_list[blocks]);
free(buffer_list);
free(block_list);
cache_block_put(read_buffer);
return status;
}
void write_file(squashfs_inode *inode, struct dir_ent *dir_ent,
int *duplicate_file)
{
int status;
struct file_buffer *read_buffer;
long long read_size;
again:
read_buffer = get_file_buffer(from_deflate);
status = read_buffer->error;
if(status) {
cache_block_put(read_buffer);
goto file_err;
}
read_size = read_buffer->file_size;
if(read_size == -1)
status = write_file_process(inode, dir_ent, read_buffer,
duplicate_file);
else if(read_size == 0) {
write_file_empty(inode, dir_ent, duplicate_file);
cache_block_put(read_buffer);
} else if(read_buffer->fragment && read_buffer->c_byte)
write_file_frag(inode, dir_ent, read_size, read_buffer,
duplicate_file);
else if(pre_duplicate(read_size))
status = write_file_blocks_dup(inode, dir_ent, read_size,
read_buffer, duplicate_file);
else
status = write_file_blocks(inode, dir_ent, read_size,
read_buffer, duplicate_file);
file_err:
if(status == 2) {
ERROR("File %s changed size while reading filesystem, "
"attempting to re-read\n", dir_ent->pathname);
goto again;
} else if(status == 1) {
ERROR("Failed to read file %s, creating empty file\n",
dir_ent->pathname);
write_file_empty(inode, dir_ent, duplicate_file);
}
}
char b_buffer[8192];
char *name;
char *basename_r();
char *getbase(char *pathname)
{
char *result;
if(*pathname != '/') {
result = getenv("PWD");
strcat(strcat(strcpy(b_buffer, result), "/"), pathname);
} else
strcpy(b_buffer, pathname);
name = b_buffer;
if(((result = basename_r()) == NULL) || (strcmp(result, "..") == 0))
return NULL;
else
return result;
}
char *basename_r()
{
char *s;
char *p;
int n = 1;
for(;;) {
s = name;
if(*name == '\0')
return NULL;
if(*name != '/') {
while(*name != '\0' && *name != '/') name++;
n = name - s;
}
while(*name == '/') name++;
if(strncmp(s, ".", n) == 0)
continue;
if((*name == '\0') || (strncmp(s, "..", n) == 0) ||
((p = basename_r()) == NULL)) {
s[n] = '\0';
return s;
}
if(strcmp(p, "..") == 0)
continue;
return p;
}
}
struct inode_info *lookup_inode(struct stat *buf)
{
int inode_hash = INODE_HASH(buf->st_dev, buf->st_ino);
struct inode_info *inode = inode_info[inode_hash];
while(inode != NULL) {
if(memcmp(buf, &inode->buf, sizeof(struct stat)) == 0) {
inode->nlink ++;
return inode;
}
inode = inode->next;
}
if((inode = malloc(sizeof(struct inode_info))) == NULL)
BAD_ERROR("Out of memory in inode hash table entry allocation"
"\n");
memcpy(&inode->buf, buf, sizeof(struct stat));
inode->read = FALSE;
inode->root_entry = FALSE;
inode->pseudo_file = FALSE;
inode->inode = SQUASHFS_INVALID_BLK;
inode->nlink = 1;
if((buf->st_mode & S_IFMT) == S_IFREG)
estimated_uncompressed += (buf->st_size + block_size - 1) >>
block_log;
if((buf->st_mode & S_IFMT) == S_IFDIR)
inode->inode_number = dir_inode_no ++;
else
inode->inode_number = inode_no ++;
inode->next = inode_info[inode_hash];
inode_info[inode_hash] = inode;
return inode;
}
inline void add_dir_entry(char *name, char *pathname, struct dir_info *sub_dir,
struct inode_info *inode_info, struct dir_info *dir)
{
if((dir->count % DIR_ENTRIES) == 0) {
dir->list = realloc(dir->list, (dir->count + DIR_ENTRIES) *
sizeof(struct dir_ent *));
if(dir->list == NULL)
BAD_ERROR("Out of memory in add_dir_entry\n");
}
if((dir->list[dir->count] = malloc(sizeof(struct dir_ent))) == NULL)
BAD_ERROR("Out of memory in linux_opendir\n");
if(sub_dir)
sub_dir->dir_ent = dir->list[dir->count];
dir->list[dir->count]->name = strdup(name);
dir->list[dir->count]->pathname = pathname != NULL ? strdup(pathname) :
NULL;
dir->list[dir->count]->inode = inode_info;
dir->list[dir->count]->dir = sub_dir;
dir->list[dir->count++]->our_dir = dir;
dir->byte_count += strlen(name) + sizeof(squashfs_dir_entry);
}
int compare_name(const void *ent1_ptr, const void *ent2_ptr)
{
struct dir_ent *ent1 = *((struct dir_ent **) ent1_ptr);
struct dir_ent *ent2 = *((struct dir_ent **) ent2_ptr);
return strcmp(ent1->name, ent2->name);
}
void sort_directory(struct dir_info *dir)
{
qsort(dir->list, dir->count, sizeof(struct dir_ent *), compare_name);
if((dir->count < 257 && dir->byte_count < SQUASHFS_METADATA_SIZE))
dir->dir_is_ldir = FALSE;
}
struct dir_info *scan1_opendir(char *pathname)
{
struct dir_info *dir;
if((dir = malloc(sizeof(struct dir_info))) == NULL)
return NULL;
if(pathname[0] != '\0' && (dir->linuxdir = opendir(pathname)) == NULL) {
free(dir);
return NULL;
}
dir->pathname = strdup(pathname);
dir->count = dir->directory_count = dir->current_count = dir->byte_count
= 0;
dir->dir_is_ldir = TRUE;
dir->list = NULL;
return dir;
}
int scan1_encomp_readdir(char *pathname, char *dir_name, struct dir_info *dir)
{
int i, n, pass;
char *basename;
static int index = 0;
if(dir->count < old_root_entries)
for(i = 0; i < old_root_entries; i++) {
if(old_root_entry[i].inode.type == SQUASHFS_DIR_TYPE)
dir->directory_count ++;
add_dir_entry(old_root_entry[i].name, "", NULL,
&old_root_entry[i].inode, dir);
}
while(index < source) {
if((basename = getbase(source_path[index])) == NULL) {
ERROR("Bad source directory %s - skipping ...\n",
source_path[index]);
index ++;
continue;
}
strcpy(dir_name, basename);
pass = 1;
for(;;) {
for(n = 0; n < dir->count &&
strcmp(dir->list[n]->name, dir_name) != 0; n++);
if(n == dir->count)
break;
ERROR("Source directory entry %s already used! - trying"
" ", dir_name);
sprintf(dir_name, "%s_%d", basename, pass++);
ERROR("%s\n", dir_name);
}
strcpy(pathname, source_path[index ++]);
return 1;
}
return 0;
}
int scan1_single_readdir(char *pathname, char *dir_name, struct dir_info *dir)
{
struct dirent *d_name;
int i, pass;
if(dir->count < old_root_entries)
for(i = 0; i < old_root_entries; i++) {
if(old_root_entry[i].inode.type == SQUASHFS_DIR_TYPE)
dir->directory_count ++;
add_dir_entry(old_root_entry[i].name, "", NULL,
&old_root_entry[i].inode, dir);
}
if((d_name = readdir(dir->linuxdir)) != NULL) {
strcpy(dir_name, d_name->d_name);
pass = 1;
for(;;) {
for(i = 0; i < dir->count &&
strcmp(dir->list[i]->name, dir_name) != 0; i++);
if(i == dir->count)
break;
ERROR("Source directory entry %s already used! - trying"
" ", dir_name);
sprintf(dir_name, "%s_%d", d_name->d_name, pass++);
ERROR("%s\n", dir_name);
}
strcat(strcat(strcpy(pathname, dir->pathname), "/"),
d_name->d_name);
return 1;
}
return 0;
}
int scan1_readdir(char *pathname, char *dir_name, struct dir_info *dir)
{
struct dirent *d_name;
if((d_name = readdir(dir->linuxdir)) != NULL) {
strcpy(dir_name, d_name->d_name);
strcat(strcat(strcpy(pathname, dir->pathname), "/"),
d_name->d_name);
return 1;
}
return 0;
}
struct dir_ent *scan2_readdir(struct dir_info *dir_info)
{
int current_count;
while((current_count = dir_info->current_count++) < dir_info->count)
if(dir_info->list[current_count]->inode->root_entry)
continue;
else
return dir_info->list[current_count];
return NULL;
}
struct dir_ent *scan2_lookup(struct dir_info *dir, char *name)
