blob: e931127ea8bfcf2a1348f2344ff0b952972d4f7a [file] [log] [blame]
#!/usr/bin/env python3
#
# Copyright (c) 2021, The OpenThread Authors.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS'
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
import logging
import unittest
import pktverify
from pktverify import packet_verifier, packet_filter, consts
from pktverify.consts import MA1, PBBR_ALOC
import config
import thread_cert
# Test description:
# The purpose of this test case is to verify that a Primary BBR (DUT) can manage
# a re-registration of a device on its network to remain receiving multicasts.
# The test also verifies the usage of UDP multicast packets across backbone and
# internal Thread network.
#
# Topology:
# ----------------(eth)------------------
# | | |
# BR_1 (Leader) ---- BR_2 HOST
# | |
# | |
# Router_1 -----------+
#
BR_1 = 1
BR_2 = 2
ROUTER_1 = 3
HOST = 4
REG_DELAY = 10
UDP_HEADER_LENGTH = 8
class MATN_05_ReregistrationToSameMulticastGroup(thread_cert.TestCase):
USE_MESSAGE_FACTORY = False
TOPOLOGY = {
BR_1: {
'name': 'BR_1',
'is_otbr': True,
'allowlist': [BR_2, ROUTER_1],
'version': '1.2',
},
BR_2: {
'name': 'BR_2',
'allowlist': [BR_1, ROUTER_1],
'is_otbr': True,
'version': '1.2',
},
ROUTER_1: {
'name': 'Router_1',
'allowlist': [BR_1, BR_2],
'version': '1.2',
},
HOST: {
'name': 'Host',
'is_host': True
},
}
def test(self):
br1 = self.nodes[BR_1]
br2 = self.nodes[BR_2]
router1 = self.nodes[ROUTER_1]
host = self.nodes[HOST]
br1.set_backbone_router(reg_delay=REG_DELAY, mlr_timeout=consts.MLR_TIMEOUT_MIN)
br1.start()
self.simulator.go(config.LEADER_STARTUP_DELAY)
self.assertEqual('leader', br1.get_state())
self.assertTrue(br1.is_primary_backbone_router)
router1.start()
self.simulator.go(10)
self.assertEqual('router', router1.get_state())
br2.start()
self.simulator.go(10)
self.assertEqual('router', br2.get_state())
self.assertFalse(br2.is_primary_backbone_router)
host.start(start_radvd=False)
self.simulator.go(10)
# Router_1 registers for multicast address, MA1, at BR_1.
router1.add_ipmaddr(MA1)
self.simulator.go(5)
# 1. Host sends a ping packet to the multicast address, MA1.
self.assertTrue(
host.ping(MA1, backbone=True, ttl=10, interface=host.get_ip6_address(config.ADDRESS_TYPE.ONLINK_ULA)[0]))
# Ensure Router_1 renews its multicast registration
self.simulator.go(consts.MLR_TIMEOUT_MIN - 10)
# 4. Within MLR_TIMEOUT_MIN seconds, Host sends a ping packet to the
# multicast address, MA1. The destination port 5683 is used for the UDP
# Multicast packet transmission.
host.udp_send_host(data='PING', ipaddr=MA1, port=5683)
self.simulator.go(5)
# 6a. By internal means, Router_1 stops listening to the multicast
# address, MA1.
router1.del_ipmaddr(MA1)
# 7. After (MLR_TIMEOUT_MIN+2) seconds, Host multicasts a ping packet to
# multicast address, MA1, on the backbone link.
self.simulator.go(consts.MLR_TIMEOUT_MIN + 2)
self.assertFalse(
host.ping(MA1, backbone=True, ttl=10, interface=host.get_ip6_address(config.ADDRESS_TYPE.ONLINK_ULA)[0]))
self.collect_ipaddrs()
self.collect_rloc16s()
self.collect_rlocs()
self.collect_leader_aloc(BR_1)
self.collect_extra_vars()
def verify(self, pv: pktverify.packet_verifier.PacketVerifier):
pkts = pv.pkts
vars = pv.vars
pv.summary.show()
logging.info(f'vars = {vars}')
# Ensure the topology is formed correctly
pv.verify_attached('Router_1', 'BR_1')
pv.verify_attached('BR_2')
