blob: 82eebf26d93f54aab8bd678015de09c25e7e4d27 [file] [log] [blame]
use core::cmp::min;
#[cfg(feature = "async")]
use core::task::Waker;
use crate::iface::Context;
use crate::phy::PacketMeta;
use crate::socket::PollAt;
#[cfg(feature = "async")]
use crate::socket::WakerRegistration;
use crate::storage::Empty;
use crate::wire::{IpEndpoint, IpListenEndpoint, IpProtocol, IpRepr, UdpRepr};
/// Metadata for a sent or received UDP packet.
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct UdpMetadata {
pub endpoint: IpEndpoint,
pub meta: PacketMeta,
}
impl<T: Into<IpEndpoint>> From<T> for UdpMetadata {
fn from(value: T) -> Self {
Self {
endpoint: value.into(),
meta: PacketMeta::default(),
}
}
}
impl core::fmt::Display for UdpMetadata {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
#[cfg(feature = "packetmeta-id")]
return write!(f, "{}, PacketID: {:?}", self.endpoint, self.meta);
#[cfg(not(feature = "packetmeta-id"))]
write!(f, "{}", self.endpoint)
}
}
/// A UDP packet metadata.
pub type PacketMetadata = crate::storage::PacketMetadata<UdpMetadata>;
/// A UDP packet ring buffer.
pub type PacketBuffer<'a> = crate::storage::PacketBuffer<'a, UdpMetadata>;
/// Error returned by [`Socket::bind`]
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum BindError {
InvalidState,
Unaddressable,
}
impl core::fmt::Display for BindError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
BindError::InvalidState => write!(f, "invalid state"),
BindError::Unaddressable => write!(f, "unaddressable"),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for BindError {}
/// Error returned by [`Socket::send`]
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum SendError {
Unaddressable,
BufferFull,
}
impl core::fmt::Display for SendError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
SendError::Unaddressable => write!(f, "unaddressable"),
SendError::BufferFull => write!(f, "buffer full"),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for SendError {}
/// Error returned by [`Socket::recv`]
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum RecvError {
Exhausted,
Truncated,
}
impl core::fmt::Display for RecvError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
RecvError::Exhausted => write!(f, "exhausted"),
RecvError::Truncated => write!(f, "truncated"),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for RecvError {}
/// A User Datagram Protocol socket.
///
/// A UDP socket is bound to a specific endpoint, and owns transmit and receive
/// packet buffers.
#[derive(Debug)]
pub struct Socket<'a> {
endpoint: IpListenEndpoint,
rx_buffer: PacketBuffer<'a>,
tx_buffer: PacketBuffer<'a>,
/// The time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
hop_limit: Option<u8>,
#[cfg(feature = "async")]
rx_waker: WakerRegistration,
#[cfg(feature = "async")]
tx_waker: WakerRegistration,
}
impl<'a> Socket<'a> {
/// Create an UDP socket with the given buffers.
pub fn new(rx_buffer: PacketBuffer<'a>, tx_buffer: PacketBuffer<'a>) -> Socket<'a> {
Socket {
endpoint: IpListenEndpoint::default(),
rx_buffer,
tx_buffer,
hop_limit: None,
#[cfg(feature = "async")]
rx_waker: WakerRegistration::new(),
#[cfg(feature = "async")]
tx_waker: WakerRegistration::new(),
}
}
/// Register a waker for receive operations.
///
/// The waker is woken on state changes that might affect the return value
/// of `recv` method calls, such as receiving data, or the socket closing.
///
/// Notes:
///
/// - Only one waker can be registered at a time. If another waker was previously registered,
/// it is overwritten and will no longer be woken.
/// - The Waker is woken only once. Once woken, you must register it again to receive more wakes.
/// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `recv` has
/// necessarily changed.
#[cfg(feature = "async")]
pub fn register_recv_waker(&mut self, waker: &Waker) {
self.rx_waker.register(waker)
}
/// Register a waker for send operations.