{
int i;
for(i = 0; i < dir->count; i++)
if(strcmp(dir->list[i]->name, name) == 0)
return dir->list[i];
return NULL;
}
struct dir_ent *scan3_readdir(struct directory *dir, struct dir_info *dir_info)
{
int current_count;
while((current_count = dir_info->current_count++) < dir_info->count)
if(dir_info->list[current_count]->inode->root_entry)
add_dir(dir_info->list[current_count]->inode->inode,
dir_info->list[current_count]->inode->inode_number,
dir_info->list[current_count]->name,
dir_info->list[current_count]->inode->type, dir);
else
return dir_info->list[current_count];
return NULL;
}
void scan1_freedir(struct dir_info *dir)
{
if(dir->pathname[0] != '\0')
closedir(dir->linuxdir);
}
void scan2_freedir(struct dir_info *dir)
{
dir->current_count = 0;
}
void scan3_freedir(struct directory *dir)
{
if(dir->index)
free(dir->index);
free(dir->buff);
}
void dir_scan(squashfs_inode *inode, char *pathname,
int (_readdir)(char *, char *, struct dir_info *))
{
struct stat buf;
struct dir_info *dir_info = dir_scan1(pathname, paths, _readdir);
struct dir_ent *dir_ent;
if(dir_info == NULL)
return;
dir_scan2(dir_info, pseudo);
if((dir_ent = malloc(sizeof(struct dir_ent))) == NULL)
BAD_ERROR("Out of memory in dir_scan\n");
if(pathname[0] == '\0') {
/*
*dummy top level directory, if multiple sources specified on
* command line
*/
memset(&buf, 0, sizeof(buf));
buf.st_mode = S_IRWXU | S_IRWXG | S_IRWXO | S_IFDIR;
buf.st_uid = getuid();
buf.st_gid = getgid();
buf.st_mtime = time(NULL);
buf.st_dev = 0;
buf.st_ino = 0;
} else if(lstat(pathname, &buf) == -1) {
ERROR("Cannot stat dir/file %s because %s, ignoring", pathname,
strerror(errno));
return;
}
dir_ent->inode = lookup_inode(&buf);
if(root_inode_number) {
dir_ent->inode->inode_number = root_inode_number;
dir_inode_no --;
}
dir_ent->name = dir_ent->pathname = strdup(pathname);
dir_ent->dir = dir_info;
dir_ent->our_dir = NULL;
dir_info->dir_ent = dir_ent;
if(sorted)
generate_file_priorities(dir_info, 0,
&dir_info->dir_ent->inode->buf);
queue_put(to_reader, dir_info);
if(sorted)
sort_files_and_write(dir_info);
if(progress)
enable_progress_bar();
dir_scan3(inode, dir_info);
dir_ent->inode->inode = *inode;
dir_ent->inode->type = SQUASHFS_DIR_TYPE;
}
struct dir_info *dir_scan1(char *pathname, struct pathnames *paths,
int (_readdir)(char *, char *, struct dir_info *))
{
struct dir_info *dir, *sub_dir;
struct stat buf;
char filename[8192], dir_name[8192];
struct pathnames *new;
if((dir = scan1_opendir(pathname)) == NULL) {
ERROR("Could not open %s, skipping...\n", pathname);
goto error;
}
while(_readdir(filename, dir_name, dir) != FALSE) {
if(strcmp(dir_name, ".") == 0 || strcmp(dir_name, "..") == 0)
continue;
if(lstat(filename, &buf) == -1) {
ERROR("Cannot stat dir/file %s because %s, ignoring",
filename, strerror(errno));
continue;
}
if((buf.st_mode & S_IFMT) != S_IFREG &&
(buf.st_mode & S_IFMT) != S_IFDIR &&
(buf.st_mode & S_IFMT) != S_IFLNK &&
(buf.st_mode & S_IFMT) != S_IFCHR &&
(buf.st_mode & S_IFMT) != S_IFBLK &&
(buf.st_mode & S_IFMT) != S_IFIFO &&
(buf.st_mode & S_IFMT) != S_IFSOCK) {
ERROR("File %s has unrecognised filetype %d, ignoring"
"\n", filename, buf.st_mode & S_IFMT);
continue;
}
if(old_exclude) {
if(old_excluded(filename, &buf))
continue;
} else {
if(excluded(paths, dir_name, &new))
continue;
}
if((buf.st_mode & S_IFMT) == S_IFDIR) {
sub_dir = dir_scan1(filename, new, scan1_readdir);
if(sub_dir == NULL)
continue;
dir->directory_count ++;
} else
sub_dir = NULL;
add_dir_entry(dir_name, filename, sub_dir, lookup_inode(&buf),
dir);
}
scan1_freedir(dir);
error:
return dir;
}
struct dir_info *dir_scan2(struct dir_info *dir, struct pseudo *pseudo)
{
struct dir_info *sub_dir;
struct dir_ent *dir_ent;
struct pseudo_entry *pseudo_ent;
struct stat buf;
static int pseudo_ino = 1;
if(dir == NULL && (dir = scan1_opendir("")) == NULL)
return NULL;
while((dir_ent = scan2_readdir(dir)) != NULL) {
struct inode_info *inode_info = dir_ent->inode;
struct stat *buf = &inode_info->buf;
char *name = dir_ent->name;
if((buf->st_mode & S_IFMT) == S_IFDIR)
dir_scan2(dir_ent->dir, pseudo_subdir(name, pseudo));
}
while((pseudo_ent = pseudo_readdir(pseudo)) != NULL) {
dir_ent = scan2_lookup(dir, pseudo_ent->name);
if(pseudo_ent->dev->type == 's') {
struct stat *buf;
if(dir_ent == NULL) {
ERROR("Pseudo set file \"%s\" does not exist "
"in source filesystem. Ignoring\n",
pseudo_ent->pathname);
continue;
}
if(dir_ent->inode->root_entry) {
ERROR("Pseudo set file \"%s\" is a pre-existing"
" file in the filesystem being appended"
" to. It cannot be modified. "
"Ignoring!\n", pseudo_ent->pathname);
continue;
}
buf = &dir_ent->inode->buf;
buf->st_mode = (buf->st_mode & S_IFMT) |
pseudo_ent->dev->mode;
buf->st_uid = pseudo_ent->dev->uid;
buf->st_gid = pseudo_ent->dev->gid;
continue;
}
if(dir_ent) {
ERROR("Pseudo file \"%s\" exists in source filesystem "
"\"%s\"\n", pseudo_ent->pathname,
dir_ent->pathname);
ERROR("Ignoring, exclude it (-e/-ef) to override\n");
continue;
}
if(pseudo_ent->dev->type == 'd') {
sub_dir = dir_scan2(NULL, pseudo_ent->pseudo);
if(sub_dir == NULL) {
ERROR("Could not create pseudo directory \"%s\""
", skipping...\n",
pseudo_ent->pathname);
continue;
}
dir->directory_count ++;
} else
sub_dir = NULL;
memset(&buf, 0, sizeof(buf));
buf.st_mode = pseudo_ent->dev->mode;
buf.st_uid = pseudo_ent->dev->uid;
buf.st_gid = pseudo_ent->dev->gid;
buf.st_rdev = makedev(pseudo_ent->dev->major,
pseudo_ent->dev->minor);
buf.st_mtime = time(NULL);
buf.st_ino = pseudo_ino ++;
if(pseudo_ent->dev->type == 'f') {
#ifdef USE_TMP_FILE
struct stat buf2;
int res = stat(pseudo_ent->dev->filename, &buf2);
if(res == -1) {
ERROR("Stat on pseudo file \"%s\" failed, "
"skipping...", pseudo_ent->pathname);
continue;
}
buf.st_size = buf2.st_size;
add_dir_entry(pseudo_ent->name,
pseudo_ent->dev->filename, sub_dir,
lookup_inode(&buf), dir);
#else
struct inode_info *inode = lookup_inode(&buf);
inode->pseudo_id = pseudo_ent->dev->pseudo_id;
inode->pseudo_file = TRUE;
add_dir_entry(pseudo_ent->name, pseudo_ent->pathname,
sub_dir, inode, dir);
#endif
} else
add_dir_entry(pseudo_ent->name, pseudo_ent->pathname,
sub_dir, lookup_inode(&buf), dir);
}
scan2_freedir(dir);
sort_directory(dir);
return dir;
}
void dir_scan3(squashfs_inode *inode, struct dir_info *dir_info)
{
int squashfs_type;
int duplicate_file;
char *pathname = dir_info->pathname;
struct directory dir;
struct dir_ent *dir_ent;
scan3_init_dir(&dir);
while((dir_ent = scan3_readdir(&dir, dir_info)) != NULL) {
struct inode_info *inode_info = dir_ent->inode;
struct stat *buf = &inode_info->buf;
char *filename = dir_ent->pathname;
char *dir_name = dir_ent->name;
unsigned int inode_number = ((buf->st_mode & S_IFMT) == S_IFDIR)
? dir_ent->inode->inode_number :
dir_ent->inode->inode_number + dir_inode_no;
if(dir_ent->inode->inode == SQUASHFS_INVALID_BLK) {
switch(buf->st_mode & S_IFMT) {
