blob: 39fbf9a4fb9f9f13beac372e290cbe44d81e7ec6 [file] [log] [blame]
// Generated from vec.rs.tera template. Edit the template, not the generated file.
use crate::{BVec2, I16Vec2, I64Vec2, IVec2, U16Vec2, U64Vec2, UVec3};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};
/// Creates a 2-dimensional vector.
#[inline(always)]
#[must_use]
pub const fn uvec2(x: u32, y: u32) -> UVec2 {
UVec2::new(x, y)
}
/// A 2-dimensional vector.
#[cfg_attr(not(target_arch = "spirv"), derive(Hash))]
#[derive(Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "cuda", repr(align(8)))]
#[cfg_attr(not(target_arch = "spirv"), repr(C))]
#[cfg_attr(target_arch = "spirv", repr(simd))]
pub struct UVec2 {
pub x: u32,
pub y: u32,
}
impl UVec2 {
/// All zeroes.
pub const ZERO: Self = Self::splat(0);
/// All ones.
pub const ONE: Self = Self::splat(1);
/// All `u32::MIN`.
pub const MIN: Self = Self::splat(u32::MIN);
/// All `u32::MAX`.
pub const MAX: Self = Self::splat(u32::MAX);
/// A unit vector pointing along the positive X axis.
pub const X: Self = Self::new(1, 0);
/// A unit vector pointing along the positive Y axis.
pub const Y: Self = Self::new(0, 1);
/// The unit axes.
pub const AXES: [Self; 2] = [Self::X, Self::Y];
/// Creates a new vector.
#[inline(always)]
#[must_use]
pub const fn new(x: u32, y: u32) -> Self {
Self { x, y }
}
/// Creates a vector with all elements set to `v`.
#[inline]
#[must_use]
pub const fn splat(v: u32) -> Self {
Self { x: v, y: v }
}
/// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
/// for each element of `self`.
///
/// A true element in the mask uses the corresponding element from `if_true`, and false
/// uses the element from `if_false`.
#[inline]
#[must_use]
pub fn select(mask: BVec2, if_true: Self, if_false: Self) -> Self {
Self {
x: if mask.test(0) { if_true.x } else { if_false.x },
y: if mask.test(1) { if_true.y } else { if_false.y },
}
}
/// Creates a new vector from an array.
#[inline]
#[must_use]
pub const fn from_array(a: [u32; 2]) -> Self {
Self::new(a[0], a[1])
}
/// `[x, y]`
#[inline]
#[must_use]
pub const fn to_array(&self) -> [u32; 2] {
[self.x, self.y]
}
/// Creates a vector from the first 2 values in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 2 elements long.
#[inline]
#[must_use]
pub const fn from_slice(slice: &[u32]) -> Self {
Self::new(slice[0], slice[1])
}
/// Writes the elements of `self` to the first 2 elements in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 2 elements long.
#[inline]
pub fn write_to_slice(self, slice: &mut [u32]) {
slice[0] = self.x;
slice[1] = self.y;
}
/// Creates a 3D vector from `self` and the given `z` value.
#[inline]
#[must_use]
pub const fn extend(self, z: u32) -> UVec3 {
UVec3::new(self.x, self.y, z)
}
/// Computes the dot product of `self` and `rhs`.
#[inline]
#[must_use]
pub fn dot(self, rhs: Self) -> u32 {
(self.x * rhs.x) + (self.y * rhs.y)
}
/// Returns a vector where every component is the dot product of `self` and `rhs`.
#[inline]
#[must_use]
pub fn dot_into_vec(self, rhs: Self) -> Self {
Self::splat(self.dot(rhs))
}
/// Returns a vector containing the minimum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
#[inline]
#[must_use]
pub fn min(self, rhs: Self) -> Self {
Self {
x: self.x.min(rhs.x),
y: self.y.min(rhs.y),
}
}
/// Returns a vector containing the maximum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
#[inline]
#[must_use]
pub fn max(self, rhs: Self) -> Self {
Self {
x: self.x.max(rhs.x),
y: self.y.max(rhs.y),
}
}
/// Component-wise clamping of values, similar to [`u32::clamp`].
///
/// Each element in `min` must be less-or-equal to the corresponding element in `max`.
///
/// # Panics
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
}
/// Returns the horizontal minimum of `self`.
///
/// In other words this computes `min(x, y, ..)`.
#[inline]
#[must_use]
pub fn min_element(self) -> u32 {
self.x.min(self.y)
}
/// Returns the horizontal maximum of `self`.