///
/// The waker is woken on state changes that might affect the return value
/// of `send` method calls, such as space becoming available in the transmit
/// buffer, or the socket closing.
///
/// Notes:
///
/// - Only one waker can be registered at a time. If another waker was previously registered,
/// it is overwritten and will no longer be woken.
/// - The Waker is woken only once. Once woken, you must register it again to receive more wakes.
/// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `send` has
/// necessarily changed.
#[cfg(feature = "async")]
pub fn register_send_waker(&mut self, waker: &Waker) {
self.tx_waker.register(waker)
}
/// Return the bound endpoint.
#[inline]
pub fn endpoint(&self) -> IpListenEndpoint {
self.endpoint
}
/// Return the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
///
/// See also the [set_hop_limit](#method.set_hop_limit) method
pub fn hop_limit(&self) -> Option<u8> {
self.hop_limit
}
/// Set the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets.
///
/// A socket without an explicitly set hop limit value uses the default [IANA recommended]
/// value (64).
///
/// # Panics
///
/// This function panics if a hop limit value of 0 is given. See [RFC 1122 § 3.2.1.7].
///
/// [IANA recommended]: https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml
/// [RFC 1122 § 3.2.1.7]: https://tools.ietf.org/html/rfc1122#section-3.2.1.7
pub fn set_hop_limit(&mut self, hop_limit: Option<u8>) {
// A host MUST NOT send a datagram with a hop limit value of 0
if let Some(0) = hop_limit {
panic!("the time-to-live value of a packet must not be zero")
}
self.hop_limit = hop_limit
}
/// Bind the socket to the given endpoint.
///
/// This function returns `Err(Error::Illegal)` if the socket was open
/// (see [is_open](#method.is_open)), and `Err(Error::Unaddressable)`
/// if the port in the given endpoint is zero.
pub fn bind<T: Into<IpListenEndpoint>>(&mut self, endpoint: T) -> Result<(), BindError> {
let endpoint = endpoint.into();
if endpoint.port == 0 {
return Err(BindError::Unaddressable);
}
if self.is_open() {
return Err(BindError::InvalidState);
}
self.endpoint = endpoint;
#[cfg(feature = "async")]
{
self.rx_waker.wake();
self.tx_waker.wake();
}
Ok(())
}
/// Close the socket.
pub fn close(&mut self) {
// Clear the bound endpoint of the socket.
self.endpoint = IpListenEndpoint::default();
// Reset the RX and TX buffers of the socket.
self.tx_buffer.reset();
self.rx_buffer.reset();
#[cfg(feature = "async")]
{
self.rx_waker.wake();
self.tx_waker.wake();
}
}
/// Check whether the socket is open.
#[inline]
pub fn is_open(&self) -> bool {
self.endpoint.port != 0
}
/// Check whether the transmit buffer is full.
#[inline]
pub fn can_send(&self) -> bool {
!self.tx_buffer.is_full()
}
/// Check whether the receive buffer is not empty.
#[inline]
pub fn can_recv(&self) -> bool {
!self.rx_buffer.is_empty()
}
/// Return the maximum number packets the socket can receive.
#[inline]
pub fn packet_recv_capacity(&self) -> usize {
self.rx_buffer.packet_capacity()
}
/// Return the maximum number packets the socket can transmit.
#[inline]
pub fn packet_send_capacity(&self) -> usize {
self.tx_buffer.packet_capacity()
}
/// Return the maximum number of bytes inside the recv buffer.
#[inline]
pub fn payload_recv_capacity(&self) -> usize {
self.rx_buffer.payload_capacity()
}
/// Return the maximum number of bytes inside the transmit buffer.
#[inline]
pub fn payload_send_capacity(&self) -> usize {
self.tx_buffer.payload_capacity()
}
/// Enqueue a packet to be sent to a given remote endpoint, and return a pointer
/// to its payload.
