blob: bb3a204adacda4801a5fd599d3edaec69950266d [file] [log] [blame]
use core::cmp::min;
#[cfg(feature = "async")]
use core::task::Waker;
use crate::iface::Context;
use crate::socket::PollAt;
#[cfg(feature = "async")]
use crate::socket::WakerRegistration;
use crate::storage::Empty;
use crate::wire::{IpProtocol, IpRepr, IpVersion};
#[cfg(feature = "proto-ipv4")]
use crate::wire::{Ipv4Packet, Ipv4Repr};
#[cfg(feature = "proto-ipv6")]
use crate::wire::{Ipv6Packet, Ipv6Repr};
/// Error returned by [`Socket::bind`]
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum BindError {
InvalidState,
Unaddressable,
}
impl core::fmt::Display for BindError {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match self {
BindError::InvalidState => write!(f, "invalid state"),
BindError::Unaddressable => write!(f, "unaddressable"),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for BindError {}
/// Error returned by [`Socket::send`]
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum SendError {
BufferFull,
}
impl core::fmt::Display for SendError {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match self {
SendError::BufferFull => write!(f, "buffer full"),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for SendError {}
/// Error returned by [`Socket::recv`]
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum RecvError {
Exhausted,
Truncated,
}
impl core::fmt::Display for RecvError {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match self {
RecvError::Exhausted => write!(f, "exhausted"),
RecvError::Truncated => write!(f, "truncated"),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for RecvError {}
/// A UDP packet metadata.
pub type PacketMetadata = crate::storage::PacketMetadata<()>;
/// A UDP packet ring buffer.
pub type PacketBuffer<'a> = crate::storage::PacketBuffer<'a, ()>;
/// A raw IP socket.
///
/// A raw socket is bound to a specific IP protocol, and owns
/// transmit and receive packet buffers.
#[derive(Debug)]
pub struct Socket<'a> {
ip_version: IpVersion,
ip_protocol: IpProtocol,
rx_buffer: PacketBuffer<'a>,
tx_buffer: PacketBuffer<'a>,
#[cfg(feature = "async")]
rx_waker: WakerRegistration,
#[cfg(feature = "async")]
tx_waker: WakerRegistration,
}
impl<'a> Socket<'a> {
/// Create a raw IP socket bound to the given IP version and datagram protocol,
/// with the given buffers.
pub fn new(
ip_version: IpVersion,
ip_protocol: IpProtocol,
rx_buffer: PacketBuffer<'a>,
tx_buffer: PacketBuffer<'a>,
) -> Socket<'a> {
Socket {
ip_version,
ip_protocol,
rx_buffer,
tx_buffer,
#[cfg(feature = "async")]
rx_waker: WakerRegistration::new(),
#[cfg(feature = "async")]
tx_waker: WakerRegistration::new(),
}
}
/// Register a waker for receive operations.
///
/// The waker is woken on state changes that might affect the return value
/// of `recv` method calls, such as receiving data, or the socket closing.
///
/// Notes:
///
/// - Only one waker can be registered at a time. If another waker was previously registered,
/// it is overwritten and will no longer be woken.
/// - The Waker is woken only once. Once woken, you must register it again to receive more wakes.
/// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `recv` has
/// necessarily changed.
#[cfg(feature = "async")]
pub fn register_recv_waker(&mut self, waker: &Waker) {
self.rx_waker.register(waker)
}
/// Register a waker for send operations.
///
/// The waker is woken on state changes that might affect the return value
/// of `send` method calls, such as space becoming available in the transmit
/// buffer, or the socket closing.
///
/// Notes:
///
/// - Only one waker can be registered at a time. If another waker was previously registered,
/// it is overwritten and will no longer be woken.
/// - The Waker is woken only once. Once woken, you must register it again to receive more wakes.
/// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `send` has
/// necessarily changed.