///
/// In other words this computes `max(x, y, ..)`.
#[inline]
#[must_use]
pub fn max_element(self) -> u32 {
self.x.max(self.y)
}
/// Returns a vector mask containing the result of a `==` comparison for each element of
/// `self` and `rhs`.
///
/// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpeq(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y))
}
/// Returns a vector mask containing the result of a `!=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpne(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y))
}
/// Returns a vector mask containing the result of a `>=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpge(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y))
}
/// Returns a vector mask containing the result of a `>` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpgt(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y))
}
/// Returns a vector mask containing the result of a `<=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmple(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.le(&rhs.x), self.y.le(&rhs.y))
}
/// Returns a vector mask containing the result of a `<` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmplt(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y))
}
/// Computes the squared length of `self`.
#[doc(alias = "magnitude2")]
#[inline]
#[must_use]
pub fn length_squared(self) -> u32 {
self.dot(self)
}
/// Casts all elements of `self` to `f32`.
#[inline]
#[must_use]
pub fn as_vec2(&self) -> crate::Vec2 {
crate::Vec2::new(self.x as f32, self.y as f32)
}
/// Casts all elements of `self` to `f64`.
#[inline]
#[must_use]
pub fn as_dvec2(&self) -> crate::DVec2 {
crate::DVec2::new(self.x as f64, self.y as f64)
}
/// Casts all elements of `self` to `i16`.
#[inline]
#[must_use]
pub fn as_i16vec2(&self) -> crate::I16Vec2 {
crate::I16Vec2::new(self.x as i16, self.y as i16)
}
/// Casts all elements of `self` to `u16`.
#[inline]
#[must_use]
pub fn as_u16vec2(&self) -> crate::U16Vec2 {
crate::U16Vec2::new(self.x as u16, self.y as u16)
}
/// Casts all elements of `self` to `i32`.
#[inline]
#[must_use]
pub fn as_ivec2(&self) -> crate::IVec2 {
crate::IVec2::new(self.x as i32, self.y as i32)
}
/// Casts all elements of `self` to `i64`.
#[inline]
#[must_use]
pub fn as_i64vec2(&self) -> crate::I64Vec2 {
crate::I64Vec2::new(self.x as i64, self.y as i64)
}
/// Casts all elements of `self` to `u64`.
#[inline]
#[must_use]
pub fn as_u64vec2(&self) -> crate::U64Vec2 {
crate::U64Vec2::new(self.x as u64, self.y as u64)
}
/// Returns a vector containing the wrapping addition of `self` and `rhs`.
///
/// In other words this computes `[self.x.wrapping_add(rhs.x), self.y.wrapping_add(rhs.y), ..]`.
#[inline]
#[must_use]
pub const fn wrapping_add(self, rhs: Self) -> Self {
Self {
x: self.x.wrapping_add(rhs.x),
y: self.y.wrapping_add(rhs.y),
}
}
/// Returns a vector containing the wrapping subtraction of `self` and `rhs`.
///
/// In other words this computes `[self.x.wrapping_sub(rhs.x), self.y.wrapping_sub(rhs.y), ..]`.
#[inline]
#[must_use]
pub const fn wrapping_sub(self, rhs: Self) -> Self {
Self {
x: self.x.wrapping_sub(rhs.x),
y: self.y.wrapping_sub(rhs.y),
}
}
/// Returns a vector containing the wrapping multiplication of `self` and `rhs`.
///
/// In other words this computes `[self.x.wrapping_mul(rhs.x), self.y.wrapping_mul(rhs.y), ..]`.
#[inline]
#[must_use]
pub const fn wrapping_mul(self, rhs: Self) -> Self {
Self {
x: self.x.wrapping_mul(rhs.x),
y: self.y.wrapping_mul(rhs.y),
}
}
/// Returns a vector containing the wrapping division of `self` and `rhs`.
///
/// In other words this computes `[self.x.wrapping_div(rhs.x), self.y.wrapping_div(rhs.y), ..]`.
#[inline]
#[must_use]
pub const fn wrapping_div(self, rhs: Self) -> Self {
Self {
x: self.x.wrapping_div(rhs.x),
y: self.y.wrapping_div(rhs.y),
}
}
/// Returns a vector containing the saturating addition of `self` and `rhs`.
///
/// In other words this computes `[self.x.saturating_add(rhs.x), self.y.saturating_add(rhs.y), ..]`.