case S_IFREG:
squashfs_type = SQUASHFS_FILE_TYPE;
write_file(inode, dir_ent,
&duplicate_file);
INFO("file %s, uncompressed size %lld "
"bytes %s\n", filename,
(long long) buf->st_size,
duplicate_file ? "DUPLICATE" :
"");
break;
case S_IFDIR:
squashfs_type = SQUASHFS_DIR_TYPE;
dir_scan3(inode, dir_ent->dir);
break;
case S_IFLNK:
squashfs_type = SQUASHFS_SYMLINK_TYPE;
create_inode(inode, dir_ent,
squashfs_type, 0, 0, 0, NULL,
NULL, NULL, 0);
INFO("symbolic link %s inode 0x%llx\n",
dir_name, *inode);
sym_count ++;
break;
case S_IFCHR:
squashfs_type = SQUASHFS_CHRDEV_TYPE;
create_inode(inode, dir_ent,
squashfs_type, 0, 0, 0, NULL,
NULL, NULL, 0);
INFO("character device %s inode 0x%llx"
"\n", dir_name, *inode);
dev_count ++;
break;
case S_IFBLK:
squashfs_type = SQUASHFS_BLKDEV_TYPE;
create_inode(inode, dir_ent,
squashfs_type, 0, 0, 0, NULL,
NULL, NULL, 0);
INFO("block device %s inode 0x%llx\n",
dir_name, *inode);
dev_count ++;
break;
case S_IFIFO:
squashfs_type = SQUASHFS_FIFO_TYPE;
create_inode(inode, dir_ent,
squashfs_type, 0, 0, 0, NULL,
NULL, NULL, 0);
INFO("fifo %s inode 0x%llx\n",dir_name,
*inode);
fifo_count ++;
break;
case S_IFSOCK:
squashfs_type = SQUASHFS_SOCKET_TYPE;
create_inode(inode, dir_ent,
squashfs_type, 0, 0, 0, NULL,
NULL, NULL, 0);
INFO("unix domain socket %s inode "
"0x%llx\n", dir_name, *inode);
sock_count ++;
break;
default:
BAD_ERROR("%s unrecognised file type, "
"mode is %x\n", filename,
buf->st_mode);
}
dir_ent->inode->inode = *inode;
dir_ent->inode->type = squashfs_type;
} else {
*inode = dir_ent->inode->inode;
squashfs_type = dir_ent->inode->type;
switch(squashfs_type) {
case SQUASHFS_FILE_TYPE:
if(!sorted)
INFO("file %s, uncompressed "
"size %lld bytes LINK"
"\n", filename,
(long long)
buf->st_size);
break;
case SQUASHFS_SYMLINK_TYPE:
INFO("symbolic link %s inode 0x%llx "
"LINK\n", dir_name, *inode);
break;
case SQUASHFS_CHRDEV_TYPE:
INFO("character device %s inode 0x%llx "
"LINK\n", dir_name, *inode);
break;
case SQUASHFS_BLKDEV_TYPE:
INFO("block device %s inode 0x%llx "
"LINK\n", dir_name, *inode);
break;
case SQUASHFS_FIFO_TYPE:
INFO("fifo %s inode 0x%llx LINK\n",
dir_name, *inode);
break;
case SQUASHFS_SOCKET_TYPE:
INFO("unix domain socket %s inode "
"0x%llx LINK\n", dir_name,
*inode);
break;
}
}
add_dir(*inode, inode_number, dir_name, squashfs_type, &dir);
update_progress_bar();
}
write_dir(inode, dir_info, &dir);
INFO("directory %s inode 0x%llx\n", pathname, *inode);
scan3_freedir(&dir);
}
unsigned int slog(unsigned int block)
{
int i;
for(i = 12; i <= 20; i++)
if(block == (1 << i))
return i;
return 0;
}
int old_excluded(char *filename, struct stat *buf)
{
int i;
for(i = 0; i < exclude; i++)
if((exclude_paths[i].st_dev == buf->st_dev) &&
(exclude_paths[i].st_ino == buf->st_ino))
return TRUE;
return FALSE;
}
#define ADD_ENTRY(buf) \
if(exclude % EXCLUDE_SIZE == 0) { \
exclude_paths = realloc(exclude_paths, (exclude + EXCLUDE_SIZE) \
* sizeof(struct exclude_info)); \
if(exclude_paths == NULL) \
BAD_ERROR("Out of memory in exclude dir/file table\n"); \
} \
exclude_paths[exclude].st_dev = buf.st_dev; \
exclude_paths[exclude++].st_ino = buf.st_ino;
int old_add_exclude(char *path)
{
int i;
char filename[4096];
struct stat buf;
if(path[0] == '/' || strncmp(path, "./", 2) == 0 ||
strncmp(path, "../", 3) == 0) {
if(lstat(path, &buf) == -1) {
ERROR("Cannot stat exclude dir/file %s because %s, "
"ignoring", path, strerror(errno));
return TRUE;
}
ADD_ENTRY(buf);
return TRUE;
}
for(i = 0; i < source; i++) {
strcat(strcat(strcpy(filename, source_path[i]), "/"), path);
if(lstat(filename, &buf) == -1) {
if(!(errno == ENOENT || errno == ENOTDIR))
ERROR("Cannot stat exclude dir/file %s because "
"%s, ignoring", filename,
strerror(errno));
continue;
}
ADD_ENTRY(buf);
}
return TRUE;
}
void add_old_root_entry(char *name, squashfs_inode inode, int inode_number,
int type)
{
old_root_entry = realloc(old_root_entry,
sizeof(struct old_root_entry_info) * (old_root_entries + 1));
if(old_root_entry == NULL)
BAD_ERROR("Out of memory in old root directory entries "
"reallocation\n");
old_root_entry[old_root_entries].name = strdup(name);
old_root_entry[old_root_entries].inode.inode = inode;
old_root_entry[old_root_entries].inode.inode_number = inode_number;
old_root_entry[old_root_entries].inode.type = type;
old_root_entry[old_root_entries++].inode.root_entry = TRUE;
}
void initialise_threads()
{
int i;
sigset_t sigmask, old_mask;
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGINT);
sigaddset(&sigmask, SIGQUIT);
if(sigprocmask(SIG_BLOCK, &sigmask, &old_mask) == -1)
BAD_ERROR("Failed to set signal mask in intialise_threads\n");
signal(SIGUSR1, sigusr1_handler);
if(processors == -1) {
#ifndef linux
int mib[2];
size_t len = sizeof(processors);
mib[0] = CTL_HW;
#ifdef HW_AVAILCPU
mib[1] = HW_AVAILCPU;
#else
mib[1] = HW_NCPU;
#endif
if(sysctl(mib, 2, &processors, &len, NULL, 0) == -1) {
ERROR("Failed to get number of available processors. "
"Defaulting to 1\n");
processors = 1;
}
#else
processors = get_nprocs();
#endif
}
if((thread = malloc((2 + processors * 2) * sizeof(pthread_t))) == NULL)
BAD_ERROR("Out of memory allocating thread descriptors\n");
deflator_thread = &thread[2];
frag_deflator_thread = &deflator_thread[processors];
to_reader = queue_init(1);
from_reader = queue_init(reader_buffer_size);
to_writer = queue_init(writer_buffer_size);
from_writer = queue_init(1);
from_deflate = queue_init(reader_buffer_size);
to_frag = queue_init(fragment_buffer_size);
reader_buffer = cache_init(block_size, reader_buffer_size);
writer_buffer = cache_init(block_size, writer_buffer_size);
fragment_buffer = cache_init(block_size, fragment_buffer_size);
pthread_create(&thread[0], NULL, reader, NULL);
pthread_create(&thread[1], NULL, writer, NULL);
pthread_create(&progress_thread, NULL, progress_thrd, NULL);
pthread_mutex_init(&fragment_mutex, NULL);
pthread_cond_init(&fragment_waiting, NULL);
for(i = 0; i < processors; i++) {
if(pthread_create(&deflator_thread[i], NULL, deflator, NULL) !=
0)
BAD_ERROR("Failed to create thread\n");
if(pthread_create(&frag_deflator_thread[i], NULL, frag_deflator,
NULL) != 0)
BAD_ERROR("Failed to create thread\n");
}
printf("Parallel mksquashfs: Using %d processor%s\n", processors,
processors == 1 ? "" : "s");
if(sigprocmask(SIG_SETMASK, &old_mask, NULL) == -1)
BAD_ERROR("Failed to set signal mask in intialise_threads\n");
}
long long write_inode_lookup_table()
{
int i, inode_number, lookup_bytes = SQUASHFS_LOOKUP_BYTES(inode_count);
if(inode_count == sinode_count)
goto skip_inode_hash_table;
inode_lookup_table = realloc(inode_lookup_table, lookup_bytes);
if(inode_lookup_table == NULL)
BAD_ERROR("Out of memory in write_inode_table\n");
for(i = 0; i < INODE_HASH_SIZE; i ++) {
struct inode_info *inode = inode_info[i];
for(inode = inode_info[i]; inode; inode = inode->next) {
inode_number = inode->type == SQUASHFS_DIR_TYPE ?
