blob: 1468663e51cdd1eb5b8d41eaefaaf71d79087a70 [file] [log] [blame]
/*
* memcpy benchmark.
*
* Copyright (c) 2020-2022, Arm Limited.
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
*/
#define _GNU_SOURCE
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "stringlib.h"
#include "benchlib.h"
#define ITERS 5000
#define ITERS2 20000000
#define ITERS3 200000
#define NUM_TESTS 16384
#define MIN_SIZE 32768
#define MAX_SIZE (1024 * 1024)
static uint8_t a[MAX_SIZE + 4096 + 64] __attribute__((__aligned__(64)));
static uint8_t b[MAX_SIZE + 4096 + 64] __attribute__((__aligned__(64)));
#define F(x) {#x, x},
static const struct fun
{
const char *name;
void *(*fun)(void *, const void *, size_t);
} funtab[] =
{
#if __aarch64__
F(__memcpy_aarch64)
# if __ARM_NEON
F(__memcpy_aarch64_simd)
# endif
# if __ARM_FEATURE_SVE
F(__memcpy_aarch64_sve)
# endif
#elif __arm__
F(__memcpy_arm)
#endif
F(memcpy)
#undef F
{0, 0}
};
typedef struct { uint16_t size; uint16_t freq; } freq_data_t;
typedef struct { uint8_t align; uint16_t freq; } align_data_t;
#define SIZE_NUM 65536
#define SIZE_MASK (SIZE_NUM-1)
static uint8_t size_arr[SIZE_NUM];
/* Frequency data for memcpy of less than 4096 bytes based on SPEC2017. */
static freq_data_t size_freq[] =
{
{32,22320}, { 16,9554}, { 8,8915}, {152,5327}, { 4,2159}, {292,2035},
{ 12,1608}, { 24,1343}, {1152,895}, {144, 813}, {884, 733}, {284, 721},
{120, 661}, { 2, 649}, {882, 550}, { 5, 475}, { 7, 461}, {108, 460},
{ 10, 361}, { 9, 361}, { 6, 334}, { 3, 326}, {464, 308}, {2048,303},
{ 1, 298}, { 64, 250}, { 11, 197}, {296, 194}, { 68, 187}, { 15, 185},
{192, 184}, {1764,183}, { 13, 173}, {560, 126}, {160, 115}, {288, 96},
{104, 96}, {1144, 83}, { 18, 80}, { 23, 78}, { 40, 77}, { 19, 68},
{ 48, 63}, { 17, 57}, { 72, 54}, {1280, 51}, { 20, 49}, { 28, 47},
{ 22, 46}, {640, 45}, { 25, 41}, { 14, 40}, { 56, 37}, { 27, 35},
{ 35, 33}, {384, 33}, { 29, 32}, { 80, 30}, {4095, 22}, {232, 22},
{ 36, 19}, {184, 17}, { 21, 17}, {256, 16}, { 44, 15}, { 26, 15},
{ 31, 14}, { 88, 14}, {176, 13}, { 33, 12}, {1024, 12}, {208, 11},
{ 62, 11}, {128, 10}, {704, 10}, {324, 10}, { 96, 10}, { 60, 9},
{136, 9}, {124, 9}, { 34, 8}, { 30, 8}, {480, 8}, {1344, 8},
{273, 7}, {520, 7}, {112, 6}, { 52, 6}, {344, 6}, {336, 6},
{504, 5}, {168, 5}, {424, 5}, { 0, 4}, { 76, 3}, {200, 3},
{512, 3}, {312, 3}, {240, 3}, {960, 3}, {264, 2}, {672, 2},
{ 38, 2}, {328, 2}, { 84, 2}, { 39, 2}, {216, 2}, { 42, 2},
{ 37, 2}, {1608, 2}, { 70, 2}, { 46, 2}, {536, 2}, {280, 1},
{248, 1}, { 47, 1}, {1088, 1}, {1288, 1}, {224, 1}, { 41, 1},
{ 50, 1}, { 49, 1}, {808, 1}, {360, 1}, {440, 1}, { 43, 1},
{ 45, 1}, { 78, 1}, {968, 1}, {392, 1}, { 54, 1}, { 53, 1},
{ 59, 1}, {376, 1}, {664, 1}, { 58, 1}, {272, 1}, { 66, 1},
{2688, 1}, {472, 1}, {568, 1}, {720, 1}, { 51, 1}, { 63, 1},
{ 86, 1}, {496, 1}, {776, 1}, { 57, 1}, {680, 1}, {792, 1},
{122, 1}, {760, 1}, {824, 1}, {552, 1}, { 67, 1}, {456, 1},
{984, 1}, { 74, 1}, {408, 1}, { 75, 1}, { 92, 1}, {576, 1},
{116, 1}, { 65, 1}, {117, 1}, { 82, 1}, {352, 1}, { 55, 1},