# Initial registration
# Router_1 registers for multicast address, MA1, at BR_1.
# Router_1 unicasts an MLR.req CoAP request to BR_1 as
# "coap://[<BR_1 RLOC or PBBR ALOC>]:MM/n/mr".
# The payload contains "IPv6Address TLV: MA1".
initial_registration_pkt = pkts.filter_wpan_src64(vars['Router_1']) \
.filter_ipv6_2dsts(vars['BR_1_RLOC'], PBBR_ALOC) \
.filter_coap_request('/n/mr') \
.filter(lambda p: p.thread_meshcop.tlv.ipv6_addr == [MA1]) \
.must_next()
# 1. Host sends a ping packet to the multicast address, MA1.
_pkt = pkts.filter_eth_src(vars['Host_ETH']) \
.filter_ipv6_dst(MA1) \
.filter_ping_request() \
.must_next()
# 2. BR_1 forwards the ping packet with multicast address, MA1, to its
# Thread Network encapsulated in an MPL packet.
pkts.filter_wpan_src64(vars['BR_1']) \
.filter_AMPLFMA(mpl_seed_id=vars['BR_1_RLOC']) \
.filter_ping_request(identifier=_pkt.icmpv6.echo.identifier) \
.must_next()
# 3. Router_1 receives the MPL packet containing an encapsulated ping
# packet to MA1, sent by Host, and unicasts a ping response packet back
# to Host.
pkts.filter_wpan_src64(vars['Router_1']) \
.filter_ipv6_dst(_pkt.ipv6.src) \
.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier) \
.must_next()
# 3a. Within MLR_TIMEOUT_MIN seconds of initial registration, Router_1
# re-registers for multicast address, MA1, at BR_1.
# Router_1 unicasts an MLR.req CoAP request to BR_1 as
# "coap://[<BR_1 RLOC or PBBR ALOC>]:MM/n/mr".
# The payload contains "IPv6Address TLV: MA1".
pkts.copy() \
.filter_wpan_src64(vars['Router_1']) \
.filter_ipv6_2dsts(vars['BR_1_RLOC'], PBBR_ALOC) \
.filter_coap_request('/n/mr') \
.filter(lambda p: p.thread_meshcop.tlv.ipv6_addr == [MA1] and
p.sniff_timestamp <= initial_registration_pkt.sniff_timestamp + consts.MLR_TIMEOUT_MIN) \
.must_next()
# 4. Within MLR_TIMEOUT_MIN seconds, Host sends a ping packet to the
# multicast address, MA1. The destination port 5683 is used for the UDP
# Multicast packet transmission.
_pkt = pkts.filter_eth_src(vars['Host_ETH']) \
.filter_ipv6_dst(MA1) \
.filter(lambda p: p.udp.length == UDP_HEADER_LENGTH + len('PING')
and p.udp.dstport == 5683) \
.must_next()
# 5. BR_1 forwards the UDP ping packet with multicast address, MA1, to
# its Thread Network encapsulated in an MPL packet.
pkts.filter_wpan_src64(vars['BR_1']) \
.filter_AMPLFMA(mpl_seed_id=vars['BR_1_RLOC']) \
.filter(lambda p: p.udp.length == _pkt.udp.length) \
.must_next()
# 6. Router_1 receives the ping packet.
# Use the port 5683 (CoAP port) to verify that the
# UDP Multicast packet is received.
pkts.filter_wpan_src64(vars['Router_1']) \
.filter(
lambda p: p.udp.length == _pkt.udp.length and p.udp.dstport == 5683) \
.must_next()
# 7. After (MLR_TIMEOUT_MIN+2) seconds, Host multicasts a ping packet to
# multicast address, MA1, on the backbone link.
_pkt = pkts.filter_eth_src(vars['Host_ETH']) \
.filter_ipv6_dst(MA1) \
.filter_ping_request() \
.must_next()
# 8. BR_1 does not forward the ping packet with multicast address, MA1,
# to its Thread Network.
pkts.filter_wpan_src64(vars['BR_1']) \
.filter_AMPLFMA(mpl_seed_id=vars['BR_1_RLOC']) \
.filter_ping_request(identifier=_pkt.icmpv6.echo.identifier) \
.must_not_next()
if __name__ == '__main__':
unittest.main()