inode->inode_number : inode->inode_number +
dir_inode_no;
SQUASHFS_SWAP_LONG_LONGS(&inode->inode,
&inode_lookup_table[inode_number - 1], 1);
}
}
skip_inode_hash_table:
return generic_write_table(lookup_bytes, (char *) inode_lookup_table,
0);
}
char *get_component(char *target, char *targname)
{
while(*target == '/')
target ++;
while(*target != '/' && *target!= '\0')
*targname ++ = *target ++;
*targname = '\0';
return target;
}
void free_path(struct pathname *paths)
{
int i;
for(i = 0; i < paths->names; i++) {
if(paths->name[i].paths)
free_path(paths->name[i].paths);
free(paths->name[i].name);
if(paths->name[i].preg) {
regfree(paths->name[i].preg);
free(paths->name[i].preg);
}
}
free(paths);
}
struct pathname *add_path(struct pathname *paths, char *target, char *alltarget)
{
char targname[1024];
int i, error;
target = get_component(target, targname);
if(paths == NULL) {
if((paths = malloc(sizeof(struct pathname))) == NULL)
BAD_ERROR("failed to allocate paths\n");
paths->names = 0;
paths->name = NULL;
}
for(i = 0; i < paths->names; i++)
if(strcmp(paths->name[i].name, targname) == 0)
break;
if(i == paths->names) {
/* allocate new name entry */
paths->names ++;
paths->name = realloc(paths->name, (i + 1) *
sizeof(struct path_entry));
paths->name[i].name = strdup(targname);
paths->name[i].paths = NULL;
if(use_regex) {
paths->name[i].preg = malloc(sizeof(regex_t));
error = regcomp(paths->name[i].preg, targname,
REG_EXTENDED|REG_NOSUB);
if(error) {
char str[1024];
regerror(error, paths->name[i].preg, str, 1024);
BAD_ERROR("invalid regex %s in export %s, "
"because %s\n", targname, alltarget,
str);
}
} else
paths->name[i].preg = NULL;
if(target[0] == '\0')
/* at leaf pathname component */
paths->name[i].paths = NULL;
else
/* recurse adding child components */
paths->name[i].paths = add_path(NULL, target,
alltarget);
} else {
/* existing matching entry */
if(paths->name[i].paths == NULL) {
/* No sub-directory which means this is the leaf
* component of a pre-existing exclude which subsumes
* the exclude currently being added, in which case stop
* adding components */
} else if(target[0] == '\0') {
/* at leaf pathname component and child components exist
* from more specific excludes, delete as they're
* subsumed by this exclude */
free_path(paths->name[i].paths);
paths->name[i].paths = NULL;
} else
/* recurse adding child components */
add_path(paths->name[i].paths, target, alltarget);
}
return paths;
}
void add_exclude(char *target)
{
if(target[0] == '/' || strncmp(target, "./", 2) == 0 ||
strncmp(target, "../", 3) == 0)
BAD_ERROR("/, ./ and ../ prefixed excludes not supported with "
"-wildcards or -regex options\n");
else if(strncmp(target, "... ", 4) == 0)
stickypath = add_path(stickypath, target + 4, target + 4);
else
path = add_path(path, target, target);
}
void display_path(int depth, struct pathname *paths)
{
int i, n;
if(paths == NULL)
return;
for(i = 0; i < paths->names; i++) {
for(n = 0; n < depth; n++)
printf("\t");
printf("%d: %s\n", depth, paths->name[i].name);
display_path(depth + 1, paths->name[i].paths);
}
}
void display_path2(struct pathname *paths, char *string)
{
int i;
char path[1024];
if(paths == NULL) {
printf("%s\n", string);
return;
}
for(i = 0; i < paths->names; i++) {
strcat(strcat(strcpy(path, string), "/"), paths->name[i].name);
display_path2(paths->name[i].paths, path);
}
}
struct pathnames *init_subdir()
{
struct pathnames *new = malloc(sizeof(struct pathnames));
new->count = 0;
return new;
}
struct pathnames *add_subdir(struct pathnames *paths, struct pathname *path)
{
if(paths->count % PATHS_ALLOC_SIZE == 0)
paths = realloc(paths, sizeof(struct pathnames *) +
(paths->count + PATHS_ALLOC_SIZE) *
sizeof(struct pathname *));
paths->path[paths->count++] = path;
return paths;
}
void free_subdir(struct pathnames *paths)
{
free(paths);
}
int excluded(struct pathnames *paths, char *name, struct pathnames **new)
{
int i, n, res;
if(paths == NULL) {
*new = NULL;
return FALSE;
}
*new = init_subdir();
if(stickypath)
*new = add_subdir(*new, stickypath);
for(n = 0; n < paths->count; n++) {
struct pathname *path = paths->path[n];
for(i = 0; i < path->names; i++) {
int match = use_regex ?
regexec(path->name[i].preg, name, (size_t) 0,
NULL, 0) == 0 :
fnmatch(path->name[i].name, name,
FNM_PATHNAME|FNM_PERIOD|FNM_EXTMATCH) ==
0;
if(match && path->name[i].paths == NULL) {
/* match on a leaf component, any subdirectories
* in the filesystem should be excluded */
res = TRUE;
goto empty_set;
}
if(match)
/* match on a non-leaf component, add any
* subdirectories to the new set of
* subdirectories to scan for this name */
*new = add_subdir(*new, path->name[i].paths);
}
}
if((*new)->count == 0) {
/* no matching names found, return empty new search set
*/
res = FALSE;
goto empty_set;
}
/* one or more matches with sub-directories found (no leaf matches).