#[cfg(feature = "async")]
pub fn register_send_waker(&mut self, waker: &Waker) {
self.tx_waker.register(waker)
}
/// Return the IP version the socket is bound to.
#[inline]
pub fn ip_version(&self) -> IpVersion {
self.ip_version
}
/// Return the IP protocol the socket is bound to.
#[inline]
pub fn ip_protocol(&self) -> IpProtocol {
self.ip_protocol
}
/// Check whether the transmit buffer is full.
#[inline]
pub fn can_send(&self) -> bool {
!self.tx_buffer.is_full()
}
/// Check whether the receive buffer is not empty.
#[inline]
pub fn can_recv(&self) -> bool {
!self.rx_buffer.is_empty()
}
/// Return the maximum number packets the socket can receive.
#[inline]
pub fn packet_recv_capacity(&self) -> usize {
self.rx_buffer.packet_capacity()
}
/// Return the maximum number packets the socket can transmit.
#[inline]
pub fn packet_send_capacity(&self) -> usize {
self.tx_buffer.packet_capacity()
}
/// Return the maximum number of bytes inside the recv buffer.
#[inline]
pub fn payload_recv_capacity(&self) -> usize {
self.rx_buffer.payload_capacity()
}
/// Return the maximum number of bytes inside the transmit buffer.
#[inline]
pub fn payload_send_capacity(&self) -> usize {
self.tx_buffer.payload_capacity()
}
/// Enqueue a packet to send, and return a pointer to its payload.
///
/// This function returns `Err(Error::Exhausted)` if the transmit buffer is full,
/// and `Err(Error::Truncated)` if there is not enough transmit buffer capacity
/// to ever send this packet.
///
/// If the buffer is filled in a way that does not match the socket's
/// IP version or protocol, the packet will be silently dropped.
///
/// **Note:** The IP header is parsed and re-serialized, and may not match
/// the header actually transmitted bit for bit.
pub fn send(&mut self, size: usize) -> Result<&mut [u8], SendError> {
let packet_buf = self
.tx_buffer
.enqueue(size, ())
.map_err(|_| SendError::BufferFull)?;
net_trace!(
"raw:{}:{}: buffer to send {} octets",
self.ip_version,
self.ip_protocol,
packet_buf.len()
);
Ok(packet_buf)
}
/// Enqueue a packet to be send and pass the buffer to the provided closure.
/// The closure then returns the size of the data written into the buffer.
///
/// Also see [send](#method.send).
pub fn send_with<F>(&mut self, max_size: usize, f: F) -> Result<usize, SendError>
where
F: FnOnce(&mut [u8]) -> usize,
{
let size = self
.tx_buffer
.enqueue_with_infallible(max_size, (), f)
.map_err(|_| SendError::BufferFull)?;
net_trace!(
"raw:{}:{}: buffer to send {} octets",
self.ip_version,
self.ip_protocol,
size
);
Ok(size)
}
/// Enqueue a packet to send, and fill it from a slice.
///
/// See also [send](#method.send).
pub fn send_slice(&mut self, data: &[u8]) -> Result<(), SendError> {
self.send(data.len())?.copy_from_slice(data);
Ok(())
}
/// Dequeue a packet, and return a pointer to the payload.
///
/// This function returns `Err(Error::Exhausted)` if the receive buffer is empty.
///
/// **Note:** The IP header is parsed and re-serialized, and may not match
/// the header actually received bit for bit.
pub fn recv(&mut self) -> Result<&[u8], RecvError> {
let ((), packet_buf) = self.rx_buffer.dequeue().map_err(|_| RecvError::Exhausted)?;
net_trace!(
"raw:{}:{}: receive {} buffered octets",
self.ip_version,
self.ip_protocol,
packet_buf.len()
);
Ok(packet_buf)
}
/// Dequeue a packet, and copy the payload into the given slice.
///
/// **Note**: when the size of the provided buffer is smaller than the size of the payload,
/// the packet is dropped and a `RecvError::Truncated` error is returned.