#[inline]
#[must_use]
pub const fn saturating_add(self, rhs: Self) -> Self {
Self {
x: self.x.saturating_add(rhs.x),
y: self.y.saturating_add(rhs.y),
}
}
/// Returns a vector containing the saturating subtraction of `self` and `rhs`.
///
/// In other words this computes `[self.x.saturating_sub(rhs.x), self.y.saturating_sub(rhs.y), ..]`.
#[inline]
#[must_use]
pub const fn saturating_sub(self, rhs: Self) -> Self {
Self {
x: self.x.saturating_sub(rhs.x),
y: self.y.saturating_sub(rhs.y),
}
}
/// Returns a vector containing the saturating multiplication of `self` and `rhs`.
///
/// In other words this computes `[self.x.saturating_mul(rhs.x), self.y.saturating_mul(rhs.y), ..]`.
#[inline]
#[must_use]
pub const fn saturating_mul(self, rhs: Self) -> Self {
Self {
x: self.x.saturating_mul(rhs.x),
y: self.y.saturating_mul(rhs.y),
}
}
/// Returns a vector containing the saturating division of `self` and `rhs`.
///
/// In other words this computes `[self.x.saturating_div(rhs.x), self.y.saturating_div(rhs.y), ..]`.
#[inline]
#[must_use]
pub const fn saturating_div(self, rhs: Self) -> Self {
Self {
x: self.x.saturating_div(rhs.x),
y: self.y.saturating_div(rhs.y),
}
}
}
impl Default for UVec2 {
#[inline(always)]
fn default() -> Self {
Self::ZERO
}
}
impl Div<UVec2> for UVec2 {
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self {
Self {
x: self.x.div(rhs.x),
y: self.y.div(rhs.y),
}
}
}
impl DivAssign<UVec2> for UVec2 {
#[inline]
fn div_assign(&mut self, rhs: Self) {
self.x.div_assign(rhs.x);
self.y.div_assign(rhs.y);
}
}
impl Div<u32> for UVec2 {
type Output = Self;
#[inline]
fn div(self, rhs: u32) -> Self {
Self {
x: self.x.div(rhs),
y: self.y.div(rhs),
}
}
}
impl DivAssign<u32> for UVec2 {
#[inline]
fn div_assign(&mut self, rhs: u32) {
self.x.div_assign(rhs);
self.y.div_assign(rhs);
}
}
impl Div<UVec2> for u32 {
type Output = UVec2;
#[inline]
fn div(self, rhs: UVec2) -> UVec2 {
UVec2 {
x: self.div(rhs.x),
y: self.div(rhs.y),
}
}
}
impl Mul<UVec2> for UVec2 {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self {
x: self.x.mul(rhs.x),
y: self.y.mul(rhs.y),
}
}
}
impl MulAssign<UVec2> for UVec2 {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
self.x.mul_assign(rhs.x);
self.y.mul_assign(rhs.y);
}
}
impl Mul<u32> for UVec2 {
type Output = Self;
#[inline]
fn mul(self, rhs: u32) -> Self {
Self {
x: self.x.mul(rhs),
y: self.y.mul(rhs),
}
}
}
impl MulAssign<u32> for UVec2 {
#[inline]
fn mul_assign(&mut self, rhs: u32) {
self.x.mul_assign(rhs);
self.y.mul_assign(rhs);
}
}
impl Mul<UVec2> for u32 {
type Output = UVec2;
#[inline]
fn mul(self, rhs: UVec2) -> UVec2 {
UVec2 {
x: self.mul(rhs.x),
y: self.mul(rhs.y),
}
}
}
impl Add<UVec2> for UVec2 {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self {
x: self.x.add(rhs.x),
y: self.y.add(rhs.y),
}
}
}
impl AddAssign<UVec2> for UVec2 {
#[inline]
fn add_assign(&mut self, rhs: Self) {
self.x.add_assign(rhs.x);
self.y.add_assign(rhs.y);
}
}
impl Add<u32> for UVec2 {
type Output = Self;
#[inline]
fn add(self, rhs: u32) -> Self {
Self {
x: self.x.add(rhs),
y: self.y.add(rhs),
}
}
}
impl AddAssign<u32> for UVec2 {
#[inline]
fn add_assign(&mut self, rhs: u32) {
self.x.add_assign(rhs);
self.y.add_assign(rhs);
}
}
impl Add<UVec2> for u32 {
type Output = UVec2;
#[inline]
fn add(self, rhs: UVec2) -> UVec2 {
UVec2 {
x: self.add(rhs.x),
y: self.add(rhs.y),
}
}
}
impl Sub<UVec2> for UVec2 {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self {
x: self.x.sub(rhs.x),
y: self.y.sub(rhs.y),
}
}
}
impl SubAssign<UVec2> for UVec2 {
#[inline]
fn sub_assign(&mut self, rhs: UVec2) {
self.x.sub_assign(rhs.x);
self.y.sub_assign(rhs.y);
}
}
impl Sub<u32> for UVec2 {
type Output = Self;
#[inline]
fn sub(self, rhs: u32) -> Self {
Self {
x: self.x.sub(rhs),
y: self.y.sub(rhs),
}
