blob: 487e284042d8cf5f7c74ce573a469f8f3c5dc6f2 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_device/android/opensles_output.h"
#include <assert.h>
#include "webrtc/modules/audio_device/android/opensles_common.h"
#include "webrtc/modules/audio_device/android/fine_audio_buffer.h"
#include "webrtc/modules/audio_device/android/single_rw_fifo.h"
#include "webrtc/modules/audio_device/audio_device_buffer.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/thread_wrapper.h"
#include "webrtc/system_wrappers/interface/trace.h"
#define VOID_RETURN
#define OPENSL_RETURN_ON_FAILURE(op, ret_val) \
do { \
SLresult err = (op); \
if (err != SL_RESULT_SUCCESS) { \
WEBRTC_TRACE(kTraceError, kTraceAudioDevice, id_, \
"OpenSL error: %d", err); \
assert(false); \
return ret_val; \
} \
} while (0)
static const SLEngineOption kOption[] = {
{ SL_ENGINEOPTION_THREADSAFE, static_cast<SLuint32>(SL_BOOLEAN_TRUE) },
};
enum {
kNoUnderrun,
kUnderrun,
};
namespace webrtc {
OpenSlesOutput::OpenSlesOutput(const int32_t id)
: id_(id),
initialized_(false),
speaker_initialized_(false),
play_initialized_(false),
crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
playing_(false),
num_fifo_buffers_needed_(0),
number_underruns_(0),
sles_engine_(NULL),
sles_engine_itf_(NULL),
sles_player_(NULL),
sles_player_itf_(NULL),
sles_player_sbq_itf_(NULL),
sles_output_mixer_(NULL),
audio_buffer_(NULL),
active_queue_(0),
speaker_sampling_rate_(kDefaultSampleRate),
buffer_size_samples_(0),
buffer_size_bytes_(0),
playout_delay_(0) {
}
OpenSlesOutput::~OpenSlesOutput() {
}
int32_t OpenSlesOutput::SetAndroidAudioDeviceObjects(void* javaVM,
void* env,
void* context) {
AudioManagerJni::SetAndroidAudioDeviceObjects(javaVM, env, context);
return 0;
}
void OpenSlesOutput::ClearAndroidAudioDeviceObjects() {
AudioManagerJni::ClearAndroidAudioDeviceObjects();
}
int32_t OpenSlesOutput::Init() {
assert(!initialized_);
// Set up OpenSl engine.
OPENSL_RETURN_ON_FAILURE(slCreateEngine(&sles_engine_, 1, kOption, 0,
NULL, NULL),
-1);
OPENSL_RETURN_ON_FAILURE((*sles_engine_)->Realize(sles_engine_,
SL_BOOLEAN_FALSE),
-1);
OPENSL_RETURN_ON_FAILURE((*sles_engine_)->GetInterface(sles_engine_,
SL_IID_ENGINE,
&sles_engine_itf_),
-1);
// Set up OpenSl output mix.
OPENSL_RETURN_ON_FAILURE(
(*sles_engine_itf_)->CreateOutputMix(sles_engine_itf_,
&sles_output_mixer_,
0,
NULL,
NULL),
-1);
OPENSL_RETURN_ON_FAILURE(
(*sles_output_mixer_)->Realize(sles_output_mixer_,
SL_BOOLEAN_FALSE),
-1);
if (!InitSampleRate()) {
return -1;
}
AllocateBuffers();
initialized_ = true;
return 0;
}
int32_t OpenSlesOutput::Terminate() {
// It is assumed that the caller has stopped recording before terminating.
assert(!playing_);
(*sles_output_mixer_)->Destroy(sles_output_mixer_);
(*sles_engine_)->Destroy(sles_engine_);
initialized_ = false;
speaker_initialized_ = false;
play_initialized_ = false;
return 0;
}
int32_t OpenSlesOutput::PlayoutDeviceName(uint16_t index,
char name[kAdmMaxDeviceNameSize],
char guid[kAdmMaxGuidSize]) {
assert(index == 0);
// Empty strings.