{100, 1}, { 90, 1}, {696, 1}, {111, 1}, {880, 1}, { 79, 1},
{488, 1}, { 61, 1}, {114, 1}, { 94, 1}, {1032, 1}, { 98, 1},
{ 87, 1}, {584, 1}, { 85, 1}, {648, 1}, {0, 0}
};
#define ALIGN_NUM 1024
#define ALIGN_MASK (ALIGN_NUM-1)
static uint8_t src_align_arr[ALIGN_NUM];
static uint8_t dst_align_arr[ALIGN_NUM];
/* Source alignment frequency for memcpy based on SPEC2017. */
static align_data_t src_align_freq[] =
{
{8, 300}, {16, 292}, {32, 168}, {64, 153}, {4, 79}, {2, 14}, {1, 18}, {0, 0}
};
static align_data_t dst_align_freq[] =
{
{8, 265}, {16, 263}, {64, 209}, {32, 174}, {4, 90}, {2, 10}, {1, 13}, {0, 0}
};
typedef struct
{
uint64_t src : 24;
uint64_t dst : 24;
uint64_t len : 16;
} copy_t;
static copy_t test_arr[NUM_TESTS];
typedef char *(*proto_t) (char *, const char *, size_t);
static void
init_copy_distribution (void)
{
int i, j, freq, size, n;
for (n = i = 0; (freq = size_freq[i].freq) != 0; i++)
for (j = 0, size = size_freq[i].size; j < freq; j++)
size_arr[n++] = size;
assert (n == SIZE_NUM);
for (n = i = 0; (freq = src_align_freq[i].freq) != 0; i++)
for (j = 0, size = src_align_freq[i].align; j < freq; j++)
src_align_arr[n++] = size - 1;
assert (n == ALIGN_NUM);
for (n = i = 0; (freq = dst_align_freq[i].freq) != 0; i++)
for (j = 0, size = dst_align_freq[i].align; j < freq; j++)
dst_align_arr[n++] = size - 1;
assert (n == ALIGN_NUM);
}
static size_t
init_copies (size_t max_size)
{
size_t total = 0;
/* Create a random set of copies with the given size and alignment
distributions. */
for (int i = 0; i < NUM_TESTS; i++)
{
test_arr[i].dst = (rand32 (0) & (max_size - 1));
test_arr[i].dst &= ~dst_align_arr[rand32 (0) & ALIGN_MASK];
test_arr[i].src = (rand32 (0) & (max_size - 1));
test_arr[i].src &= ~src_align_arr[rand32 (0) & ALIGN_MASK];
test_arr[i].len = size_arr[rand32 (0) & SIZE_MASK];
total += test_arr[i].len;
}
return total;
}
int main (void)
{
init_copy_distribution ();
memset (a, 1, sizeof (a));
memset (b, 2, sizeof (b));
printf("Random memcpy (bytes/ns):\n");
for (int f = 0; funtab[f].name != 0; f++)
{
size_t total = 0;
uint64_t tsum = 0;
printf ("%22s ", funtab[f].name);
rand32 (0x12345678);
for (int size = MIN_SIZE; size <= MAX_SIZE; size *= 2)
{
size_t copy_size = init_copies (size) * ITERS;
for (int c = 0; c < NUM_TESTS; c++)
funtab[f].fun (b + test_arr[c].dst, a + test_arr[c].src,
test_arr[c].len);
uint64_t t = clock_get_ns ();
for (int i = 0; i < ITERS; i++)
for (int c = 0; c < NUM_TESTS; c++)
funtab[f].fun (b + test_arr[c].dst, a + test_arr[c].src,
test_arr[c].len);
t = clock_get_ns () - t;
total += copy_size;
tsum += t;
printf ("%dK: %.2f ", size / 1024, (double)copy_size / t);
}
printf( "avg %.2f\n", (double)total / tsum);
}
size_t total = 0;
uint64_t tsum = 0;
printf ("%22s ", "memcpy_call");
rand32 (0x12345678);
for (int size = MIN_SIZE; size <= MAX_SIZE; size *= 2)
{
size_t copy_size = init_copies (size) * ITERS;
for (int c = 0; c < NUM_TESTS; c++)
memcpy (b + test_arr[c].dst, a + test_arr[c].src, test_arr[c].len);
uint64_t t = clock_get_ns ();