* Return new set */
return FALSE;
empty_set:
free_subdir(*new);
*new = NULL;
return res;
}
#define RECOVER_ID "Squashfs recovery file v1.0\n"
#define RECOVER_ID_SIZE 28
void write_recovery_data(squashfs_super_block *sBlk)
{
int recoverfd, bytes = sBlk->bytes_used - sBlk->inode_table_start;
pid_t pid = getpid();
char *metadata;
char header[] = RECOVER_ID;
if(recover == FALSE) {
printf("No recovery data option specified.\n");
printf("Skipping saving recovery file.\n\n");
return;
}
if((metadata = malloc(bytes)) == NULL)
BAD_ERROR("Failed to alloc metadata buffer in "
"write_recovery_data\n");
read_destination(fd, sBlk->inode_table_start, bytes, metadata);
sprintf(recovery_file, "squashfs_recovery_%s_%d",
getbase(destination_file), pid);
recoverfd = open(recovery_file, O_CREAT | O_TRUNC | O_RDWR, S_IRWXU);
if(recoverfd == -1)
BAD_ERROR("Failed to create recovery file, because %s. "
"Aborting\n", strerror(errno));
if(write_bytes(recoverfd, header, RECOVER_ID_SIZE) == -1)
BAD_ERROR("Failed to write recovery file, because %s\n",
strerror(errno));
if(write_bytes(recoverfd, sBlk, sizeof(squashfs_super_block)) == -1)
BAD_ERROR("Failed to write recovery file, because %s\n",
strerror(errno));
if(write_bytes(recoverfd, metadata, bytes) == -1)
BAD_ERROR("Failed to write recovery file, because %s\n",
strerror(errno));
close(recoverfd);
free(metadata);
printf("Recovery file \"%s\" written\n", recovery_file);
printf("If Mksquashfs aborts abnormally (i.e. power failure), run\n");
printf("mksquashfs dummy %s -recover %s\n", destination_file,
recovery_file);
printf("to restore filesystem\n\n");
}
void read_recovery_data(char *recovery_file, char *destination_file)
{
int fd, recoverfd, bytes;
squashfs_super_block orig_sBlk, sBlk;
char *metadata;
int res;
struct stat buf;
char header[] = RECOVER_ID;
char header2[RECOVER_ID_SIZE];
if((recoverfd = open(recovery_file, O_RDONLY)) == -1)
BAD_ERROR("Failed to open recovery file because %s\n",
strerror(errno));
if(stat(destination_file, &buf) == -1)
BAD_ERROR("Failed to stat destination file, because %s\n",
strerror(errno));
if((fd = open(destination_file, O_RDWR)) == -1)
BAD_ERROR("Failed to open destination file because %s\n",
strerror(errno));
res = read_bytes(recoverfd, header2, RECOVER_ID_SIZE);
if(res == -1)
BAD_ERROR("Failed to read recovery file, because %s\n",
strerror(errno));
if(res < RECOVER_ID_SIZE)
BAD_ERROR("Recovery file appears to be truncated\n");
if(strncmp(header, header2, RECOVER_ID_SIZE) !=0 )
BAD_ERROR("Not a recovery file\n");
res = read_bytes(recoverfd, &sBlk, sizeof(squashfs_super_block));
if(res == -1)
BAD_ERROR("Failed to read recovery file, because %s\n",
strerror(errno));
if(res < sizeof(squashfs_super_block))
BAD_ERROR("Recovery file appears to be truncated\n");
read_destination(fd, 0, sizeof(squashfs_super_block), (char *)
&orig_sBlk);
if(memcmp(((char *) &sBlk) + 4, ((char *) &orig_sBlk) + 4,
sizeof(squashfs_super_block) - 4) != 0)
BAD_ERROR("Recovery file and destination file do not seem to "
"match\n");
bytes = sBlk.bytes_used - sBlk.inode_table_start;
if((metadata = malloc(bytes)) == NULL)
BAD_ERROR("Failed to alloc metadata buffer in "
"read_recovery_data\n");
res = read_bytes(recoverfd, metadata, bytes);
if(res == -1)
BAD_ERROR("Failed to read recovery file, because %s\n",
strerror(errno));
if(res < bytes)
BAD_ERROR("Recovery file appears to be truncated\n");
write_destination(fd, 0, sizeof(squashfs_super_block), (char *) &sBlk);
write_destination(fd, sBlk.inode_table_start, bytes, metadata);
close(recoverfd);
close(fd);
printf("Successfully wrote recovery file \"%s\". Exiting\n",
recovery_file);
exit(0);
}
#define VERSION() \
printf("mksquashfs version 4.1-CVS (2010/01/31)\n");\
printf("copyright (C) 2009 Phillip Lougher <phillip@lougher.demon.co.uk>\n\n"); \
printf("This program is free software; you can redistribute it and/or\n");\
printf("modify it under the terms of the GNU General Public License\n");\
printf("as published by the Free Software Foundation; either version 2,\n");\
printf("or (at your option) any later version.\n\n");\
printf("This program is distributed in the hope that it will be useful,\n");\
printf("but WITHOUT ANY WARRANTY; without even the implied warranty of\n");\
printf("MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n");\
printf("GNU General Public License for more details.\n");
int main(int argc, char *argv[])
{
struct stat buf, source_buf;
int i;
squashfs_super_block sBlk;
char *b, *root_name = NULL;
int nopad = FALSE, keep_as_directory = FALSE;
squashfs_inode inode;
int readb_mbytes = READER_BUFFER_DEFAULT,
writeb_mbytes = WRITER_BUFFER_DEFAULT,
fragmentb_mbytes = FRAGMENT_BUFFER_DEFAULT;
int s_minor = SQUASHFS_MINOR;
pthread_mutex_init(&progress_mutex, NULL);
block_log = slog(block_size);
if(argc > 1 && strcmp(argv[1], "-version") == 0) {
VERSION();
exit(0);
}
for(i = 1; i < argc && argv[i][0] != '-'; i++);
if(i < 3)
goto printOptions;
source_path = argv + 1;
source = i - 2;
for(; i < argc; i++) {
if(strcmp(argv[i], "-comp") == 0) {
if(++i == argc) {
ERROR("%s: -comp missing compression type\n",
argv[0]);
exit(1);
}
comp_name = argv[i];
} else if(strcmp(argv[i], "-pf") == 0) {
if(++i == argc) {
ERROR("%s: -pf missing filename\n", argv[0]);
exit(1);
}
if(read_pseudo_file(&pseudo, argv[i]) == FALSE)
exit(1);
} else if(strcmp(argv[i], "-p") == 0) {
if(++i == argc) {
ERROR("%s: -p missing pseudo file definition\n",
argv[0]);
exit(1);
}
if(read_pseudo_def(&pseudo, argv[i]) == FALSE)
exit(1);
} else if(strcmp(argv[i], "-recover") == 0) {
if(++i == argc) {
ERROR("%s: -recover missing recovery file\n",
argv[0]);
exit(1);
}
read_recovery_data(argv[i], argv[source + 1]);
} else if(strcmp(argv[i], "-no-recovery") == 0)
recover = FALSE;
else if(strcmp(argv[i], "-wildcards") == 0) {
old_exclude = FALSE;
use_regex = FALSE;
} else if(strcmp(argv[i], "-regex") == 0) {
old_exclude = FALSE;
use_regex = TRUE;
} else if(strcmp(argv[i], "-no-sparse") == 0)
sparse_files = FALSE;
else if(strcmp(argv[i], "-no-progress") == 0)
progress = FALSE;
else if(strcmp(argv[i], "-no-exports") == 0)
exportable = FALSE;
else if(strcmp(argv[i], "-processors") == 0) {
if((++i == argc) || (processors =
strtol(argv[i], &b, 10), *b != '\0')) {
ERROR("%s: -processors missing or invalid "
"processor number\n", argv[0]);
exit(1);
}
if(processors < 1) {
ERROR("%s: -processors should be 1 or larger\n",
argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-read-queue") == 0) {
if((++i == argc) || (readb_mbytes =
strtol(argv[i], &b, 10), *b != '\0')) {
ERROR("%s: -read-queue missing or invalid "