name[0] = '\0';
guid[0] = '\0';
return 0;
}
int32_t OpenSlesOutput::SetPlayoutDevice(uint16_t index) {
assert(index == 0);
return 0;
}
int32_t OpenSlesOutput::PlayoutIsAvailable(bool& available) { // NOLINT
available = true;
return 0;
}
int32_t OpenSlesOutput::InitPlayout() {
assert(initialized_);
play_initialized_ = true;
return 0;
}
int32_t OpenSlesOutput::StartPlayout() {
assert(play_initialized_);
assert(!playing_);
if (!CreateAudioPlayer()) {
return -1;
}
// Register callback to receive enqueued buffers.
OPENSL_RETURN_ON_FAILURE(
(*sles_player_sbq_itf_)->RegisterCallback(sles_player_sbq_itf_,
PlayerSimpleBufferQueueCallback,
this),
-1);
if (!EnqueueAllBuffers()) {
return -1;
}
{
// To prevent the compiler from e.g. optimizing the code to
// playing_ = StartCbThreads() which wouldn't have been thread safe.
CriticalSectionScoped lock(crit_sect_.get());
playing_ = true;
}
if (!StartCbThreads()) {
playing_ = false;
}
return 0;
}
int32_t OpenSlesOutput::StopPlayout() {
StopCbThreads();
DestroyAudioPlayer();
playing_ = false;
return 0;
}
int32_t OpenSlesOutput::InitSpeaker() {
assert(!playing_);
speaker_initialized_ = true;
return 0;
}
int32_t OpenSlesOutput::SpeakerVolumeIsAvailable(bool& available) { // NOLINT
available = true;
return 0;
}
int32_t OpenSlesOutput::SetSpeakerVolume(uint32_t volume) {
assert(speaker_initialized_);
assert(initialized_);
// TODO(hellner): implement.
return 0;
}
int32_t OpenSlesOutput::MaxSpeakerVolume(uint32_t& maxVolume) const { // NOLINT
assert(speaker_initialized_);
assert(initialized_);
// TODO(hellner): implement.
maxVolume = 0;
return 0;
}
int32_t OpenSlesOutput::MinSpeakerVolume(uint32_t& minVolume) const { // NOLINT
assert(speaker_initialized_);
assert(initialized_);
// TODO(hellner): implement.
minVolume = 0;
return 0;
}
int32_t OpenSlesOutput::SpeakerVolumeStepSize(
uint16_t& stepSize) const { // NOLINT
assert(speaker_initialized_);
stepSize = 1;
return 0;
}
int32_t OpenSlesOutput::SpeakerMuteIsAvailable(bool& available) { // NOLINT
available = false;
return 0;
}
int32_t OpenSlesOutput::StereoPlayoutIsAvailable(bool& available) { // NOLINT
available = false;
return 0;
}
int32_t OpenSlesOutput::SetStereoPlayout(bool enable) {
if (enable) {
assert(false);
return -1;
}
return 0;
}
int32_t OpenSlesOutput::StereoPlayout(bool& enabled) const { // NOLINT
enabled = kNumChannels == 2;
return 0;
}
int32_t OpenSlesOutput::PlayoutBuffer(
AudioDeviceModule::BufferType& type, // NOLINT
uint16_t& sizeMS) const { // NOLINT
type = AudioDeviceModule::kAdaptiveBufferSize;
sizeMS = playout_delay_;
return 0;
}
int32_t OpenSlesOutput::PlayoutDelay(uint16_t& delayMS) const { // NOLINT
delayMS = playout_delay_;
return 0;
}
void OpenSlesOutput::AttachAudioBuffer(AudioDeviceBuffer* audioBuffer) {
audio_buffer_ = audioBuffer;
}
int32_t OpenSlesOutput::SetLoudspeakerStatus(bool enable) {
return 0;
}
int32_t OpenSlesOutput::GetLoudspeakerStatus(bool& enabled) const { // NOLINT
enabled = true;
return 0;
}
int OpenSlesOutput::PlayoutDelayMs() {
return playout_delay_;
}
bool OpenSlesOutput::InitSampleRate() {
if (!SetLowLatency()) {
speaker_sampling_rate_ = kDefaultSampleRate;
// Default is to use 10ms buffers.