///
/// This function returns `Err(Error::Exhausted)` if the transmit buffer is full,
/// `Err(Error::Unaddressable)` if local or remote port, or remote address are unspecified,
/// and `Err(Error::Truncated)` if there is not enough transmit buffer capacity
/// to ever send this packet.
pub fn send(
&mut self,
size: usize,
meta: impl Into<UdpMetadata>,
) -> Result<&mut [u8], SendError> {
let meta = meta.into();
if self.endpoint.port == 0 {
return Err(SendError::Unaddressable);
}
if meta.endpoint.addr.is_unspecified() {
return Err(SendError::Unaddressable);
}
if meta.endpoint.port == 0 {
return Err(SendError::Unaddressable);
}
let payload_buf = self
.tx_buffer
.enqueue(size, meta)
.map_err(|_| SendError::BufferFull)?;
net_trace!(
"udp:{}:{}: buffer to send {} octets",
self.endpoint,
meta.endpoint,
size
);
Ok(payload_buf)
}
/// Enqueue a packet to be send to a given remote endpoint and pass the buffer
/// to the provided closure. The closure then returns the size of the data written
/// into the buffer.
///
/// Also see [send](#method.send).
pub fn send_with<F>(
&mut self,
max_size: usize,
meta: impl Into<UdpMetadata>,
f: F,
) -> Result<usize, SendError>
where
F: FnOnce(&mut [u8]) -> usize,
{
let meta = meta.into();
if self.endpoint.port == 0 {
return Err(SendError::Unaddressable);
}
if meta.endpoint.addr.is_unspecified() {
return Err(SendError::Unaddressable);
}
if meta.endpoint.port == 0 {
return Err(SendError::Unaddressable);
}
let size = self
.tx_buffer
.enqueue_with_infallible(max_size, meta, f)
.map_err(|_| SendError::BufferFull)?;
net_trace!(
"udp:{}:{}: buffer to send {} octets",
self.endpoint,
meta.endpoint,
size
);
Ok(size)
}
/// Enqueue a packet to be sent to a given remote endpoint, and fill it from a slice.
///
/// See also [send](#method.send).
pub fn send_slice(
&mut self,
data: &[u8],
meta: impl Into<UdpMetadata>,
) -> Result<(), SendError> {
self.send(data.len(), meta)?.copy_from_slice(data);
Ok(())
}
/// Dequeue a packet received from a remote endpoint, and return the endpoint as well
/// as a pointer to the payload.
///
/// This function returns `Err(Error::Exhausted)` if the receive buffer is empty.
pub fn recv(&mut self) -> Result<(&[u8], UdpMetadata), RecvError> {
let (remote_endpoint, payload_buf) =
self.rx_buffer.dequeue().map_err(|_| RecvError::Exhausted)?;
net_trace!(
"udp:{}:{}: receive {} buffered octets",
self.endpoint,
remote_endpoint.endpoint,
payload_buf.len()
);
Ok((payload_buf, remote_endpoint))
}
/// Dequeue a packet received from a remote endpoint, copy the payload into the given slice,
/// and return the amount of octets copied as well as the endpoint.
///
/// **Note**: when the size of the provided buffer is smaller than the size of the payload,
/// the packet is dropped and a `RecvError::Truncated` error is returned.
///
/// See also [recv](#method.recv).
pub fn recv_slice(&mut self, data: &mut [u8]) -> Result<(usize, UdpMetadata), RecvError> {
let (buffer, endpoint) = self.recv().map_err(|_| RecvError::Exhausted)?;
if data.len() < buffer.len() {
return Err(RecvError::Truncated);
}
let length = min(data.len(), buffer.len());
data[..length].copy_from_slice(&buffer[..length]);
Ok((length, endpoint))
}
/// Peek at a packet received from a remote endpoint, and return the endpoint as well
/// as a pointer to the payload without removing the packet from the receive buffer.
/// This function otherwise behaves identically to [recv](#method.recv).