"queue size\n", argv[0]);
exit(1);
}
if(readb_mbytes < 1) {
ERROR("%s: -read-queue should be 1 megabyte or "
"larger\n", argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-write-queue") == 0) {
if((++i == argc) || (writeb_mbytes =
strtol(argv[i], &b, 10), *b != '\0')) {
ERROR("%s: -write-queue missing or invalid "
"queue size\n", argv[0]);
exit(1);
}
if(writeb_mbytes < 1) {
ERROR("%s: -write-queue should be 1 megabyte "
"or larger\n", argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-fragment-queue") == 0) {
if((++i == argc) ||
(fragmentb_mbytes =
strtol(argv[i], &b, 10), *b != '\0')) {
ERROR("%s: -fragment-queue missing or invalid "
"queue size\n", argv[0]);
exit(1);
}
if(fragmentb_mbytes < 1) {
ERROR("%s: -fragment-queue should be 1 "
"megabyte or larger\n", argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-b") == 0) {
if(++i == argc) {
ERROR("%s: -b missing block size\n", argv[0]);
exit(1);
}
block_size = strtol(argv[i], &b, 10);
if(*b == 'm' || *b == 'M')
block_size *= 1048576;
else if(*b == 'k' || *b == 'K')
block_size *= 1024;
else if(*b != '\0') {
ERROR("%s: -b invalid block size\n", argv[0]);
exit(1);
}
if((block_log = slog(block_size)) == 0) {
ERROR("%s: -b block size not power of two or "
"not between 4096 and 1Mbyte\n",
argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-ef") == 0) {
if(++i == argc) {
ERROR("%s: -ef missing filename\n", argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-no-duplicates") == 0)
duplicate_checking = FALSE;
else if(strcmp(argv[i], "-no-fragments") == 0)
no_fragments = TRUE;
else if(strcmp(argv[i], "-always-use-fragments") == 0)
always_use_fragments = TRUE;
else if(strcmp(argv[i], "-sort") == 0) {
if(++i == argc) {
ERROR("%s: -sort missing filename\n", argv[0]);
exit(1);
}
} else if(strcmp(argv[i], "-all-root") == 0 ||
strcmp(argv[i], "-root-owned") == 0)
global_uid = global_gid = 0;
else if(strcmp(argv[i], "-force-uid") == 0) {
if(++i == argc) {
ERROR("%s: -force-uid missing uid or user\n",
argv[0]);
exit(1);
}
if((global_uid = strtoll(argv[i], &b, 10)), *b =='\0') {
if(global_uid < 0 || global_uid >
(((long long) 1 << 32) - 1)) {
ERROR("%s: -force-uid uid out of range"
"\n", argv[0]);
exit(1);
}
} else {
struct passwd *uid = getpwnam(argv[i]);
if(uid)
global_uid = uid->pw_uid;
else {
ERROR("%s: -force-uid invalid uid or "
"unknown user\n", argv[0]);
exit(1);
}
}
} else if(strcmp(argv[i], "-force-gid") == 0) {
if(++i == argc) {
ERROR("%s: -force-gid missing gid or group\n",
argv[0]);
exit(1);
}
if((global_gid = strtoll(argv[i], &b, 10)), *b =='\0') {
if(global_gid < 0 || global_gid >
(((long long) 1 << 32) - 1)) {
ERROR("%s: -force-gid gid out of range"
"\n", argv[0]);
exit(1);
}
} else {
struct group *gid = getgrnam(argv[i]);
if(gid)
global_gid = gid->gr_gid;
else {
ERROR("%s: -force-gid invalid gid or "
"unknown group\n", argv[0]);
exit(1);
}
}
} else if(strcmp(argv[i], "-noI") == 0 ||
strcmp(argv[i], "-noInodeCompression") == 0)
noI = TRUE;
else if(strcmp(argv[i], "-noD") == 0 ||
strcmp(argv[i], "-noDataCompression") == 0)
noD = TRUE;
else if(strcmp(argv[i], "-noF") == 0 ||
strcmp(argv[i], "-noFragmentCompression") == 0)
noF = TRUE;
else if(strcmp(argv[i], "-nopad") == 0)
nopad = TRUE;
else if(strcmp(argv[i], "-info") == 0) {
silent = FALSE;
progress = FALSE;
}
else if(strcmp(argv[i], "-e") == 0)
break;
else if(strcmp(argv[i], "-noappend") == 0)
delete = TRUE;
else if(strcmp(argv[i], "-keep-as-directory") == 0)
keep_as_directory = TRUE;
else if(strcmp(argv[i], "-root-becomes") == 0) {
if(++i == argc) {
ERROR("%s: -root-becomes: missing name\n",
argv[0]);
exit(1);
}
root_name = argv[i];
} else if(strcmp(argv[i], "-version") == 0) {
VERSION();
} else {
ERROR("%s: invalid option\n\n", argv[0]);
printOptions:
ERROR("SYNTAX:%s source1 source2 ... dest [options] "
"[-e list of exclude\ndirs/files]\n", argv[0]);
ERROR("\nFilesystem build options:\n");
ERROR("-comp <comp>\t\tselect <comp> compression\n");
ERROR("\t\t\tCompressors available:\n");
display_compressors("\t\t\t", COMP_DEFAULT);
ERROR("-b <block_size>\t\tset data block to "
"<block_size>. Default %d bytes\n",
SQUASHFS_FILE_SIZE);
ERROR("-no-exports\t\tdon't make the filesystem "
"exportable via NFS\n");
ERROR("-no-sparse\t\tdon't detect sparse files\n");
ERROR("-noI\t\t\tdo not compress inode table\n");
ERROR("-noD\t\t\tdo not compress data blocks\n");
ERROR("-noF\t\t\tdo not compress fragment blocks\n");
ERROR("-no-fragments\t\tdo not use fragments\n");
ERROR("-always-use-fragments\tuse fragment blocks for "
"files larger than block size\n");
ERROR("-no-duplicates\t\tdo not perform duplicate "
"checking\n");
ERROR("-all-root\t\tmake all files owned by root\n");
ERROR("-force-uid uid\t\tset all file uids to uid\n");
ERROR("-force-gid gid\t\tset all file gids to gid\n");
ERROR("-nopad\t\t\tdo not pad filesystem to a multiple "
"of 4K\n");
ERROR("-keep-as-directory\tif one source directory is "
"specified, create a root\n");
ERROR("\t\t\tdirectory containing that directory, "
"rather than the\n");
ERROR("\t\t\tcontents of the directory\n");
ERROR("\nFilesystem filter options:\n");
ERROR("-p <pseudo-definition>\tAdd pseudo file definition\n");
ERROR("-pf <pseudo-file>\tAdd list of pseudo file definitions\n");
ERROR("-sort <sort_file>\tsort files according to "
"priorities in <sort_file>. One\n");
ERROR("\t\t\tfile or dir with priority per line. "
"Priority -32768 to\n");
ERROR("\t\t\t32767, default priority 0\n");
ERROR("-ef <exclude_file>\tlist of exclude dirs/files."
" One per line\n");
ERROR("-wildcards\t\tAllow extended shell wildcards "
"(globbing) to be used in\n\t\t\texclude "
"dirs/files\n");
ERROR("-regex\t\t\tAllow POSIX regular expressions to "
"be used in exclude\n\t\t\tdirs/files\n");
ERROR("\nFilesystem append options:\n");
ERROR("-noappend\t\tdo not append to existing "
"filesystem\n");
ERROR("-root-becomes <name>\twhen appending source "
"files/directories, make the\n");
ERROR("\t\t\toriginal root become a subdirectory in "
"the new root\n");
ERROR("\t\t\tcalled <name>, rather than adding the new "
"source items\n");
ERROR("\t\t\tto the original root\n");
ERROR("\nMksquashfs runtime options:\n");
ERROR("-version\t\tprint version, licence and "
"copyright message\n");
ERROR("-recover <name>\t\trecover filesystem data "
"using recovery file <name>\n");
ERROR("-no-recovery\t\tdon't generate a recovery "
"file\n");
ERROR("-info\t\t\tprint files written to filesystem\n");
ERROR("-no-progress\t\tdon't display the progress "
"bar\n");
ERROR("-processors <number>\tUse <number> processors."