buffer_size_samples_ = speaker_sampling_rate_ * 10 / 1000;
}
if (audio_buffer_->SetPlayoutSampleRate(speaker_sampling_rate_) < 0) {
return false;
}
if (audio_buffer_->SetPlayoutChannels(kNumChannels) < 0) {
return false;
}
UpdatePlayoutDelay();
return true;
}
void OpenSlesOutput::UpdatePlayoutDelay() {
// TODO(hellner): Add accurate delay estimate.
// On average half the current buffer will have been played out.
int outstanding_samples = (TotalBuffersUsed() - 0.5) * buffer_size_samples_;
playout_delay_ = outstanding_samples / (speaker_sampling_rate_ / 1000);
}
bool OpenSlesOutput::SetLowLatency() {
if (!audio_manager_.low_latency_supported()) {
return false;
}
buffer_size_samples_ = audio_manager_.native_buffer_size();
assert(buffer_size_samples_ > 0);
speaker_sampling_rate_ = audio_manager_.native_output_sample_rate();
assert(speaker_sampling_rate_ > 0);
return true;
}
void OpenSlesOutput::CalculateNumFifoBuffersNeeded() {
int number_of_bytes_needed =
(speaker_sampling_rate_ * kNumChannels * sizeof(int16_t)) * 10 / 1000;
// Ceiling of integer division: 1 + ((x - 1) / y)
int buffers_per_10_ms =
1 + ((number_of_bytes_needed - 1) / buffer_size_bytes_);
// |num_fifo_buffers_needed_| is a multiple of 10ms of buffered up audio.
num_fifo_buffers_needed_ = kNum10MsToBuffer * buffers_per_10_ms;
}
void OpenSlesOutput::AllocateBuffers() {
// Allocate fine buffer to provide frames of the desired size.
buffer_size_bytes_ = buffer_size_samples_ * kNumChannels * sizeof(int16_t);
fine_buffer_.reset(new FineAudioBuffer(audio_buffer_, buffer_size_bytes_,
speaker_sampling_rate_));
// Allocate FIFO to handle passing buffers between processing and OpenSl
// threads.
CalculateNumFifoBuffersNeeded(); // Needs |buffer_size_bytes_| to be known
assert(num_fifo_buffers_needed_ > 0);
fifo_.reset(new SingleRwFifo(num_fifo_buffers_needed_));
// Allocate the memory area to be used.
play_buf_.reset(new scoped_ptr<int8_t[]>[TotalBuffersUsed()]);
int required_buffer_size = fine_buffer_->RequiredBufferSizeBytes();
for (int i = 0; i < TotalBuffersUsed(); ++i) {
play_buf_[i].reset(new int8_t[required_buffer_size]);
}
}
int OpenSlesOutput::TotalBuffersUsed() const {
return num_fifo_buffers_needed_ + kNumOpenSlBuffers;
}
bool OpenSlesOutput::EnqueueAllBuffers() {
active_queue_ = 0;
number_underruns_ = 0;
for (int i = 0; i < kNumOpenSlBuffers; ++i) {
memset(play_buf_[i].get(), 0, buffer_size_bytes_);
OPENSL_RETURN_ON_FAILURE(
(*sles_player_sbq_itf_)->Enqueue(
sles_player_sbq_itf_,
reinterpret_cast<void*>(play_buf_[i].get()),
buffer_size_bytes_),
false);
}
// OpenSL playing has been stopped. I.e. only this thread is touching
// |fifo_|.