///
/// It returns `Err(Error::Exhausted)` if the receive buffer is empty.
pub fn peek(&mut self) -> Result<(&[u8], &UdpMetadata), RecvError> {
let endpoint = self.endpoint;
self.rx_buffer.peek().map_err(|_| RecvError::Exhausted).map(
|(remote_endpoint, payload_buf)| {
net_trace!(
"udp:{}:{}: peek {} buffered octets",
endpoint,
remote_endpoint.endpoint,
payload_buf.len()
);
(payload_buf, remote_endpoint)
},
)
}
/// Peek at a packet received from a remote endpoint, copy the payload into the given slice,
/// and return the amount of octets copied as well as the endpoint without removing the
/// packet from the receive buffer.
/// This function otherwise behaves identically to [recv_slice](#method.recv_slice).
///
/// **Note**: when the size of the provided buffer is smaller than the size of the payload,
/// no data is copied into the provided buffer and a `RecvError::Truncated` error is returned.
///
/// See also [peek](#method.peek).
pub fn peek_slice(&mut self, data: &mut [u8]) -> Result<(usize, &UdpMetadata), RecvError> {
let (buffer, endpoint) = self.peek()?;
if data.len() < buffer.len() {
return Err(RecvError::Truncated);
}
let length = min(data.len(), buffer.len());
data[..length].copy_from_slice(&buffer[..length]);
Ok((length, endpoint))
}
pub(crate) fn accepts(&self, cx: &mut Context, ip_repr: &IpRepr, repr: &UdpRepr) -> bool {
if self.endpoint.port != repr.dst_port {
return false;
}
if self.endpoint.addr.is_some()
&& self.endpoint.addr != Some(ip_repr.dst_addr())
&& !cx.is_broadcast(&ip_repr.dst_addr())
&& !ip_repr.dst_addr().is_multicast()
{
return false;
}
true
}
pub(crate) fn process(
&mut self,
cx: &mut Context,
meta: PacketMeta,
ip_repr: &IpRepr,
repr: &UdpRepr,
payload: &[u8],
) {
debug_assert!(self.accepts(cx, ip_repr, repr));
let size = payload.len();
let remote_endpoint = IpEndpoint {
addr: ip_repr.src_addr(),
port: repr.src_port,
};
net_trace!(
"udp:{}:{}: receiving {} octets",
self.endpoint,
remote_endpoint,
size
);
let metadata = UdpMetadata {
endpoint: remote_endpoint,
meta,
};
match self.rx_buffer.enqueue(size, metadata) {
Ok(buf) => buf.copy_from_slice(payload),
Err(_) => net_trace!(
"udp:{}:{}: buffer full, dropped incoming packet",
self.endpoint,
remote_endpoint
),
}
#[cfg(feature = "async")]
self.rx_waker.wake();
}
pub(crate) fn dispatch<F, E>(&mut self, cx: &mut Context, emit: F) -> Result<(), E>
where
F: FnOnce(&mut Context, PacketMeta, (IpRepr, UdpRepr, &[u8])) -> Result<(), E>,
{
let endpoint = self.endpoint;
let hop_limit = self.hop_limit.unwrap_or(64);
let res = self.tx_buffer.dequeue_with(|packet_meta, payload_buf| {
let src_addr = match endpoint.addr {
Some(addr) => addr,
None => match cx.get_source_address(&packet_meta.endpoint.addr) {
Some(addr) => addr,
None => {
net_trace!(
"udp:{}:{}: cannot find suitable source address, dropping.",
endpoint,
packet_meta.endpoint
);
return Ok(());
}
},
};
net_trace!(
"udp:{}:{}: sending {} octets",
endpoint,
packet_meta.endpoint,
payload_buf.len()
);
let repr = UdpRepr {
src_port: endpoint.port,
dst_port: packet_meta.endpoint.port,
};
let ip_repr = IpRepr::new(
src_addr,
packet_meta.endpoint.addr,
IpProtocol::Udp,
