blob: 4608b34a51d85f76ea17e933bf3835d67af81dd0 [file] [log] [blame]
// Generated from vec.rs.tera template. Edit the template, not the generated file.
use crate::{f32::math, wasm32::*, BVec4A, Vec2, Vec3, Vec3A};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};
use core::arch::wasm32::*;
#[repr(C)]
union UnionCast {
a: [f32; 4],
v: Vec4,
}
/// Creates a 4-dimensional vector.
#[inline(always)]
#[must_use]
pub const fn vec4(x: f32, y: f32, z: f32, w: f32) -> Vec4 {
Vec4::new(x, y, z, w)
}
/// A 4-dimensional vector.
///
/// SIMD vector types are used for storage on supported platforms.
///
/// This type is 16 byte aligned.
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct Vec4(pub(crate) v128);
impl Vec4 {
/// All zeroes.
pub const ZERO: Self = Self::splat(0.0);
/// All ones.
pub const ONE: Self = Self::splat(1.0);
/// All negative ones.
pub const NEG_ONE: Self = Self::splat(-1.0);
/// All `f32::MIN`.
pub const MIN: Self = Self::splat(f32::MIN);
/// All `f32::MAX`.
pub const MAX: Self = Self::splat(f32::MAX);
/// All `f32::NAN`.
pub const NAN: Self = Self::splat(f32::NAN);
/// All `f32::INFINITY`.
pub const INFINITY: Self = Self::splat(f32::INFINITY);
/// All `f32::NEG_INFINITY`.
pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
/// A unit vector pointing along the positive X axis.
pub const X: Self = Self::new(1.0, 0.0, 0.0, 0.0);
/// A unit vector pointing along the positive Y axis.
pub const Y: Self = Self::new(0.0, 1.0, 0.0, 0.0);
/// A unit vector pointing along the positive Z axis.
pub const Z: Self = Self::new(0.0, 0.0, 1.0, 0.0);
/// A unit vector pointing along the positive W axis.
pub const W: Self = Self::new(0.0, 0.0, 0.0, 1.0);
/// A unit vector pointing along the negative X axis.
pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0, 0.0);
/// A unit vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0, 0.0);
/// A unit vector pointing along the negative Z axis.
pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0, 0.0);
/// A unit vector pointing along the negative W axis.
pub const NEG_W: Self = Self::new(0.0, 0.0, 0.0, -1.0);
/// The unit axes.
pub const AXES: [Self; 4] = [Self::X, Self::Y, Self::Z, Self::W];
/// Creates a new vector.
#[inline(always)]
#[must_use]
pub const fn new(x: f32, y: f32, z: f32, w: f32) -> Self {
Self(f32x4(x, y, z, w))
}
/// Creates a vector with all elements set to `v`.
#[inline]
#[must_use]
pub const fn splat(v: f32) -> Self {
unsafe { UnionCast { a: [v; 4] }.v }
}
/// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
/// for each element of `self`.
///
/// A true element in the mask uses the corresponding element from `if_true`, and false
/// uses the element from `if_false`.
#[inline]
#[must_use]
pub fn select(mask: BVec4A, if_true: Self, if_false: Self) -> Self {
Self(v128_bitselect(if_true.0, if_false.0, mask.0))
}
/// Creates a new vector from an array.
#[inline]
#[must_use]
pub const fn from_array(a: [f32; 4]) -> Self {
Self::new(a[0], a[1], a[2], a[3])
}
/// `[x, y, z, w]`
#[inline]
#[must_use]
pub const fn to_array(&self) -> [f32; 4] {
unsafe { *(self as *const Vec4 as *const [f32; 4]) }
}
/// Creates a vector from the first 4 values in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 4 elements long.
#[inline]
#[must_use]
pub const fn from_slice(slice: &[f32]) -> Self {
Self::new(slice[0], slice[1], slice[2], slice[3])
}
/// Writes the elements of `self` to the first 4 elements in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 4 elements long.