" By default will use number of\n");
ERROR("\t\t\tprocessors available\n");
ERROR("-read-queue <size>\tSet input queue to <size> "
"Mbytes. Default %d Mbytes\n",
READER_BUFFER_DEFAULT);
ERROR("-write-queue <size>\tSet output queue to <size> "
"Mbytes. Default %d Mbytes\n",
WRITER_BUFFER_DEFAULT);
ERROR("-fragment-queue <size>\tSet fagment queue to "
"<size> Mbytes. Default %d Mbytes\n",
FRAGMENT_BUFFER_DEFAULT);
ERROR("\nMiscellaneous options:\n");
ERROR("-root-owned\t\talternative name for -all-root"
"\n");
ERROR("-noInodeCompression\talternative name for -noI"
"\n");
ERROR("-noDataCompression\talternative name for -noD"
"\n");
ERROR("-noFragmentCompression\talternative name for "
"-noF\n");
ERROR("\nCompressors available:\n");
display_compressors("", COMP_DEFAULT);
exit(1);
}
}
reader_buffer_size = readb_mbytes << (20 - block_log);
writer_buffer_size = writeb_mbytes << (20 - block_log);
fragment_buffer_size = fragmentb_mbytes << (20 - block_log);
for(i = 0; i < source; i++)
if(lstat(source_path[i], &source_buf) == -1) {
fprintf(stderr, "Cannot stat source directory \"%s\" "
"because %s\n", source_path[i],
strerror(errno));
EXIT_MKSQUASHFS();
}
destination_file = argv[source + 1];
if(stat(argv[source + 1], &buf) == -1) {
if(errno == ENOENT) { /* Does not exist */
fd = open(argv[source + 1], O_CREAT | O_TRUNC | O_RDWR,
S_IRWXU);
if(fd == -1) {
perror("Could not create destination file");
exit(1);
}
delete = TRUE;
} else {
perror("Could not stat destination file");
exit(1);
}
} else {
if(S_ISBLK(buf.st_mode)) {
if((fd = open(argv[source + 1], O_RDWR)) == -1) {
perror("Could not open block device as "
"destination");
exit(1);
}
block_device = 1;
} else if(S_ISREG(buf.st_mode)) {
fd = open(argv[source + 1], (delete ? O_TRUNC : 0) |
O_RDWR);
if(fd == -1) {
perror("Could not open regular file for "
"writing as destination");
exit(1);
}
}
else {
ERROR("Destination not block device or regular file\n");
exit(1);
}
}
signal(SIGTERM, sighandler2);
signal(SIGINT, sighandler2);
/* process the exclude files - must be done afer destination file has
* been possibly created */
for(i = source + 2; i < argc; i++)
if(strcmp(argv[i], "-ef") == 0) {
FILE *fd;
char filename[16385];
if((fd = fopen(argv[++i], "r")) == NULL) {
perror("Could not open exclude file...");
EXIT_MKSQUASHFS();
}
while(fscanf(fd, "%16384[^\n]\n", filename) != EOF)
if(old_exclude)
old_add_exclude(filename);
else
add_exclude(filename);
fclose(fd);
} else if(strcmp(argv[i], "-e") == 0)
break;
else if(strcmp(argv[i], "-root-becomes") == 0 ||
strcmp(argv[i], "-sort") == 0 ||
strcmp(argv[i], "-pf") == 0 ||
strcmp(argv[i], "-comp") == 0)
i++;
if(i != argc) {
if(++i == argc) {
ERROR("%s: -e missing arguments\n", argv[0]);
EXIT_MKSQUASHFS();
}
while(i < argc)
if(old_exclude)
old_add_exclude(argv[i++]);
else
add_exclude(argv[i++]);
}
/* process the sort files - must be done afer the exclude files */
for(i = source + 2; i < argc; i++)
if(strcmp(argv[i], "-sort") == 0) {
read_sort_file(argv[++i], source, source_path);
sorted ++;
} else if(strcmp(argv[i], "-e") == 0)
break;
else if(strcmp(argv[i], "-root-becomes") == 0 ||
strcmp(argv[i], "-ef") == 0 ||
strcmp(argv[i], "-pf") == 0 ||
strcmp(argv[i], "-comp") == 0)
i++;
#ifdef SQUASHFS_TRACE
progress = FALSE;
#endif
if(!delete) {
comp = read_super(fd, &sBlk, argv[source + 1]);
if(comp == NULL) {
ERROR("Failed to read existing filesystem - will not "
"overwrite - ABORTING!\n");
ERROR("To force Mksquashfs to write to this block "
"device or file use -noappend\n");
EXIT_MKSQUASHFS();
}
block_log = slog(block_size = sBlk.block_size);
s_minor = sBlk.s_minor;
noI = SQUASHFS_UNCOMPRESSED_INODES(sBlk.flags);
noD = SQUASHFS_UNCOMPRESSED_DATA(sBlk.flags);
noF = SQUASHFS_UNCOMPRESSED_FRAGMENTS(sBlk.flags);
no_fragments = SQUASHFS_NO_FRAGMENTS(sBlk.flags);
always_use_fragments = SQUASHFS_ALWAYS_FRAGMENTS(sBlk.flags);
duplicate_checking = SQUASHFS_DUPLICATES(sBlk.flags);
exportable = SQUASHFS_EXPORTABLE(sBlk.flags);
} else {
comp = lookup_compressor(comp_name);
if(!comp->supported) {
ERROR("FATAL_ERROR: Compressor \"%s\" is not "
"supported!\n", comp_name);
ERROR("Compressors available:\n");
display_compressors("", COMP_DEFAULT);
EXIT_MKSQUASHFS();
}
}
initialise_threads();
if(delete) {
printf("Creating %d.%d filesystem on %s, block size %d.\n",
SQUASHFS_MAJOR, s_minor, argv[source + 1], block_size);
bytes = sizeof(squashfs_super_block);
} else {
unsigned int last_directory_block, inode_dir_offset,
inode_dir_file_size, root_inode_size,
inode_dir_start_block, uncompressed_data,
compressed_data, inode_dir_inode_number,
inode_dir_parent_inode;
unsigned int root_inode_start =
SQUASHFS_INODE_BLK(sBlk.root_inode),
root_inode_offset =
SQUASHFS_INODE_OFFSET(sBlk.root_inode);
if((bytes = read_filesystem(root_name, fd, &sBlk, &inode_table,
&data_cache, &directory_table,
&directory_data_cache, &last_directory_block,
&inode_dir_offset, &inode_dir_file_size,
&root_inode_size, &inode_dir_start_block,
&file_count, &sym_count, &dev_count, &dir_count,
&fifo_count, &sock_count, &total_bytes,
&total_inode_bytes, &total_directory_bytes,
&inode_dir_inode_number,
&inode_dir_parent_inode, add_old_root_entry,
&fragment_table, &inode_lookup_table)) == 0) {
ERROR("Failed to read existing filesystem - will not "
"overwrite - ABORTING!\n");
ERROR("To force Mksquashfs to write to this block "
"device or file use -noappend\n");
EXIT_MKSQUASHFS();
}
if((fragments = sBlk.fragments))
fragment_table = realloc((char *) fragment_table,
((fragments + FRAG_SIZE - 1) & ~(FRAG_SIZE - 1))
* sizeof(squashfs_fragment_entry));
printf("Appending to existing %d.%d filesystem on %s, block "
"size %d\n", SQUASHFS_MAJOR, s_minor, argv[source + 1],
block_size);
printf("All -b, -noI, -noD, -noF, no-duplicates, no-fragments, "
"-always-use-fragments,\n-exportable and -comp options "
"ignored\n");
printf("\nIf appending is not wanted, please re-run with "
"-noappend specified!\n\n");
compressed_data = (inode_dir_offset + inode_dir_file_size) &
~(SQUASHFS_METADATA_SIZE - 1);
uncompressed_data = (inode_dir_offset + inode_dir_file_size) &
(SQUASHFS_METADATA_SIZE - 1);
/* save original filesystem state for restoring ... */
sfragments = fragments;
sbytes = bytes;
sinode_count = sBlk.inodes;
scache_bytes = root_inode_offset + root_inode_size;
sdirectory_cache_bytes = uncompressed_data;
sdata_cache = malloc(scache_bytes);
sdirectory_data_cache = malloc(sdirectory_cache_bytes);
memcpy(sdata_cache, data_cache, scache_bytes);
memcpy(sdirectory_data_cache, directory_data_cache +
compressed_data, sdirectory_cache_bytes);
sinode_bytes = root_inode_start;
stotal_bytes = total_bytes;
stotal_inode_bytes = total_inode_bytes;
stotal_directory_bytes = total_directory_bytes +
compressed_data;
sfile_count = file_count;
ssym_count = sym_count;
sdev_count = dev_count;
sdir_count = dir_count + 1;
sfifo_count = fifo_count;
ssock_count = sock_count;
sdup_files = dup_files;
sid_count = id_count;
write_recovery_data(&sBlk);
restore = TRUE;
