blob: 3674f4cb0594739a747cbf4d5ef2d755ae5f5c11 [file] [log] [blame]
// Copyright 2022 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include "pw_async/fake_dispatcher.h"
#include "gtest/gtest.h"
#include "pw_thread/thread.h"
#include "pw_thread_stl/options.h"
#define ASSERT_OK(status) ASSERT_EQ(OkStatus(), status)
#define ASSERT_CANCELLED(status) ASSERT_EQ(Status::Cancelled(), status)
using namespace std::chrono_literals;
namespace pw::async::test {
TEST(FakeDispatcher, PostTasks) {
FakeDispatcher dispatcher;
int count = 0;
auto inc_count = [&count]([[maybe_unused]] Context& c, Status status) {
ASSERT_OK(status);
++count;
};
Task task(inc_count);
dispatcher.Post(task);
Task task2(inc_count);
dispatcher.Post(task2);
Task task3(inc_count);
dispatcher.Post(task3);
// Should not run; RunUntilIdle() does not advance time.
Task task4([&count]([[maybe_unused]] Context& c, Status status) {
ASSERT_CANCELLED(status);
++count;
});
dispatcher.PostAfter(task4, 1ms);
dispatcher.RunUntilIdle();
dispatcher.RequestStop();
dispatcher.RunUntilIdle();
ASSERT_EQ(count, 4);
}
// Lambdas can only capture one ptr worth of memory without allocating, so we
// group the data we want to share between tasks and their containing tests
// inside one struct.
struct TaskPair {
Task task_a;
Task task_b;
int count = 0;
};
TEST(FakeDispatcher, DelayedTasks) {
FakeDispatcher dispatcher;
TaskPair tp;
Task task0([&tp]([[maybe_unused]] Context& c, Status status) {
ASSERT_OK(status);
tp.count = tp.count * 10 + 4;
});
dispatcher.PostAfter(task0, 200ms);
Task task1([&tp]([[maybe_unused]] Context& c, Status status) {
ASSERT_OK(status);
tp.count = tp.count * 10 + 1;
c.dispatcher->PostAfter(tp.task_a, 50ms);
c.dispatcher->PostAfter(tp.task_b, 25ms);
});
dispatcher.PostAfter(task1, 100ms);
tp.task_a.set_function([&tp]([[maybe_unused]] Context& c, Status status) {
ASSERT_OK(status);
tp.count = tp.count * 10 + 3;
});
tp.task_b.set_function([&tp]([[maybe_unused]] Context& c, Status status) {
ASSERT_OK(status);
tp.count = tp.count * 10 + 2;
});
dispatcher.RunFor(200ms);
dispatcher.RequestStop();
dispatcher.RunUntilIdle();
ASSERT_EQ(tp.count, 1234);
}
TEST(FakeDispatcher, CancelTasks) {
FakeDispatcher dispatcher;
auto shouldnt_run = []([[maybe_unused]] Context& c,
[[maybe_unused]] Status status) { FAIL(); };
TaskPair tp;
// This task gets canceled in cancel_task.
tp.task_a.set_function(shouldnt_run);
dispatcher.PostAfter(tp.task_a, 40ms);
// This task gets canceled immediately.
Task task1(shouldnt_run);
dispatcher.PostAfter(task1, 10ms);
ASSERT_TRUE(dispatcher.Cancel(task1));
// This task cancels the first task.
Task cancel_task([&tp](Context& c, Status status) {
ASSERT_OK(status);
ASSERT_TRUE(c.dispatcher->Cancel(tp.task_a));
++tp.count;
});
dispatcher.PostAfter(cancel_task, 20ms);
dispatcher.RunFor(50ms);
dispatcher.RequestStop();
dispatcher.RunUntilIdle();
ASSERT_EQ(tp.count, 1);
}
// Test RequestStop() from inside task.
TEST(FakeDispatcher, RequestStopInsideTask) {
FakeDispatcher dispatcher;
int count = 0;
auto cancelled_cb = [&count]([[maybe_unused]] Context& c, Status status) {
ASSERT_CANCELLED(status);
++count;
};
// These tasks are never executed and cleaned up in RequestStop().
Task task0(cancelled_cb), task1(cancelled_cb);
dispatcher.PostAfter(task0, 20ms);
dispatcher.PostAfter(task1, 21ms);
Task stop_task([&count]([[maybe_unused]] Context& c, Status status) {
ASSERT_OK(status);
++count;
static_cast<FakeDispatcher*>(c.dispatcher)->RequestStop();
static_cast<FakeDispatcher*>(c.dispatcher)->RunUntilIdle();
});
dispatcher.Post(stop_task);
dispatcher.RunUntilIdle();
ASSERT_EQ(count, 3);
}
TEST(FakeDispatcher, PeriodicTasks) {
FakeDispatcher dispatcher;
int count = 0;
Task periodic_task([&count]([[maybe_unused]] Context& c, Status status) {
ASSERT_OK(status);
++count;
});
dispatcher.PostPeriodicAt(periodic_task, 20ms, dispatcher.now() + 50ms);
// Cancel periodic task after it has run thrice, at +50ms, +70ms, and +90ms.
Task cancel_task([&periodic_task](Context& c, Status status) {
ASSERT_OK(status);
c.dispatcher->Cancel(periodic_task);
});
dispatcher.PostAfter(cancel_task, 100ms);
dispatcher.RunFor(300ms);
dispatcher.RequestStop();
dispatcher.RunUntilIdle();
ASSERT_EQ(count, 3);
}
TEST(FakeDispatcher, TasksCancelledByDispatcherDestructor) {
int count = 0;
auto inc_count = [&count]([[maybe_unused]] Context& c, Status status) {
ASSERT_CANCELLED(status);
++count;
};
Task task0(inc_count), task1(inc_count), task2(inc_count);
{
FakeDispatcher dispatcher;
dispatcher.PostAfter(task0, 10s);
dispatcher.PostAfter(task1, 10s);
dispatcher.PostAfter(task2, 10s);
}
ASSERT_EQ(count, 3);
}
TEST(DispatcherBasic, TasksCancelledByRunFor) {
int count = 0;
auto inc_count = [&count]([[maybe_unused]] Context& c, Status status) {
ASSERT_CANCELLED(status);
++count;
};
Task task0(inc_count), task1(inc_count), task2(inc_count);
FakeDispatcher dispatcher;
dispatcher.PostAfter(task0, 10s);
dispatcher.PostAfter(task1, 10s);
dispatcher.PostAfter(task2, 10s);
dispatcher.RequestStop();
dispatcher.RunFor(5s);
ASSERT_EQ(count, 3);
}
} // namespace pw::async::test