#[inline]
pub fn write_to_slice(self, slice: &mut [f32]) {
slice[0] = self.x;
slice[1] = self.y;
slice[2] = self.z;
slice[3] = self.w;
}
/// Creates a 3D vector from the `x`, `y` and `z` elements of `self`, discarding `w`.
///
/// Truncation to [`Vec3`] may also be performed by using [`self.xyz()`][crate::swizzles::Vec4Swizzles::xyz()].
///
/// To truncate to [`Vec3A`] use [`Vec3A::from()`].
#[inline]
#[must_use]
pub fn truncate(self) -> Vec3 {
use crate::swizzles::Vec4Swizzles;
self.xyz()
}
/// Computes the dot product of `self` and `rhs`.
#[inline]
#[must_use]
pub fn dot(self, rhs: Self) -> f32 {
dot4(self.0, rhs.0)
}
/// Returns a vector where every component is the dot product of `self` and `rhs`.
#[inline]
#[must_use]
pub fn dot_into_vec(self, rhs: Self) -> Self {
Self(dot4_into_v128(self.0, rhs.0))
}
/// Returns a vector containing the minimum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
#[inline]
#[must_use]
pub fn min(self, rhs: Self) -> Self {
Self(f32x4_pmin(self.0, rhs.0))
}
/// Returns a vector containing the maximum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
#[inline]
#[must_use]
pub fn max(self, rhs: Self) -> Self {
Self(f32x4_pmax(self.0, rhs.0))
}
/// Component-wise clamping of values, similar to [`f32::clamp`].
///
/// Each element in `min` must be less-or-equal to the corresponding element in `max`.
///
/// # Panics
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
}
/// Returns the horizontal minimum of `self`.
///
/// In other words this computes `min(x, y, ..)`.
#[inline]
#[must_use]
pub fn min_element(self) -> f32 {
let v = self.0;
let v = f32x4_pmin(v, i32x4_shuffle::<2, 3, 0, 0>(v, v));
let v = f32x4_pmin(v, i32x4_shuffle::<1, 0, 0, 0>(v, v));
f32x4_extract_lane::<0>(v)
}
/// Returns the horizontal maximum of `self`.
///
/// In other words this computes `max(x, y, ..)`.
#[inline]
#[must_use]
pub fn max_element(self) -> f32 {
let v = self.0;
let v = f32x4_pmax(v, i32x4_shuffle::<2, 3, 0, 0>(v, v));
let v = f32x4_pmax(v, i32x4_shuffle::<1, 0, 0, 0>(v, v));
f32x4_extract_lane::<0>(v)
}
/// Returns a vector mask containing the result of a `==` comparison for each element of
/// `self` and `rhs`.
///
/// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpeq(self, rhs: Self) -> BVec4A {
BVec4A(f32x4_eq(self.0, rhs.0))
}
/// Returns a vector mask containing the result of a `!=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpne(self, rhs: Self) -> BVec4A {
BVec4A(f32x4_ne(self.0, rhs.0))
}
/// Returns a vector mask containing the result of a `>=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpge(self, rhs: Self) -> BVec4A {
BVec4A(f32x4_ge(self.0, rhs.0))
}
/// Returns a vector mask containing the result of a `>` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpgt(self, rhs: Self) -> BVec4A {
BVec4A(f32x4_gt(self.0, rhs.0))
}
/// Returns a vector mask containing the result of a `<=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmple(self, rhs: Self) -> BVec4A {
BVec4A(f32x4_le(self.0, rhs.0))
}
/// Returns a vector mask containing the result of a `<` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmplt(self, rhs: Self) -> BVec4A {
BVec4A(f32x4_lt(self.0, rhs.0))
}
/// Returns a vector containing the absolute value of each element of `self`.
#[inline]
#[must_use]
pub fn abs(self) -> Self {
Self(f32x4_abs(self.0))
}
/// Returns a vector with elements representing the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is `NAN`
#[inline]
#[must_use]
pub fn signum(self) -> Self {
unsafe {
let result = Self(v128_or(v128_and(self.0, Self::NEG_ONE.0), Self::ONE.0));
let mask = self.is_nan_mask();
Self::select(mask, self, result)
}
}
/// Returns a vector with signs of `rhs` and the magnitudes of `self`.