}
}
impl SubAssign<u32> for UVec2 {
#[inline]
fn sub_assign(&mut self, rhs: u32) {
self.x.sub_assign(rhs);
self.y.sub_assign(rhs);
}
}
impl Sub<UVec2> for u32 {
type Output = UVec2;
#[inline]
fn sub(self, rhs: UVec2) -> UVec2 {
UVec2 {
x: self.sub(rhs.x),
y: self.sub(rhs.y),
}
}
}
impl Rem<UVec2> for UVec2 {
type Output = Self;
#[inline]
fn rem(self, rhs: Self) -> Self {
Self {
x: self.x.rem(rhs.x),
y: self.y.rem(rhs.y),
}
}
}
impl RemAssign<UVec2> for UVec2 {
#[inline]
fn rem_assign(&mut self, rhs: Self) {
self.x.rem_assign(rhs.x);
self.y.rem_assign(rhs.y);
}
}
impl Rem<u32> for UVec2 {
type Output = Self;
#[inline]
fn rem(self, rhs: u32) -> Self {
Self {
x: self.x.rem(rhs),
y: self.y.rem(rhs),
}
}
}
impl RemAssign<u32> for UVec2 {
#[inline]
fn rem_assign(&mut self, rhs: u32) {
self.x.rem_assign(rhs);
self.y.rem_assign(rhs);
}
}
impl Rem<UVec2> for u32 {
type Output = UVec2;
#[inline]
fn rem(self, rhs: UVec2) -> UVec2 {
UVec2 {
x: self.rem(rhs.x),
y: self.rem(rhs.y),
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsRef<[u32; 2]> for UVec2 {
#[inline]
fn as_ref(&self) -> &[u32; 2] {
unsafe { &*(self as *const UVec2 as *const [u32; 2]) }
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsMut<[u32; 2]> for UVec2 {
#[inline]
fn as_mut(&mut self) -> &mut [u32; 2] {
unsafe { &mut *(self as *mut UVec2 as *mut [u32; 2]) }
}
}
impl Sum for UVec2 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ZERO, Self::add)
}
}
impl<'a> Sum<&'a Self> for UVec2 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
}
}
impl Product for UVec2 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ONE, Self::mul)
}
}
impl<'a> Product<&'a Self> for UVec2 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
}
}
impl Not for UVec2 {
type Output = Self;
#[inline]
fn not(self) -> Self::Output {
Self {
x: self.x.not(),
y: self.y.not(),
}
}
}
impl BitAnd for UVec2 {
type Output = Self;
#[inline]
fn bitand(self, rhs: Self) -> Self::Output {
Self {
x: self.x.bitand(rhs.x),
y: self.y.bitand(rhs.y),
}
}
}
impl BitOr for UVec2 {
type Output = Self;
#[inline]
fn bitor(self, rhs: Self) -> Self::Output {
Self {
x: self.x.bitor(rhs.x),
y: self.y.bitor(rhs.y),
}
}
}
impl BitXor for UVec2 {
type Output = Self;
#[inline]
fn bitxor(self, rhs: Self) -> Self::Output {
Self {
x: self.x.bitxor(rhs.x),
y: self.y.bitxor(rhs.y),
}
}
}
impl BitAnd<u32> for UVec2 {
type Output = Self;
#[inline]
fn bitand(self, rhs: u32) -> Self::Output {
Self {
x: self.x.bitand(rhs),
y: self.y.bitand(rhs),
}
}
}
impl BitOr<u32> for UVec2 {
type Output = Self;
#[inline]
fn bitor(self, rhs: u32) -> Self::Output {
Self {
x: self.x.bitor(rhs),
y: self.y.bitor(rhs),
}
}
}
impl BitXor<u32> for UVec2 {
type Output = Self;
#[inline]
fn bitxor(self, rhs: u32) -> Self::Output {
Self {
x: self.x.bitxor(rhs),
y: self.y.bitxor(rhs),
}
}
}
impl Shl<i8> for UVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: i8) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<i8> for UVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: i8) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<i16> for UVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: i16) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<i16> for UVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: i16) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<i32> for UVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: i32) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<i32> for UVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: i32) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<i64> for UVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: i64) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<i64> for UVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: i64) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<u8> for UVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: u8) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<u8> for UVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: u8) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<u16> for UVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: u16) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<u16> for UVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: u16) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<u32> for UVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: u32) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<u32> for UVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: u32) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<u64> for UVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: u64) -> Self::Output {
Self {
x: self.x.shl(rhs),
y: self.y.shl(rhs),
}
}
}
impl Shr<u64> for UVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: u64) -> Self::Output {
Self {
x: self.x.shr(rhs),
y: self.y.shr(rhs),
}
}
}
impl Shl<crate::IVec2> for UVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: crate::IVec2) -> Self::Output {
Self {
x: self.x.shl(rhs.x),
y: self.y.shl(rhs.y),
}
}
}
impl Shr<crate::IVec2> for UVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: crate::IVec2) -> Self::Output {
Self {
x: self.x.shr(rhs.x),
y: self.y.shr(rhs.y),
}
}
}
impl Shl<crate::UVec2> for UVec2 {
type Output = Self;
#[inline]
fn shl(self, rhs: crate::UVec2) -> Self::Output {
Self {
x: self.x.shl(rhs.x),
y: self.y.shl(rhs.y),
}
}
}
impl Shr<crate::UVec2> for UVec2 {
type Output = Self;
#[inline]
fn shr(self, rhs: crate::UVec2) -> Self::Output {
Self {
x: self.x.shr(rhs.x),
y: self.y.shr(rhs.y),
}
}
}
impl Index<usize> for UVec2 {
type Output = u32;
#[inline]
fn index(&self, index: usize) -> &Self::Output {
match index {
0 => &self.x,
1 => &self.y,
_ => panic!("index out of bounds"),
}
}
}
impl IndexMut<usize> for UVec2 {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
match index {
0 => &mut self.x,
1 => &mut self.y,
_ => panic!("index out of bounds"),
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Display for UVec2 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "[{}, {}]", self.x, self.y)
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Debug for UVec2 {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_tuple(stringify!(UVec2))
.field(&self.x)
.field(&self.y)
.finish()
}
}
impl From<[u32; 2]> for UVec2 {
#[inline]
fn from(a: [u32; 2]) -> Self {
Self::new(a[0], a[1])
}
}
impl From<UVec2> for [u32; 2] {
#[inline]
fn from(v: UVec2) -> Self {
[v.x, v.y]
}
}
impl From<(u32, u32)> for UVec2 {
#[inline]
fn from(t: (u32, u32)) -> Self {
Self::new(t.0, t.1)
}
}
impl From<UVec2> for (u32, u32) {
#[inline]
fn from(v: UVec2) -> Self {
(v.x, v.y)
}
}
impl From<U16Vec2> for UVec2 {
#[inline]
fn from(v: U16Vec2) -> Self {
Self::new(u32::from(v.x), u32::from(v.y))
}
}
impl TryFrom<I16Vec2> for UVec2 {
type Error = core::num::TryFromIntError;
#[inline]
fn try_from(v: I16Vec2) -> Result<Self, Self::Error> {
Ok(Self::new(u32::try_from(v.x)?, u32::try_from(v.y)?))
}
}
impl TryFrom<IVec2> for UVec2 {
type Error = core::num::TryFromIntError;
#[inline]
fn try_from(v: IVec2) -> Result<Self, Self::Error> {
Ok(Self::new(u32::try_from(v.x)?, u32::try_from(v.y)?))
}
}
impl TryFrom<I64Vec2> for UVec2 {
type Error = core::num::TryFromIntError;
#[inline]
fn try_from(v: I64Vec2) -> Result<Self, Self::Error> {
Ok(Self::new(u32::try_from(v.x)?, u32::try_from(v.y)?))
}
}
impl TryFrom<U64Vec2> for UVec2 {
type Error = core::num::TryFromIntError;
#[inline]
fn try_from(v: U64Vec2) -> Result<Self, Self::Error> {
Ok(Self::new(u32::try_from(v.x)?, u32::try_from(v.y)?))
}
}