///
/// See also [recv](#method.recv).
pub fn recv_slice(&mut self, data: &mut [u8]) -> Result<usize, RecvError> {
let buffer = self.recv()?;
if data.len() < buffer.len() {
return Err(RecvError::Truncated);
}
let length = min(data.len(), buffer.len());
data[..length].copy_from_slice(&buffer[..length]);
Ok(length)
}
/// Peek at a packet in the receive buffer and return a pointer to the
/// payload without removing the packet from the receive buffer.
/// This function otherwise behaves identically to [recv](#method.recv).
///
/// It returns `Err(Error::Exhausted)` if the receive buffer is empty.
pub fn peek(&mut self) -> Result<&[u8], RecvError> {
let ((), packet_buf) = self.rx_buffer.peek().map_err(|_| RecvError::Exhausted)?;
net_trace!(
"raw:{}:{}: receive {} buffered octets",
self.ip_version,
self.ip_protocol,
packet_buf.len()
);
Ok(packet_buf)
}
/// Peek at a packet in the receive buffer, copy the payload into the given slice,
/// and return the amount of octets copied without removing the packet from the receive buffer.
/// This function otherwise behaves identically to [recv_slice](#method.recv_slice).
///
/// **Note**: when the size of the provided buffer is smaller than the size of the payload,
/// no data is copied into the provided buffer and a `RecvError::Truncated` error is returned.
///
/// See also [peek](#method.peek).
pub fn peek_slice(&mut self, data: &mut [u8]) -> Result<usize, RecvError> {
let buffer = self.peek()?;
if data.len() < buffer.len() {
return Err(RecvError::Truncated);
}
let length = min(data.len(), buffer.len());
data[..length].copy_from_slice(&buffer[..length]);
Ok(length)
}
pub(crate) fn accepts(&self, ip_repr: &IpRepr) -> bool {
if ip_repr.version() != self.ip_version {
return false;
}
if ip_repr.next_header() != self.ip_protocol {
return false;
}
true
}
pub(crate) fn process(&mut self, cx: &mut Context, ip_repr: &IpRepr, payload: &[u8]) {
debug_assert!(self.accepts(ip_repr));
let header_len = ip_repr.header_len();
let total_len = header_len + payload.len();
net_trace!(
"raw:{}:{}: receiving {} octets",
self.ip_version,
self.ip_protocol,
total_len
);
match self.rx_buffer.enqueue(total_len, ()) {
Ok(buf) => {
ip_repr.emit(&mut buf[..header_len], &cx.checksum_caps());
buf[header_len..].copy_from_slice(payload);
}
Err(_) => net_trace!(
"raw:{}:{}: buffer full, dropped incoming packet",
self.ip_version,
self.ip_protocol
),
}
#[cfg(feature = "async")]
self.rx_waker.wake();
}
pub(crate) fn dispatch<F, E>(&mut self, cx: &mut Context, emit: F) -> Result<(), E>
where
F: FnOnce(&mut Context, (IpRepr, &[u8])) -> Result<(), E>,
{
let ip_protocol = self.ip_protocol;
let ip_version = self.ip_version;
let _checksum_caps = &cx.checksum_caps();
let res = self.tx_buffer.dequeue_with(|&mut (), buffer| {
match IpVersion::of_packet(buffer) {
#[cfg(feature = "proto-ipv4")]
Ok(IpVersion::Ipv4) => {
let mut packet = match Ipv4Packet::new_checked(buffer) {
Ok(x) => x,
Err(_) => {