if(setjmp(env))
goto restore_filesystem;
signal(SIGTERM, sighandler);
signal(SIGINT, sighandler);
write_destination(fd, SQUASHFS_START, 4, "\0\0\0\0");
/*
* set the filesystem state up to be able to append to the
* original filesystem. The filesystem state differs depending
* on whether we're appending to the original root directory, or
* if the original root directory becomes a sub-directory
* (root-becomes specified on command line, here root_name !=
* NULL)
*/
inode_bytes = inode_size = root_inode_start;
directory_size = last_directory_block;
cache_size = root_inode_offset + root_inode_size;
directory_cache_size = inode_dir_offset + inode_dir_file_size;
if(root_name) {
sdirectory_bytes = last_directory_block;
sdirectory_compressed_bytes = 0;
root_inode_number = inode_dir_parent_inode;
dir_inode_no = sBlk.inodes + 2;
directory_bytes = last_directory_block;
directory_cache_bytes = uncompressed_data;
memmove(directory_data_cache, directory_data_cache +
compressed_data, uncompressed_data);
cache_bytes = root_inode_offset + root_inode_size;
add_old_root_entry(root_name, sBlk.root_inode,
inode_dir_inode_number, SQUASHFS_DIR_TYPE);
total_directory_bytes += compressed_data;
dir_count ++;
} else {
sdirectory_compressed_bytes = last_directory_block -
inode_dir_start_block;
sdirectory_compressed =
malloc(sdirectory_compressed_bytes);
memcpy(sdirectory_compressed, directory_table +
inode_dir_start_block,
sdirectory_compressed_bytes);
sdirectory_bytes = inode_dir_start_block;
root_inode_number = inode_dir_inode_number;
dir_inode_no = sBlk.inodes + 1;
directory_bytes = inode_dir_start_block;
directory_cache_bytes = inode_dir_offset;
cache_bytes = root_inode_offset;
}
inode_count = file_count + dir_count + sym_count + dev_count +
fifo_count + sock_count;
/*
* The default use freelist before growing cache policy behaves
* poorly with appending - with many deplicates the caches
* do not grow due to the fact that large queues of outstanding
* fragments/writer blocks do not occur, leading to small caches
* and un-uncessary performance loss to frequent cache
* replacement in the small caches. Therefore with appending
* change the policy to grow the caches before reusing blocks
* from the freelist
*/
first_freelist = FALSE;
}
if(path || stickypath) {
paths = init_subdir();
if(path)
paths = add_subdir(paths, path);
if(stickypath)
paths = add_subdir(paths, stickypath);
}
if(delete && !keep_as_directory && source == 1 &&
S_ISDIR(source_buf.st_mode))
dir_scan(&inode, source_path[0], scan1_readdir);
else if(!keep_as_directory && source == 1 &&
S_ISDIR(source_buf.st_mode))
dir_scan(&inode, source_path[0], scan1_single_readdir);
else
dir_scan(&inode, "", scan1_encomp_readdir);
sBlk.root_inode = inode;
sBlk.inodes = inode_count;
sBlk.s_magic = SQUASHFS_MAGIC;
sBlk.s_major = SQUASHFS_MAJOR;
sBlk.s_minor = s_minor;
sBlk.block_size = block_size;
sBlk.block_log = block_log;
sBlk.flags = SQUASHFS_MKFLAGS(noI, noD, noF, no_fragments,
always_use_fragments, duplicate_checking, exportable);
sBlk.mkfs_time = time(NULL);
restore_filesystem:
if(progress && estimated_uncompressed) {
disable_progress_bar();
progress_bar(cur_uncompressed, estimated_uncompressed, columns);
}
write_fragment();
sBlk.fragments = fragments;
if(interrupted < 2) {
unlock_fragments();
pthread_mutex_lock(&fragment_mutex);
while(fragments_outstanding) {
pthread_mutex_unlock(&fragment_mutex);
sched_yield();
pthread_mutex_lock(&fragment_mutex);
}
queue_put(to_writer, NULL);
if(queue_get(from_writer) != 0)
EXIT_MKSQUASHFS();
}
sBlk.inode_table_start = write_inodes();
sBlk.directory_table_start = write_directories();
sBlk.fragment_table_start = write_fragment_table();
sBlk.lookup_table_start = exportable ? write_inode_lookup_table() :
SQUASHFS_INVALID_BLK;
TRACE("sBlk->inode_table_start 0x%llx\n", sBlk.inode_table_start);
TRACE("sBlk->directory_table_start 0x%llx\n",
sBlk.directory_table_start);
TRACE("sBlk->fragment_table_start 0x%llx\n", sBlk.fragment_table_start);
if(exportable)
TRACE("sBlk->lookup_table_start 0x%llx\n",
sBlk.lookup_table_start);
sBlk.no_ids = id_count;
sBlk.id_table_start = write_id_table();
sBlk.bytes_used = bytes;
sBlk.compression = comp->id;
/* Xattrs are not currently supported */
sBlk.xattr_table_start = SQUASHFS_INVALID_BLK;
SQUASHFS_INSWAP_SUPER_BLOCK(&sBlk);
write_destination(fd, SQUASHFS_START, sizeof(squashfs_super_block),
(char *) &sBlk);
if(!nopad && (i = bytes & (4096 - 1))) {
char temp[4096] = {0};
write_destination(fd, bytes, 4096 - i, temp);
}
close(fd);
delete_pseudo_files();
if(recovery_file[0] != '\0')
unlink(recovery_file);
total_bytes += total_inode_bytes + total_directory_bytes + uid_count
* sizeof(unsigned short) + guid_count * sizeof(unsigned short) +
sizeof(squashfs_super_block);
printf("\n%sSquashfs %d.%d filesystem, %s compressed, data block size"
" %d\n", exportable ? "Exportable " : "", SQUASHFS_MAJOR,
SQUASHFS_MINOR, comp->name, block_size);
printf("\t%s data, %s metadata, %s fragments\n",
noD ? "uncompressed" : "compressed", noI ? "uncompressed" :
"compressed", no_fragments ? "no" : noF ? "uncompressed" :
"compressed");
printf("\tduplicates are %sremoved\n", duplicate_checking ? "" :
"not ");
printf("Filesystem size %.2f Kbytes (%.2f Mbytes)\n", bytes / 1024.0,
bytes / (1024.0 * 1024.0));
printf("\t%.2f%% of uncompressed filesystem size (%.2f Kbytes)\n",
((float) bytes / total_bytes) * 100.0, total_bytes / 1024.0);
printf("Inode table size %d bytes (%.2f Kbytes)\n",
inode_bytes, inode_bytes / 1024.0);
printf("\t%.2f%% of uncompressed inode table size (%d bytes)\n",
((float) inode_bytes / total_inode_bytes) * 100.0,
total_inode_bytes);
printf("Directory table size %d bytes (%.2f Kbytes)\n",
directory_bytes, directory_bytes / 1024.0);
printf("\t%.2f%% of uncompressed directory table size (%d bytes)\n",
((float) directory_bytes / total_directory_bytes) * 100.0,
total_directory_bytes);
if(duplicate_checking)
printf("Number of duplicate files found %d\n", file_count -
dup_files);
else
printf("No duplicate files removed\n");
printf("Number of inodes %d\n", inode_count);
printf("Number of files %d\n", file_count);
if(!no_fragments)
printf("Number of fragments %d\n", fragments);
printf("Number of symbolic links %d\n", sym_count);
printf("Number of device nodes %d\n", dev_count);
printf("Number of fifo nodes %d\n", fifo_count);
printf("Number of socket nodes %d\n", sock_count);
printf("Number of directories %d\n", dir_count);
printf("Number of ids (unique uids + gids) %d\n", id_count);
printf("Number of uids %d\n", uid_count);
for(i = 0; i < id_count; i++) {
if(id_table[i]->flags & ISA_UID) {
struct passwd *user = getpwuid(id_table[i]->id);
printf("\t%s (%d)\n", user == NULL ? "unknown" :
user->pw_name, id_table[i]->id);
}
}
printf("Number of gids %d\n", guid_count);
for(i = 0; i < id_count; i++) {
if(id_table[i]->flags & ISA_GID) {
struct group *group = getgrgid(id_table[i]->id);
printf("\t%s (%d)\n", group == NULL ? "unknown" :
group->gr_name, id_table[i]->id);
}
}
return 0;
}