for (int i = 0; i < ITERS; i++)
for (int c = 0; c < NUM_TESTS; c++)
memcpy (b + test_arr[c].dst, a + test_arr[c].src, test_arr[c].len);
t = clock_get_ns () - t;
total += copy_size;
tsum += t;
printf ("%dK: %.2f ", size / 1024, (double)copy_size / t);
}
printf( "avg %.2f\n", (double)total / tsum);
printf ("\nAligned medium memcpy (bytes/ns):\n");
for (int f = 0; funtab[f].name != 0; f++)
{
printf ("%22s ", funtab[f].name);
for (int size = 8; size <= 512; size *= 2)
{
uint64_t t = clock_get_ns ();
for (int i = 0; i < ITERS2; i++)
funtab[f].fun (b, a, size);
t = clock_get_ns () - t;
printf ("%dB: %.2f ", size, (double)size * ITERS2 / t);
}
printf ("\n");
}
printf ("%22s ", "memcpy_call");
for (int size = 8; size <= 512; size *= 2)
{
uint64_t t = clock_get_ns ();
for (int i = 0; i < ITERS2; i++)
memcpy (b, a, size);
t = clock_get_ns () - t;
printf ("%dB: %.2f ", size, (double)size * ITERS2 / t);
}
printf ("\n");
printf ("\nUnaligned medium memcpy (bytes/ns):\n");
for (int f = 0; funtab[f].name != 0; f++)
{
printf ("%22s ", funtab[f].name);
for (int size = 8; size <= 512; size *= 2)
{
uint64_t t = clock_get_ns ();
for (int i = 0; i < ITERS2; i++)
funtab[f].fun (b + 3, a + 1, size);
t = clock_get_ns () - t;
printf ("%dB: %.2f ", size, (double)size * ITERS2 / t);
}
printf ("\n");
}
printf ("%22s ", "memcpy_call");
for (int size = 8; size <= 512; size *= 2)
{
uint64_t t = clock_get_ns ();
for (int i = 0; i < ITERS2; i++)
memcpy (b + 3, a + 1, size);
t = clock_get_ns () - t;
printf ("%dB: %.2f ", size, (double)size * ITERS2 / t);
}
printf ("\n");
printf ("\nLarge memcpy (bytes/ns):\n");
for (int f = 0; funtab[f].name != 0; f++)
{
printf ("%22s ", funtab[f].name);
for (int size = 1024; size <= 65536; size *= 2)
{
uint64_t t = clock_get_ns ();
for (int i = 0; i < ITERS3; i++)
funtab[f].fun (b, a, size);
t = clock_get_ns () - t;
printf ("%dK: %.2f ", size / 1024, (double)size * ITERS3 / t);
}
printf ("\n");
}
printf ("%22s ", "memcpy_call");
for (int size = 1024; size <= 65536; size *= 2)
{
uint64_t t = clock_get_ns ();
for (int i = 0; i < ITERS3; i++)
memcpy (b, a, size);
t = clock_get_ns () - t;
printf ("%dK: %.2f ", size / 1024, (double)size * ITERS3 / t);
}
printf ("\n");
printf ("\nUnaligned forwards memmove (bytes/ns):\n");
for (int f = 0; funtab[f].name != 0; f++)
{
printf ("%22s ", funtab[f].name);
for (int size = 1024; size <= 65536; size *= 2)
{
uint64_t t = clock_get_ns ();
for (int i = 0; i < ITERS3; i++)
funtab[f].fun (a, a + 256 + (i & 31), size);
t = clock_get_ns () - t;
printf ("%dK: %.2f ", size / 1024, (double)size * ITERS3 / t);
}
printf ("\n");
}
printf ("\nUnaligned backwards memmove (bytes/ns):\n");
for (int f = 0; funtab[f].name != 0; f++)
{
printf ("%22s ", funtab[f].name);
for (int size = 1024; size <= 65536; size *= 2)
{
uint64_t t = clock_get_ns ();
for (int i = 0; i < ITERS3; i++)
funtab[f].fun (a + 256 + (i & 31), a, size);
t = clock_get_ns () - t;
printf ("%dK: %.2f ", size / 1024, (double)size * ITERS3 / t);
}
printf ("\n");
}
printf ("\n");
return 0;
}