net_trace!("raw: malformed ipv6 packet in queue, dropping.");
return Ok(());
}
};
if packet.next_header() != ip_protocol {
net_trace!("raw: sent packet with wrong ip protocol, dropping.");
return Ok(());
}
if _checksum_caps.ipv4.tx() {
packet.fill_checksum();
} else {
// make sure we get a consistently zeroed checksum,
// since implementations might rely on it
packet.set_checksum(0);
}
let packet = Ipv4Packet::new_unchecked(&*packet.into_inner());
let ipv4_repr = match Ipv4Repr::parse(&packet, _checksum_caps) {
Ok(x) => x,
Err(_) => {
net_trace!("raw: malformed ipv4 packet in queue, dropping.");
return Ok(());
}
};
net_trace!("raw:{}:{}: sending", ip_version, ip_protocol);
emit(cx, (IpRepr::Ipv4(ipv4_repr), packet.payload()))
}
#[cfg(feature = "proto-ipv6")]
Ok(IpVersion::Ipv6) => {
let packet = match Ipv6Packet::new_checked(buffer) {
Ok(x) => x,
Err(_) => {
net_trace!("raw: malformed ipv6 packet in queue, dropping.");
return Ok(());
}
};
if packet.next_header() != ip_protocol {
net_trace!("raw: sent ipv6 packet with wrong ip protocol, dropping.");
return Ok(());
}
let packet = Ipv6Packet::new_unchecked(&*packet.into_inner());
let ipv6_repr = match Ipv6Repr::parse(&packet) {
Ok(x) => x,
Err(_) => {
net_trace!("raw: malformed ipv6 packet in queue, dropping.");
return Ok(());
}
};
net_trace!("raw:{}:{}: sending", ip_version, ip_protocol);
emit(cx, (IpRepr::Ipv6(ipv6_repr), packet.payload()))
}
Err(_) => {
net_trace!("raw: sent packet with invalid IP version, dropping.");
Ok(())
}
}
});
match res {
Err(Empty) => Ok(()),
Ok(Err(e)) => Err(e),
Ok(Ok(())) => {
#[cfg(feature = "async")]
self.tx_waker.wake();
Ok(())
}
}
}
pub(crate) fn poll_at(&self, _cx: &mut Context) -> PollAt {
if self.tx_buffer.is_empty() {
PollAt::Ingress
} else {
PollAt::Now
}
}
}
#[cfg(test)]
mod test {
use crate::phy::Medium;
use crate::tests::setup;
use rstest::*;
use super::*;
use crate::wire::IpRepr;
#[cfg(feature = "proto-ipv4")]
use crate::wire::{Ipv4Address, Ipv4Repr};
#[cfg(feature = "proto-ipv6")]
use crate::wire::{Ipv6Address, Ipv6Repr};
fn buffer(packets: usize) -> PacketBuffer<'static> {
PacketBuffer::new(vec![PacketMetadata::EMPTY; packets], vec![0; 48 * packets])
}
#[cfg(feature = "proto-ipv4")]
mod ipv4_locals {
use super::*;
pub fn socket(
rx_buffer: PacketBuffer<'static>,
tx_buffer: PacketBuffer<'static>,
) -> Socket<'static> {
Socket::new(
IpVersion::Ipv4,
IpProtocol::Unknown(IP_PROTO),
rx_buffer,
tx_buffer,
)
}
pub const IP_PROTO: u8 = 63;
pub const HEADER_REPR: IpRepr = IpRepr::Ipv4(Ipv4Repr {
src_addr: Ipv4Address([10, 0, 0, 1]),
dst_addr: Ipv4Address([10, 0, 0, 2]),
next_header: IpProtocol::Unknown(IP_PROTO),
payload_len: 4,
hop_limit: 64,
});
pub const PACKET_BYTES: [u8; 24] = [
0x45, 0x00, 0x00, 0x18, 0x00, 0x00, 0x40, 0x00, 0x40, 0x3f, 0x00, 0x00, 0x0a, 0x00,
0x00, 0x01, 0x0a, 0x00, 0x00, 0x02, 0xaa, 0x00, 0x00, 0xff,
];
pub const PACKET_PAYLOAD: [u8; 4] = [0xaa, 0x00, 0x00, 0xff];
}