repr.header_len() + payload_buf.len(),
hop_limit,
);
emit(cx, packet_meta.meta, (ip_repr, repr, payload_buf))
});
match res {
Err(Empty) => Ok(()),
Ok(Err(e)) => Err(e),
Ok(Ok(())) => {
#[cfg(feature = "async")]
self.tx_waker.wake();
Ok(())
}
}
}
pub(crate) fn poll_at(&self, _cx: &mut Context) -> PollAt {
if self.tx_buffer.is_empty() {
PollAt::Ingress
} else {
PollAt::Now
}
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::wire::{IpRepr, UdpRepr};
use crate::phy::Medium;
use crate::tests::setup;
use rstest::*;
fn buffer(packets: usize) -> PacketBuffer<'static> {
PacketBuffer::new(
(0..packets)
.map(|_| PacketMetadata::EMPTY)
.collect::<Vec<_>>(),
vec![0; 16 * packets],
)
}
fn socket(
rx_buffer: PacketBuffer<'static>,
tx_buffer: PacketBuffer<'static>,
) -> Socket<'static> {
Socket::new(rx_buffer, tx_buffer)
}
const LOCAL_PORT: u16 = 53;
const REMOTE_PORT: u16 = 49500;
cfg_if::cfg_if! {
if #[cfg(feature = "proto-ipv4")] {
use crate::wire::Ipv4Address as IpvXAddress;
use crate::wire::Ipv4Repr as IpvXRepr;
use IpRepr::Ipv4 as IpReprIpvX;
const LOCAL_ADDR: IpvXAddress = IpvXAddress([192, 168, 1, 1]);
const REMOTE_ADDR: IpvXAddress = IpvXAddress([192, 168, 1, 2]);
const OTHER_ADDR: IpvXAddress = IpvXAddress([192, 168, 1, 3]);
} else {
use crate::wire::Ipv6Address as IpvXAddress;
use crate::wire::Ipv6Repr as IpvXRepr;
use IpRepr::Ipv6 as IpReprIpvX;
const LOCAL_ADDR: IpvXAddress = IpvXAddress([
0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
]);
const REMOTE_ADDR: IpvXAddress = IpvXAddress([
0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,
]);
const OTHER_ADDR: IpvXAddress = IpvXAddress([
0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
]);
}
}
pub const LOCAL_END: IpEndpoint = IpEndpoint {
addr: LOCAL_ADDR.into_address(),
port: LOCAL_PORT,
};
pub const REMOTE_END: IpEndpoint = IpEndpoint {
addr: REMOTE_ADDR.into_address(),
port: REMOTE_PORT,
};
pub const LOCAL_IP_REPR: IpRepr = IpReprIpvX(IpvXRepr {
src_addr: LOCAL_ADDR,
dst_addr: REMOTE_ADDR,
next_header: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64,
});
pub const REMOTE_IP_REPR: IpRepr = IpReprIpvX(IpvXRepr {
src_addr: REMOTE_ADDR,
dst_addr: LOCAL_ADDR,
next_header: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64,
});
pub const BAD_IP_REPR: IpRepr = IpReprIpvX(IpvXRepr {
src_addr: REMOTE_ADDR,
dst_addr: OTHER_ADDR,
next_header: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 64,
});
const LOCAL_UDP_REPR: UdpRepr = UdpRepr {
src_port: LOCAL_PORT,
dst_port: REMOTE_PORT,
};
const REMOTE_UDP_REPR: UdpRepr = UdpRepr {
src_port: REMOTE_PORT,
dst_port: LOCAL_PORT,
};
const PAYLOAD: &[u8] = b"abcdef";
#[test]
fn test_bind_unaddressable() {
let mut socket = socket(buffer(0), buffer(0));
assert_eq!(socket.bind(0), Err(BindError::Unaddressable));
}
#[test]
fn test_bind_twice() {
let mut socket = socket(buffer(0), buffer(0));
assert_eq!(socket.bind(1), Ok(()));
assert_eq!(socket.bind(2), Err(BindError::InvalidState));
}
#[test]
#[should_panic(expected = "the time-to-live value of a packet must not be zero")]
fn test_set_hop_limit_zero() {
let mut s = socket(buffer(0), buffer(1));
s.set_hop_limit(Some(0));
}
#[test]