#[inline]
#[must_use]
pub fn copysign(self, rhs: Self) -> Self {
unsafe {
let mask = Self::splat(-0.0);
Self(v128_or(
v128_and(rhs.0, mask.0),
v128_andnot(self.0, mask.0),
))
}
}
/// Returns a bitmask with the lowest 4 bits set to the sign bits from the elements of `self`.
///
/// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes
/// into the first lowest bit, element `y` into the second, etc.
#[inline]
#[must_use]
pub fn is_negative_bitmask(self) -> u32 {
u32x4_bitmask(self.0) as u32
}
/// Returns `true` if, and only if, all elements are finite. If any element is either
/// `NaN`, positive or negative infinity, this will return `false`.
#[inline]
#[must_use]
pub fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite() && self.z.is_finite() && self.w.is_finite()
}
/// Returns `true` if any elements are `NaN`.
#[inline]
#[must_use]
pub fn is_nan(self) -> bool {
self.is_nan_mask().any()
}
/// Performs `is_nan` on each element of self, returning a vector mask of the results.
///
/// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`.
#[inline]
#[must_use]
pub fn is_nan_mask(self) -> BVec4A {
BVec4A(f32x4_ne(self.0, self.0))
}
/// Computes the length of `self`.
#[doc(alias = "magnitude")]
#[inline]
#[must_use]
pub fn length(self) -> f32 {
let dot = dot4_in_x(self.0, self.0);
f32x4_extract_lane::<0>(f32x4_sqrt(dot))
}
/// Computes the squared length of `self`.
///
/// This is faster than `length()` as it avoids a square root operation.
#[doc(alias = "magnitude2")]
#[inline]
#[must_use]
pub fn length_squared(self) -> f32 {
self.dot(self)
}
/// Computes `1.0 / length()`.
///
/// For valid results, `self` must _not_ be of length zero.
#[inline]
#[must_use]
pub fn length_recip(self) -> f32 {
let dot = dot4_in_x(self.0, self.0);
f32x4_extract_lane::<0>(f32x4_div(Self::ONE.0, f32x4_sqrt(dot)))
}
/// Computes the Euclidean distance between two points in space.
#[inline]
#[must_use]
pub fn distance(self, rhs: Self) -> f32 {
(self - rhs).length()
}
/// Compute the squared euclidean distance between two points in space.
#[inline]
#[must_use]
pub fn distance_squared(self, rhs: Self) -> f32 {
(self - rhs).length_squared()
}
/// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`.
#[inline]
#[must_use]
pub fn div_euclid(self, rhs: Self) -> Self {
Self::new(
math::div_euclid(self.x, rhs.x),
math::div_euclid(self.y, rhs.y),
math::div_euclid(self.z, rhs.z),
math::div_euclid(self.w, rhs.w),
)
}
/// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`.
///
/// [Euclidean division]: f32::rem_euclid
#[inline]
#[must_use]
pub fn rem_euclid(self, rhs: Self) -> Self {
Self::new(
math::rem_euclid(self.x, rhs.x),
math::rem_euclid(self.y, rhs.y),
math::rem_euclid(self.z, rhs.z),
math::rem_euclid(self.w, rhs.w),
)
}
/// Returns `self` normalized to length 1.0.
///
/// For valid results, `self` must _not_ be of length zero, nor very close to zero.
///
/// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`].
///
/// Panics
///
/// Will panic if `self` is zero length when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn normalize(self) -> Self {
let length = f32x4_sqrt(dot4_into_v128(self.0, self.0));
#[allow(clippy::let_and_return)]
let normalized = Self(f32x4_div(self.0, length));
glam_assert!(normalized.is_finite());
normalized
}
/// Returns `self` normalized to length 1.0 if possible, else returns `None`.
///
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be `None`.
///
/// See also [`Self::normalize_or_zero()`].
#[inline]
#[must_use]
pub fn try_normalize(self) -> Option<Self> {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
Some(self * rcp)
} else {
None
}
}
/// Returns `self` normalized to length 1.0 if possible, else returns zero.
///
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be zero.