#[cfg(feature = "proto-ipv6")]
mod ipv6_locals {
use super::*;
pub fn socket(
rx_buffer: PacketBuffer<'static>,
tx_buffer: PacketBuffer<'static>,
) -> Socket<'static> {
Socket::new(
IpVersion::Ipv6,
IpProtocol::Unknown(IP_PROTO),
rx_buffer,
tx_buffer,
)
}
pub const IP_PROTO: u8 = 63;
pub const HEADER_REPR: IpRepr = IpRepr::Ipv6(Ipv6Repr {
src_addr: Ipv6Address([
0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x01,
]),
dst_addr: Ipv6Address([
0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x02,
]),
next_header: IpProtocol::Unknown(IP_PROTO),
payload_len: 4,
hop_limit: 64,
});
pub const PACKET_BYTES: [u8; 44] = [
0x60, 0x00, 0x00, 0x00, 0x00, 0x04, 0x3f, 0x40, 0xfe, 0x80, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfe, 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xaa, 0x00,
0x00, 0xff,
];
pub const PACKET_PAYLOAD: [u8; 4] = [0xaa, 0x00, 0x00, 0xff];
}
macro_rules! reusable_ip_specific_tests {
($module:ident, $socket:path, $hdr:path, $packet:path, $payload:path) => {
mod $module {
use super::*;
#[test]
fn test_send_truncated() {
let mut socket = $socket(buffer(0), buffer(1));
assert_eq!(socket.send_slice(&[0; 56][..]), Err(SendError::BufferFull));
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_send_dispatch(#[case] medium: Medium) {
let (mut iface, _, _) = setup(medium);
let mut cx = iface.context();
let mut socket = $socket(buffer(0), buffer(1));
assert!(socket.can_send());
assert_eq!(
socket.dispatch(&mut cx, |_, _| unreachable!()),
Ok::<_, ()>(())
);
assert_eq!(socket.send_slice(&$packet[..]), Ok(()));
assert_eq!(socket.send_slice(b""), Err(SendError::BufferFull));
assert!(!socket.can_send());
assert_eq!(
socket.dispatch(&mut cx, |_, (ip_repr, ip_payload)| {
assert_eq!(ip_repr, $hdr);
assert_eq!(ip_payload, &$payload);
Err(())
}),
Err(())
);
assert!(!socket.can_send());
assert_eq!(
socket.dispatch(&mut cx, |_, (ip_repr, ip_payload)| {
assert_eq!(ip_repr, $hdr);
assert_eq!(ip_payload, &$payload);
Ok::<_, ()>(())
}),
Ok(())
);
assert!(socket.can_send());
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_recv_truncated_slice(#[case] medium: Medium) {
let (mut iface, _, _) = setup(medium);
let mut cx = iface.context();
let mut socket = $socket(buffer(1), buffer(0));
assert!(socket.accepts(&$hdr));
socket.process(&mut cx, &$hdr, &$payload);
let mut slice = [0; 4];
assert_eq!(socket.recv_slice(&mut slice[..]), Err(RecvError::Truncated));
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_recv_truncated_packet(#[case] medium: Medium) {
let (mut iface, _, _) = setup(medium);
let mut cx = iface.context();
let mut socket = $socket(buffer(1), buffer(0));
let mut buffer = vec![0; 128];
buffer[..$packet.len()].copy_from_slice(&$packet[..]);
assert!(socket.accepts(&$hdr));
socket.process(&mut cx, &$hdr, &buffer);
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_peek_truncated_slice(#[case] medium: Medium) {
let (mut iface, _, _) = setup(medium);
let mut cx = iface.context();