fn test_send_unaddressable() {
let mut socket = socket(buffer(0), buffer(1));
assert_eq!(
socket.send_slice(b"abcdef", REMOTE_END),
Err(SendError::Unaddressable)
);
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert_eq!(
socket.send_slice(
b"abcdef",
IpEndpoint {
addr: IpvXAddress::UNSPECIFIED.into(),
..REMOTE_END
}
),
Err(SendError::Unaddressable)
);
assert_eq!(
socket.send_slice(
b"abcdef",
IpEndpoint {
port: 0,
..REMOTE_END
}
),
Err(SendError::Unaddressable)
);
assert_eq!(socket.send_slice(b"abcdef", REMOTE_END), Ok(()));
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_send_dispatch(#[case] medium: Medium) {
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut socket = socket(buffer(0), buffer(1));
assert_eq!(socket.bind(LOCAL_END), Ok(()));
assert!(socket.can_send());
assert_eq!(
socket.dispatch(cx, |_, _, _| unreachable!()),
Ok::<_, ()>(())
);
assert_eq!(socket.send_slice(b"abcdef", REMOTE_END), Ok(()));
assert_eq!(
socket.send_slice(b"123456", REMOTE_END),
Err(SendError::BufferFull)
);
assert!(!socket.can_send());
assert_eq!(
socket.dispatch(cx, |_, _, (ip_repr, udp_repr, payload)| {
assert_eq!(ip_repr, LOCAL_IP_REPR);
assert_eq!(udp_repr, LOCAL_UDP_REPR);
assert_eq!(payload, PAYLOAD);
Err(())
}),
Err(())
);
assert!(!socket.can_send());
assert_eq!(
socket.dispatch(cx, |_, _, (ip_repr, udp_repr, payload)| {
assert_eq!(ip_repr, LOCAL_IP_REPR);
assert_eq!(udp_repr, LOCAL_UDP_REPR);
assert_eq!(payload, PAYLOAD);
Ok::<_, ()>(())
}),
Ok(())
);
assert!(socket.can_send());
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_recv_process(#[case] medium: Medium) {
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert!(!socket.can_recv());
assert_eq!(socket.recv(), Err(RecvError::Exhausted));
assert!(socket.accepts(cx, &REMOTE_IP_REPR, &REMOTE_UDP_REPR));
socket.process(
cx,
PacketMeta::default(),
&REMOTE_IP_REPR,
&REMOTE_UDP_REPR,
PAYLOAD,
);
assert!(socket.can_recv());
assert!(socket.accepts(cx, &REMOTE_IP_REPR, &REMOTE_UDP_REPR));
socket.process(
cx,
PacketMeta::default(),
&REMOTE_IP_REPR,
&REMOTE_UDP_REPR,
PAYLOAD,
);
assert_eq!(socket.recv(), Ok((&b"abcdef"[..], REMOTE_END.into())));
assert!(!socket.can_recv());
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_peek_process(#[case] medium: Medium) {
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert_eq!(socket.peek(), Err(RecvError::Exhausted));
socket.process(
cx,
PacketMeta::default(),
&REMOTE_IP_REPR,
&REMOTE_UDP_REPR,
PAYLOAD,
);
assert_eq!(socket.peek(), Ok((&b"abcdef"[..], &REMOTE_END.into(),)));
assert_eq!(socket.recv(), Ok((&b"abcdef"[..], REMOTE_END.into(),)));
assert_eq!(socket.peek(), Err(RecvError::Exhausted));
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_recv_truncated_slice(#[case] medium: Medium) {
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert!(socket.accepts(cx, &REMOTE_IP_REPR, &REMOTE_UDP_REPR));
socket.process(
cx,
PacketMeta::default(),
&REMOTE_IP_REPR,
&REMOTE_UDP_REPR,
PAYLOAD,
);
let mut slice = [0; 4];
assert_eq!(socket.recv_slice(&mut slice[..]), Err(RecvError::Truncated));
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_peek_truncated_slice(#[case] medium: Medium) {