///
/// See also [`Self::try_normalize()`].
#[inline]
#[must_use]
pub fn normalize_or_zero(self) -> Self {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
self * rcp
} else {
Self::ZERO
}
}
/// Returns whether `self` is length `1.0` or not.
///
/// Uses a precision threshold of `1e-6`.
#[inline]
#[must_use]
pub fn is_normalized(self) -> bool {
// TODO: do something with epsilon
math::abs(self.length_squared() - 1.0) <= 1e-4
}
/// Returns the vector projection of `self` onto `rhs`.
///
/// `rhs` must be of non-zero length.
///
/// # Panics
///
/// Will panic if `rhs` is zero length when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn project_onto(self, rhs: Self) -> Self {
let other_len_sq_rcp = rhs.dot(rhs).recip();
glam_assert!(other_len_sq_rcp.is_finite());
rhs * self.dot(rhs) * other_len_sq_rcp
}
/// Returns the vector rejection of `self` from `rhs`.
///
/// The vector rejection is the vector perpendicular to the projection of `self` onto
/// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
///
/// `rhs` must be of non-zero length.
///
/// # Panics
///
/// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn reject_from(self, rhs: Self) -> Self {
self - self.project_onto(rhs)
}
/// Returns the vector projection of `self` onto `rhs`.
///
/// `rhs` must be normalized.
///
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn project_onto_normalized(self, rhs: Self) -> Self {
glam_assert!(rhs.is_normalized());
rhs * self.dot(rhs)
}
/// Returns the vector rejection of `self` from `rhs`.
///
/// The vector rejection is the vector perpendicular to the projection of `self` onto
/// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
///
/// `rhs` must be normalized.
///
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn reject_from_normalized(self, rhs: Self) -> Self {
self - self.project_onto_normalized(rhs)
}
/// Returns a vector containing the nearest integer to a number for each element of `self`.
/// Round half-way cases away from 0.0.
#[inline]
#[must_use]
pub fn round(self) -> Self {
Self(f32x4_nearest(self.0))
}
/// Returns a vector containing the largest integer less than or equal to a number for each
/// element of `self`.
#[inline]
#[must_use]
pub fn floor(self) -> Self {
Self(f32x4_floor(self.0))
}
/// Returns a vector containing the smallest integer greater than or equal to a number for
/// each element of `self`.
#[inline]
#[must_use]
pub fn ceil(self) -> Self {
Self(f32x4_ceil(self.0))
}
/// Returns a vector containing the integer part each element of `self`. This means numbers are
/// always truncated towards zero.
#[inline]
#[must_use]
pub fn trunc(self) -> Self {
Self(f32x4_trunc(self.0))
}
/// Returns a vector containing the fractional part of the vector, e.g. `self -
/// self.floor()`.
///
/// Note that this is fast but not precise for large numbers.
#[inline]
#[must_use]
pub fn fract(self) -> Self {
self - self.floor()
}
/// Returns a vector containing `e^self` (the exponential function) for each element of
/// `self`.
#[inline]
#[must_use]
pub fn exp(self) -> Self {
Self::new(
math::exp(self.x),
math::exp(self.y),
math::exp(self.z),
math::exp(self.w),
)
}
/// Returns a vector containing each element of `self` raised to the power of `n`.
#[inline]
#[must_use]
pub fn powf(self, n: f32) -> Self {
Self::new(
math::powf(self.x, n),
math::powf(self.y, n),
math::powf(self.z, n),
math::powf(self.w, n),
)
}
/// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
#[inline]
#[must_use]
pub fn recip(self) -> Self {
Self(f32x4_div(Self::ONE.0, self.0))
}
/// Performs a linear interpolation between `self` and `rhs` based on the value `s`.
///
/// When `s` is `0.0`, the result will be equal to `self`. When `s` is `1.0`, the result
/// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
/// extrapolated.
#[doc(alias = "mix")]
#[inline]
#[must_use]
pub fn lerp(self, rhs: Self, s: f32) -> Self {
self + ((rhs - self) * s)
}
/// Returns true if the absolute difference of all elements between `self` and `rhs` is
/// less than or equal to `max_abs_diff`.