let mut socket = $socket(buffer(1), buffer(0));
assert!(socket.accepts(&$hdr));
socket.process(&mut cx, &$hdr, &$payload);
let mut slice = [0; 4];
assert_eq!(socket.peek_slice(&mut slice[..]), Err(RecvError::Truncated));
assert_eq!(socket.recv_slice(&mut slice[..]), Err(RecvError::Truncated));
assert_eq!(socket.peek_slice(&mut slice[..]), Err(RecvError::Exhausted));
}
}
};
}
#[cfg(feature = "proto-ipv4")]
reusable_ip_specific_tests!(
ipv4,
ipv4_locals::socket,
ipv4_locals::HEADER_REPR,
ipv4_locals::PACKET_BYTES,
ipv4_locals::PACKET_PAYLOAD
);
#[cfg(feature = "proto-ipv6")]
reusable_ip_specific_tests!(
ipv6,
ipv6_locals::socket,
ipv6_locals::HEADER_REPR,
ipv6_locals::PACKET_BYTES,
ipv6_locals::PACKET_PAYLOAD
);
#[rstest]
#[case::ip(Medium::Ip)]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_send_illegal(#[case] medium: Medium) {
#[cfg(feature = "proto-ipv4")]
{
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut socket = ipv4_locals::socket(buffer(0), buffer(2));
let mut wrong_version = ipv4_locals::PACKET_BYTES;
Ipv4Packet::new_unchecked(&mut wrong_version).set_version(6);
assert_eq!(socket.send_slice(&wrong_version[..]), Ok(()));
assert_eq!(socket.dispatch(cx, |_, _| unreachable!()), Ok::<_, ()>(()));
let mut wrong_protocol = ipv4_locals::PACKET_BYTES;
Ipv4Packet::new_unchecked(&mut wrong_protocol).set_next_header(IpProtocol::Tcp);
assert_eq!(socket.send_slice(&wrong_protocol[..]), Ok(()));
assert_eq!(socket.dispatch(cx, |_, _| unreachable!()), Ok::<_, ()>(()));
}
#[cfg(feature = "proto-ipv6")]
{
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut socket = ipv6_locals::socket(buffer(0), buffer(2));
let mut wrong_version = ipv6_locals::PACKET_BYTES;
Ipv6Packet::new_unchecked(&mut wrong_version[..]).set_version(4);
assert_eq!(socket.send_slice(&wrong_version[..]), Ok(()));
assert_eq!(socket.dispatch(cx, |_, _| unreachable!()), Ok::<_, ()>(()));
let mut wrong_protocol = ipv6_locals::PACKET_BYTES;
Ipv6Packet::new_unchecked(&mut wrong_protocol[..]).set_next_header(IpProtocol::Tcp);
assert_eq!(socket.send_slice(&wrong_protocol[..]), Ok(()));
assert_eq!(socket.dispatch(cx, |_, _| unreachable!()), Ok::<_, ()>(()));
}
}
#[rstest]
#[case::ip(Medium::Ip)]
#[cfg(feature = "medium-ip")]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_recv_process(#[case] medium: Medium) {
#[cfg(feature = "proto-ipv4")]
{
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut socket = ipv4_locals::socket(buffer(1), buffer(0));
assert!(!socket.can_recv());
let mut cksumd_packet = ipv4_locals::PACKET_BYTES;
Ipv4Packet::new_unchecked(&mut cksumd_packet).fill_checksum();
assert_eq!(socket.recv(), Err(RecvError::Exhausted));
assert!(socket.accepts(&ipv4_locals::HEADER_REPR));
socket.process(cx, &ipv4_locals::HEADER_REPR, &ipv4_locals::PACKET_PAYLOAD);
assert!(socket.can_recv());
assert!(socket.accepts(&ipv4_locals::HEADER_REPR));
socket.process(cx, &ipv4_locals::HEADER_REPR, &ipv4_locals::PACKET_PAYLOAD);