while (fifo_->size() != 0) {
// Underrun might have happened when pushing new buffers to the FIFO.
fifo_->Pop();
}
for (int i = kNumOpenSlBuffers; i < TotalBuffersUsed(); ++i) {
memset(play_buf_[i].get(), 0, buffer_size_bytes_);
fifo_->Push(play_buf_[i].get());
}
return true;
}
bool OpenSlesOutput::CreateAudioPlayer() {
if (!event_.Start()) {
assert(false);
return false;
}
SLDataLocator_AndroidSimpleBufferQueue simple_buf_queue = {
SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE,
static_cast<SLuint32>(kNumOpenSlBuffers)
};
SLDataFormat_PCM configuration =
webrtc_opensl::CreatePcmConfiguration(speaker_sampling_rate_);
SLDataSource audio_source = { &simple_buf_queue, &configuration };
SLDataLocator_OutputMix locator_outputmix;
// Setup the data sink structure.
locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
locator_outputmix.outputMix = sles_output_mixer_;
SLDataSink audio_sink = { &locator_outputmix, NULL };
// Interfaces for streaming audio data, setting volume and Android are needed.
// Note the interfaces still need to be initialized. This only tells OpenSl
// that the interfaces will be needed at some point.
SLInterfaceID ids[kNumInterfaces] = {
SL_IID_BUFFERQUEUE, SL_IID_VOLUME, SL_IID_ANDROIDCONFIGURATION };
SLboolean req[kNumInterfaces] = {
SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE };
OPENSL_RETURN_ON_FAILURE(
(*sles_engine_itf_)->CreateAudioPlayer(sles_engine_itf_, &sles_player_,
&audio_source, &audio_sink,
kNumInterfaces, ids, req),
false);
SLAndroidConfigurationItf player_config;
OPENSL_RETURN_ON_FAILURE(
(*sles_player_)->GetInterface(sles_player_,
SL_IID_ANDROIDCONFIGURATION,
&player_config),
false);
// Set audio player configuration to SL_ANDROID_STREAM_VOICE which corresponds
// to android.media.AudioManager.STREAM_VOICE_CALL.
SLint32 stream_type = SL_ANDROID_STREAM_VOICE;
OPENSL_RETURN_ON_FAILURE(
(*player_config)->SetConfiguration(player_config,
SL_ANDROID_KEY_STREAM_TYPE,
&stream_type,
sizeof(SLint32)),
false);
// Realize the player in synchronous mode.
OPENSL_RETURN_ON_FAILURE((*sles_player_)->Realize(sles_player_,
SL_BOOLEAN_FALSE),
false);
OPENSL_RETURN_ON_FAILURE(
(*sles_player_)->GetInterface(sles_player_, SL_IID_PLAY,
&sles_player_itf_),
false);
OPENSL_RETURN_ON_FAILURE(
(*sles_player_)->GetInterface(sles_player_, SL_IID_BUFFERQUEUE,
&sles_player_sbq_itf_),
false);
return true;
}
void OpenSlesOutput::DestroyAudioPlayer() {
SLAndroidSimpleBufferQueueItf sles_player_sbq_itf = sles_player_sbq_itf_;
{
CriticalSectionScoped lock(crit_sect_.get());
sles_player_sbq_itf_ = NULL;
sles_player_itf_ = NULL;
}
event_.Stop();
if (sles_player_sbq_itf) {
// Release all buffers currently queued up.
OPENSL_RETURN_ON_FAILURE(
(*sles_player_sbq_itf)->Clear(sles_player_sbq_itf),
VOID_RETURN);
}
if (sles_player_) {
(*sles_player_)->Destroy(sles_player_);
sles_player_ = NULL;
}
}
bool OpenSlesOutput::HandleUnderrun(int event_id, int event_msg) {
if (!playing_) {
return false;
}
if (event_id == kNoUnderrun) {
return false;
}
WEBRTC_TRACE(kTraceWarning, kTraceAudioDevice, id_, "Audio underrun");
assert(event_id == kUnderrun);
assert(event_msg > 0);
// Wait for all enqueued buffers to be flushed.
if (event_msg != kNumOpenSlBuffers) {
return true;
}
// All buffers have been flushed. Restart the audio from scratch.