///
/// This can be used to compare if two vectors contain similar elements. It works best when
/// comparing with a known value. The `max_abs_diff` that should be used used depends on
/// the values being compared against.
///
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
#[must_use]
pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
}
/// Returns a vector with a length no less than `min` and no more than `max`
///
/// # Panics
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn clamp_length(self, min: f32, max: f32) -> Self {
glam_assert!(min <= max);
let length_sq = self.length_squared();
if length_sq < min * min {
min * (self / math::sqrt(length_sq))
} else if length_sq > max * max {
max * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Returns a vector with a length no more than `max`
#[inline]
#[must_use]
pub fn clamp_length_max(self, max: f32) -> Self {
let length_sq = self.length_squared();
if length_sq > max * max {
max * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Returns a vector with a length no less than `min`
#[inline]
#[must_use]
pub fn clamp_length_min(self, min: f32) -> Self {
let length_sq = self.length_squared();
if length_sq < min * min {
min * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding
/// error, yielding a more accurate result than an unfused multiply-add.
///
/// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
/// architecture has a dedicated fma CPU instruction. However, this is not always true,
/// and will be heavily dependant on designing algorithms with specific target hardware in
/// mind.
#[inline]
#[must_use]
pub fn mul_add(self, a: Self, b: Self) -> Self {
Self::new(
math::mul_add(self.x, a.x, b.x),
math::mul_add(self.y, a.y, b.y),
math::mul_add(self.z, a.z, b.z),
math::mul_add(self.w, a.w, b.w),
)
}
/// Casts all elements of `self` to `f64`.
#[inline]
#[must_use]
pub fn as_dvec4(&self) -> crate::DVec4 {
crate::DVec4::new(self.x as f64, self.y as f64, self.z as f64, self.w as f64)
}
/// Casts all elements of `self` to `i16`.
#[inline]
#[must_use]
pub fn as_i16vec4(&self) -> crate::I16Vec4 {
crate::I16Vec4::new(self.x as i16, self.y as i16, self.z as i16, self.w as i16)
}
/// Casts all elements of `self` to `u16`.
#[inline]
#[must_use]
pub fn as_u16vec4(&self) -> crate::U16Vec4 {
crate::U16Vec4::new(self.x as u16, self.y as u16, self.z as u16, self.w as u16)
}
/// Casts all elements of `self` to `i32`.
#[inline]
#[must_use]
pub fn as_ivec4(&self) -> crate::IVec4 {
crate::IVec4::new(self.x as i32, self.y as i32, self.z as i32, self.w as i32)
}
/// Casts all elements of `self` to `u32`.
#[inline]
#[must_use]
pub fn as_uvec4(&self) -> crate::UVec4 {
crate::UVec4::new(self.x as u32, self.y as u32, self.z as u32, self.w as u32)
}
/// Casts all elements of `self` to `i64`.
#[inline]
#[must_use]
pub fn as_i64vec4(&self) -> crate::I64Vec4 {
crate::I64Vec4::new(self.x as i64, self.y as i64, self.z as i64, self.w as i64)
}
/// Casts all elements of `self` to `u64`.