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
socket.process(
cx,
PacketMeta::default(),
&REMOTE_IP_REPR,
&REMOTE_UDP_REPR,
PAYLOAD,
);
let mut slice = [0; 4];
assert_eq!(socket.peek_slice(&mut slice[..]), Err(RecvError::Truncated));
assert_eq!(socket.recv_slice(&mut slice[..]), Err(RecvError::Truncated));
assert_eq!(socket.peek_slice(&mut slice[..]), Err(RecvError::Exhausted));
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_set_hop_limit(#[case] medium: Medium) {
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut s = socket(buffer(0), buffer(1));
assert_eq!(s.bind(LOCAL_END), Ok(()));
s.set_hop_limit(Some(0x2a));
assert_eq!(s.send_slice(b"abcdef", REMOTE_END), Ok(()));
assert_eq!(
s.dispatch(cx, |_, _, (ip_repr, _, _)| {
assert_eq!(
ip_repr,
IpReprIpvX(IpvXRepr {
src_addr: LOCAL_ADDR,
dst_addr: REMOTE_ADDR,
next_header: IpProtocol::Udp,
payload_len: 8 + 6,
hop_limit: 0x2a,
})
);
Ok::<_, ()>(())
}),
Ok(())
);
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_doesnt_accept_wrong_port(#[case] medium: Medium) {
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut socket = socket(buffer(1), buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
let mut udp_repr = REMOTE_UDP_REPR;
assert!(socket.accepts(cx, &REMOTE_IP_REPR, &udp_repr));
udp_repr.dst_port += 1;
assert!(!socket.accepts(cx, &REMOTE_IP_REPR, &udp_repr));
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_doesnt_accept_wrong_ip(#[case] medium: Medium) {
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut port_bound_socket = socket(buffer(1), buffer(0));
assert_eq!(port_bound_socket.bind(LOCAL_PORT), Ok(()));
assert!(port_bound_socket.accepts(cx, &BAD_IP_REPR, &REMOTE_UDP_REPR));
let mut ip_bound_socket = socket(buffer(1), buffer(0));
assert_eq!(ip_bound_socket.bind(LOCAL_END), Ok(()));
assert!(!ip_bound_socket.accepts(cx, &BAD_IP_REPR, &REMOTE_UDP_REPR));
}
#[test]
fn test_send_large_packet() {
// buffer(4) creates a payload buffer of size 16*4
let mut socket = socket(buffer(0), buffer(4));
assert_eq!(socket.bind(LOCAL_END), Ok(()));
let too_large = b"0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdefx";
assert_eq!(
socket.send_slice(too_large, REMOTE_END),
Err(SendError::BufferFull)
);
assert_eq!(socket.send_slice(&too_large[..16 * 4], REMOTE_END), Ok(()));
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_process_empty_payload(#[case] medium: Medium) {
let meta = Box::leak(Box::new([PacketMetadata::EMPTY]));
let recv_buffer = PacketBuffer::new(&mut meta[..], vec![]);
let mut socket = socket(recv_buffer, buffer(0));
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
let repr = UdpRepr {
src_port: REMOTE_PORT,
dst_port: LOCAL_PORT,
};
socket.process(cx, PacketMeta::default(), &REMOTE_IP_REPR, &repr, &[]);
assert_eq!(socket.recv(), Ok((&[][..], REMOTE_END.into())));
}
#[test]
fn test_closing() {
let meta = Box::leak(Box::new([PacketMetadata::EMPTY]));
let recv_buffer = PacketBuffer::new(&mut meta[..], vec![]);
let mut socket = socket(recv_buffer, buffer(0));
assert_eq!(socket.bind(LOCAL_PORT), Ok(()));
assert!(socket.is_open());
socket.close();
assert!(!socket.is_open());
}
}