// No need to check sles_player_itf_ as playing_ would be false before it is
// set to NULL.
OPENSL_RETURN_ON_FAILURE(
(*sles_player_itf_)->SetPlayState(sles_player_itf_,
SL_PLAYSTATE_STOPPED),
true);
EnqueueAllBuffers();
OPENSL_RETURN_ON_FAILURE(
(*sles_player_itf_)->SetPlayState(sles_player_itf_,
SL_PLAYSTATE_PLAYING),
true);
return true;
}
void OpenSlesOutput::PlayerSimpleBufferQueueCallback(
SLAndroidSimpleBufferQueueItf sles_player_sbq_itf,
void* p_context) {
OpenSlesOutput* audio_device = reinterpret_cast<OpenSlesOutput*>(p_context);
audio_device->PlayerSimpleBufferQueueCallbackHandler(sles_player_sbq_itf);
}
void OpenSlesOutput::PlayerSimpleBufferQueueCallbackHandler(
SLAndroidSimpleBufferQueueItf sles_player_sbq_itf) {
if (fifo_->size() <= 0 || number_underruns_ > 0) {
++number_underruns_;
event_.SignalEvent(kUnderrun, number_underruns_);
return;
}
int8_t* audio = fifo_->Pop();
if (audio)
OPENSL_RETURN_ON_FAILURE(
(*sles_player_sbq_itf)->Enqueue(sles_player_sbq_itf,
audio,
buffer_size_bytes_),
VOID_RETURN);
event_.SignalEvent(kNoUnderrun, 0);
}
bool OpenSlesOutput::StartCbThreads() {
play_thread_.reset(ThreadWrapper::CreateThread(CbThread,
this,
kRealtimePriority,
"opensl_play_thread"));
assert(play_thread_.get());
OPENSL_RETURN_ON_FAILURE(
(*sles_player_itf_)->SetPlayState(sles_player_itf_,
SL_PLAYSTATE_PLAYING),
false);
unsigned int thread_id = 0;
if (!play_thread_->Start(thread_id)) {
assert(false);
return false;
}
return true;
}
void OpenSlesOutput::StopCbThreads() {
{
CriticalSectionScoped lock(crit_sect_.get());
playing_ = false;
}
if (sles_player_itf_) {
OPENSL_RETURN_ON_FAILURE(
(*sles_player_itf_)->SetPlayState(sles_player_itf_,
SL_PLAYSTATE_STOPPED),
VOID_RETURN);
}
if (play_thread_.get() == NULL) {
return;
}
event_.Stop();
if (play_thread_->Stop()) {
play_thread_.reset();
} else {
assert(false);
}
}
bool OpenSlesOutput::CbThread(void* context) {
return reinterpret_cast<OpenSlesOutput*>(context)->CbThreadImpl();
}
bool OpenSlesOutput::CbThreadImpl() {
assert(fine_buffer_.get() != NULL);
int event_id;
int event_msg;
// event_ must not be waited on while a lock has been taken.
event_.WaitOnEvent(&event_id, &event_msg);
CriticalSectionScoped lock(crit_sect_.get());
if (HandleUnderrun(event_id, event_msg)) {
return playing_;
}
// if fifo_ is not full it means next item in memory must be free.
while (fifo_->size() < num_fifo_buffers_needed_ && playing_) {
int8_t* audio = play_buf_[active_queue_].get();
fine_buffer_->GetBufferData(audio);
fifo_->Push(audio);
active_queue_ = (active_queue_ + 1) % TotalBuffersUsed();
}
return playing_;
}
} // namespace webrtc