#[inline]
#[must_use]
pub fn as_u64vec4(&self) -> crate::U64Vec4 {
crate::U64Vec4::new(self.x as u64, self.y as u64, self.z as u64, self.w as u64)
}
}
impl Default for Vec4 {
#[inline(always)]
fn default() -> Self {
Self::ZERO
}
}
impl PartialEq for Vec4 {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.cmpeq(*rhs).all()
}
}
impl Div<Vec4> for Vec4 {
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self {
Self(f32x4_div(self.0, rhs.0))
}
}
impl DivAssign<Vec4> for Vec4 {
#[inline]
fn div_assign(&mut self, rhs: Self) {
self.0 = f32x4_div(self.0, rhs.0);
}
}
impl Div<f32> for Vec4 {
type Output = Self;
#[inline]
fn div(self, rhs: f32) -> Self {
Self(f32x4_div(self.0, f32x4_splat(rhs)))
}
}
impl DivAssign<f32> for Vec4 {
#[inline]
fn div_assign(&mut self, rhs: f32) {
self.0 = f32x4_div(self.0, f32x4_splat(rhs))
}
}
impl Div<Vec4> for f32 {
type Output = Vec4;
#[inline]
fn div(self, rhs: Vec4) -> Vec4 {
Vec4(f32x4_div(f32x4_splat(self), rhs.0))
}
}
impl Mul<Vec4> for Vec4 {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self(f32x4_mul(self.0, rhs.0))
}
}
impl MulAssign<Vec4> for Vec4 {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
self.0 = f32x4_mul(self.0, rhs.0);
}
}
impl Mul<f32> for Vec4 {
type Output = Self;
#[inline]
fn mul(self, rhs: f32) -> Self {
Self(f32x4_mul(self.0, f32x4_splat(rhs)))
}
}
impl MulAssign<f32> for Vec4 {
#[inline]
fn mul_assign(&mut self, rhs: f32) {
self.0 = f32x4_mul(self.0, f32x4_splat(rhs))
}
}
impl Mul<Vec4> for f32 {
type Output = Vec4;
#[inline]
fn mul(self, rhs: Vec4) -> Vec4 {
Vec4(f32x4_mul(f32x4_splat(self), rhs.0))
}
}
impl Add<Vec4> for Vec4 {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self(f32x4_add(self.0, rhs.0))
}
}
impl AddAssign<Vec4> for Vec4 {
#[inline]
fn add_assign(&mut self, rhs: Self) {
self.0 = f32x4_add(self.0, rhs.0);
}
}
impl Add<f32> for Vec4 {
type Output = Self;
#[inline]
fn add(self, rhs: f32) -> Self {
Self(f32x4_add(self.0, f32x4_splat(rhs)))
}
}
impl AddAssign<f32> for Vec4 {
#[inline]
fn add_assign(&mut self, rhs: f32) {
self.0 = f32x4_add(self.0, f32x4_splat(rhs));
}
}
impl Add<Vec4> for f32 {
type Output = Vec4;
#[inline]
fn add(self, rhs: Vec4) -> Vec4 {
Vec4(f32x4_add(f32x4_splat(self), rhs.0))
}
}
impl Sub<Vec4> for Vec4 {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self(f32x4_sub(self.0, rhs.0))
}
}
impl SubAssign<Vec4> for Vec4 {
#[inline]
fn sub_assign(&mut self, rhs: Vec4) {
self.0 = f32x4_sub(self.0, rhs.0);
}
}
impl Sub<f32> for Vec4 {
type Output = Self;
#[inline]
fn sub(self, rhs: f32) -> Self {
Self(f32x4_sub(self.0, f32x4_splat(rhs)))
}
}
impl SubAssign<f32> for Vec4 {
#[inline]
fn sub_assign(&mut self, rhs: f32) {
self.0 = f32x4_sub(self.0, f32x4_splat(rhs))
}
}
impl Sub<Vec4> for f32 {
type Output = Vec4;
#[inline]
fn sub(self, rhs: Vec4) -> Vec4 {
Vec4(f32x4_sub(f32x4_splat(self), rhs.0))
}
}
impl Rem<Vec4> for Vec4 {
type Output = Self;
#[inline]
fn rem(self, rhs: Self) -> Self {
let n = f32x4_floor(f32x4_div(self.0, rhs.0));
Self(f32x4_sub(self.0, f32x4_mul(n, rhs.0)))
}
}
impl RemAssign<Vec4> for Vec4 {
#[inline]
fn rem_assign(&mut self, rhs: Self) {
*self = self.rem(rhs);
}
}
impl Rem<f32> for Vec4 {
type Output = Self;
#[inline]
fn rem(self, rhs: f32) -> Self {
self.rem(Self::splat(rhs))
}
}
impl RemAssign<f32> for Vec4 {
#[inline]
fn rem_assign(&mut self, rhs: f32) {
*self = self.rem(Self::splat(rhs));