assert_eq!(socket.recv(), Ok(&cksumd_packet[..]));
assert!(!socket.can_recv());
}
#[cfg(feature = "proto-ipv6")]
{
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut socket = ipv6_locals::socket(buffer(1), buffer(0));
assert!(!socket.can_recv());
assert_eq!(socket.recv(), Err(RecvError::Exhausted));
assert!(socket.accepts(&ipv6_locals::HEADER_REPR));
socket.process(cx, &ipv6_locals::HEADER_REPR, &ipv6_locals::PACKET_PAYLOAD);
assert!(socket.can_recv());
assert!(socket.accepts(&ipv6_locals::HEADER_REPR));
socket.process(cx, &ipv6_locals::HEADER_REPR, &ipv6_locals::PACKET_PAYLOAD);
assert_eq!(socket.recv(), Ok(&ipv6_locals::PACKET_BYTES[..]));
assert!(!socket.can_recv());
}
}
#[rstest]
#[case::ip(Medium::Ip)]
#[case::ethernet(Medium::Ethernet)]
#[cfg(feature = "medium-ethernet")]
#[case::ieee802154(Medium::Ieee802154)]
#[cfg(feature = "medium-ieee802154")]
fn test_peek_process(#[case] medium: Medium) {
#[cfg(feature = "proto-ipv4")]
{
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut socket = ipv4_locals::socket(buffer(1), buffer(0));
let mut cksumd_packet = ipv4_locals::PACKET_BYTES;
Ipv4Packet::new_unchecked(&mut cksumd_packet).fill_checksum();
assert_eq!(socket.peek(), Err(RecvError::Exhausted));
assert!(socket.accepts(&ipv4_locals::HEADER_REPR));
socket.process(cx, &ipv4_locals::HEADER_REPR, &ipv4_locals::PACKET_PAYLOAD);
assert!(socket.accepts(&ipv4_locals::HEADER_REPR));
socket.process(cx, &ipv4_locals::HEADER_REPR, &ipv4_locals::PACKET_PAYLOAD);
assert_eq!(socket.peek(), Ok(&cksumd_packet[..]));
assert_eq!(socket.recv(), Ok(&cksumd_packet[..]));
assert_eq!(socket.peek(), Err(RecvError::Exhausted));
}
#[cfg(feature = "proto-ipv6")]
{
let (mut iface, _, _) = setup(medium);
let cx = iface.context();
let mut socket = ipv6_locals::socket(buffer(1), buffer(0));
assert_eq!(socket.peek(), Err(RecvError::Exhausted));
assert!(socket.accepts(&ipv6_locals::HEADER_REPR));
socket.process(cx, &ipv6_locals::HEADER_REPR, &ipv6_locals::PACKET_PAYLOAD);
assert!(socket.accepts(&ipv6_locals::HEADER_REPR));
socket.process(cx, &ipv6_locals::HEADER_REPR, &ipv6_locals::PACKET_PAYLOAD);
assert_eq!(socket.peek(), Ok(&ipv6_locals::PACKET_BYTES[..]));
assert_eq!(socket.recv(), Ok(&ipv6_locals::PACKET_BYTES[..]));
assert_eq!(socket.peek(), Err(RecvError::Exhausted));
}
}
#[test]
fn test_doesnt_accept_wrong_proto() {
#[cfg(feature = "proto-ipv4")]
{
let socket = Socket::new(
IpVersion::Ipv4,
IpProtocol::Unknown(ipv4_locals::IP_PROTO + 1),
buffer(1),
buffer(1),
);
assert!(!socket.accepts(&ipv4_locals::HEADER_REPR));
#[cfg(feature = "proto-ipv6")]
assert!(!socket.accepts(&ipv6_locals::HEADER_REPR));
}
#[cfg(feature = "proto-ipv6")]
{
let socket = Socket::new(
IpVersion::Ipv6,
IpProtocol::Unknown(ipv6_locals::IP_PROTO + 1),
buffer(1),
buffer(1),
);
assert!(!socket.accepts(&ipv6_locals::HEADER_REPR));
#[cfg(feature = "proto-ipv4")]
assert!(!socket.accepts(&ipv4_locals::HEADER_REPR));
}
}
}