}
}
impl Rem<Vec4> for f32 {
type Output = Vec4;
#[inline]
fn rem(self, rhs: Vec4) -> Vec4 {
Vec4::splat(self).rem(rhs)
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsRef<[f32; 4]> for Vec4 {
#[inline]
fn as_ref(&self) -> &[f32; 4] {
unsafe { &*(self as *const Vec4 as *const [f32; 4]) }
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsMut<[f32; 4]> for Vec4 {
#[inline]
fn as_mut(&mut self) -> &mut [f32; 4] {
unsafe { &mut *(self as *mut Vec4 as *mut [f32; 4]) }
}
}
impl Sum for Vec4 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ZERO, Self::add)
}
}
impl<'a> Sum<&'a Self> for Vec4 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
}
}
impl Product for Vec4 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ONE, Self::mul)
}
}
impl<'a> Product<&'a Self> for Vec4 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
}
}
impl Neg for Vec4 {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self(f32x4_neg(self.0))
}
}
impl Index<usize> for Vec4 {
type Output = f32;
#[inline]
fn index(&self, index: usize) -> &Self::Output {
match index {
0 => &self.x,
1 => &self.y,
2 => &self.z,
3 => &self.w,
_ => panic!("index out of bounds"),
}
}
}
impl IndexMut<usize> for Vec4 {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
match index {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
3 => &mut self.w,
_ => panic!("index out of bounds"),
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Display for Vec4 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "[{}, {}, {}, {}]", self.x, self.y, self.z, self.w)
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Debug for Vec4 {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_tuple(stringify!(Vec4))
.field(&self.x)
.field(&self.y)
.field(&self.z)
.field(&self.w)
.finish()
}
}
impl From<Vec4> for v128 {
#[inline]
fn from(t: Vec4) -> Self {
t.0
}
}
impl From<v128> for Vec4 {
#[inline]
fn from(t: v128) -> Self {
Self(t)
}
}
impl From<[f32; 4]> for Vec4 {
#[inline]
fn from(a: [f32; 4]) -> Self {
Self::new(a[0], a[1], a[2], a[3])
}
}
impl From<Vec4> for [f32; 4] {
#[inline]
fn from(v: Vec4) -> Self {
unsafe { *(&v.0 as *const v128 as *const Self) }
}
}
impl From<(f32, f32, f32, f32)> for Vec4 {
#[inline]
fn from(t: (f32, f32, f32, f32)) -> Self {
Self::new(t.0, t.1, t.2, t.3)
}
}
impl From<Vec4> for (f32, f32, f32, f32) {
#[inline]
fn from(v: Vec4) -> Self {
unsafe { *(&v.0 as *const v128 as *const Self) }
}
}
impl From<(Vec3A, f32)> for Vec4 {
#[inline]
fn from((v, w): (Vec3A, f32)) -> Self {
v.extend(w)
}
}
impl From<(f32, Vec3A)> for Vec4 {
#[inline]
fn from((x, v): (f32, Vec3A)) -> Self {
Self::new(x, v.x, v.y, v.z)
}
}
impl From<(Vec3, f32)> for Vec4 {
#[inline]
fn from((v, w): (Vec3, f32)) -> Self {
Self::new(v.x, v.y, v.z, w)
}
}
impl From<(f32, Vec3)> for Vec4 {
#[inline]
fn from((x, v): (f32, Vec3)) -> Self {
Self::new(x, v.x, v.y, v.z)
}
}
impl From<(Vec2, f32, f32)> for Vec4 {
#[inline]
fn from((v, z, w): (Vec2, f32, f32)) -> Self {
Self::new(v.x, v.y, z, w)
}
}
impl From<(Vec2, Vec2)> for Vec4 {
#[inline]
fn from((v, u): (Vec2, Vec2)) -> Self {
Self::new(v.x, v.y, u.x, u.y)
}
}
impl Deref for Vec4 {
type Target = crate::deref::Vec4<f32>;
#[inline]
fn deref(&self) -> &Self::Target {
unsafe { &*(self as *const Self).cast() }
}
}
impl DerefMut for Vec4 {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { &mut *(self as *mut Self).cast() }
}
}