blob: 67682eb6de98a6cc4da9f5e62c5299c83363ec34 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.optim.nonlinear.vector.jacobian;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.DiagonalMatrix;
import org.apache.commons.math3.linear.DecompositionSolver;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.QRDecomposition;
import org.apache.commons.math3.linear.EigenDecomposition;
import org.apache.commons.math3.optim.OptimizationData;
import org.apache.commons.math3.optim.ConvergenceChecker;
import org.apache.commons.math3.optim.PointVectorValuePair;
import org.apache.commons.math3.optim.nonlinear.vector.Weight;
import org.apache.commons.math3.optim.nonlinear.vector.JacobianMultivariateVectorOptimizer;
import org.apache.commons.math3.util.FastMath;
/**
* Base class for implementing least-squares optimizers.
* It provides methods for error estimation.
*
* @since 3.1
* @deprecated All classes and interfaces in this package are deprecated.
* The optimizers that were provided here were moved to the
* {@link org.apache.commons.math3.fitting.leastsquares} package
* (cf. MATH-1008).
*/
@Deprecated
public abstract class AbstractLeastSquaresOptimizer
extends JacobianMultivariateVectorOptimizer {
/** Square-root of the weight matrix. */
private RealMatrix weightMatrixSqrt;
/** Cost value (square root of the sum of the residuals). */
private double cost;
/**
* @param checker Convergence checker.
*/
protected AbstractLeastSquaresOptimizer(ConvergenceChecker<PointVectorValuePair> checker) {
super(checker);
}
/**
* Computes the weighted Jacobian matrix.
*
* @param params Model parameters at which to compute the Jacobian.
* @return the weighted Jacobian: W<sup>1/2</sup> J.
* @throws DimensionMismatchException if the Jacobian dimension does not
* match problem dimension.
*/
protected RealMatrix computeWeightedJacobian(double[] params) {
return weightMatrixSqrt.multiply(MatrixUtils.createRealMatrix(computeJacobian(params)));
}
/**
* Computes the cost.
*
* @param residuals Residuals.
* @return the cost.
* @see #computeResiduals(double[])
*/
protected double computeCost(double[] residuals) {
final ArrayRealVector r = new ArrayRealVector(residuals);
return FastMath.sqrt(r.dotProduct(getWeight().operate(r)));
}
/**
* Gets the root-mean-square (RMS) value.
*
* The RMS the root of the arithmetic mean of the square of all weighted
* residuals.
* This is related to the criterion that is minimized by the optimizer
* as follows: If <em>c</em> if the criterion, and <em>n</em> is the
* number of measurements, then the RMS is <em>sqrt (c/n)</em>.
*
* @return the RMS value.
*/
public double getRMS() {
return FastMath.sqrt(getChiSquare() / getTargetSize());
}
/**
* Get a Chi-Square-like value assuming the N residuals follow N
* distinct normal distributions centered on 0 and whose variances are
* the reciprocal of the weights.
* @return chi-square value
*/
public double getChiSquare() {
return cost * cost;
}
/**
* Gets the square-root of the weight matrix.
*
* @return the square-root of the weight matrix.
*/
public RealMatrix getWeightSquareRoot() {
return weightMatrixSqrt.copy();
}
/**
* Sets the cost.
*
* @param cost Cost value.
*/
protected void setCost(double cost) {
this.cost = cost;
}
/**
* Get the covariance matrix of the optimized parameters.
* <br/>
* Note that this operation involves the inversion of the
* <code>J<sup>T</sup>J</code> matrix, where {@code J} is the
* Jacobian matrix.
* The {@code threshold} parameter is a way for the caller to specify
* that the result of this computation should be considered meaningless,
* and thus trigger an exception.
*
* @param params Model parameters.
* @param threshold Singularity threshold.
* @return the covariance matrix.
* @throws org.apache.commons.math3.linear.SingularMatrixException
* if the covariance matrix cannot be computed (singular problem).
*/
public double[][] computeCovariances(double[] params,
double threshold) {
// Set up the Jacobian.
final RealMatrix j = computeWeightedJacobian(params);
// Compute transpose(J)J.
final RealMatrix jTj = j.transpose().multiply(j);
// Compute the covariances matrix.
final DecompositionSolver solver
= new QRDecomposition(jTj, threshold).getSolver();
return solver.getInverse().getData();
}
/**
* Computes an estimate of the standard deviation of the parameters. The
* returned values are the square root of the diagonal coefficients of the
* covariance matrix, {@code sd(a[i]) ~= sqrt(C[i][i])}, where {@code a[i]}
* is the optimized value of the {@code i}-th parameter, and {@code C} is
* the covariance matrix.
*
* @param params Model parameters.
* @param covarianceSingularityThreshold Singularity threshold (see
* {@link #computeCovariances(double[],double) computeCovariances}).
* @return an estimate of the standard deviation of the optimized parameters
* @throws org.apache.commons.math3.linear.SingularMatrixException
* if the covariance matrix cannot be computed.
*/
public double[] computeSigma(double[] params,
double covarianceSingularityThreshold) {
final int nC = params.length;
final double[] sig = new double[nC];
final double[][] cov = computeCovariances(params, covarianceSingularityThreshold);
for (int i = 0; i < nC; ++i) {
sig[i] = FastMath.sqrt(cov[i][i]);
}
return sig;
}
/**
* {@inheritDoc}
*
* @param optData Optimization data. In addition to those documented in
* {@link JacobianMultivariateVectorOptimizer#parseOptimizationData(OptimizationData[])
* JacobianMultivariateVectorOptimizer}, this method will register the following data:
* <ul>
* <li>{@link org.apache.commons.math3.optim.nonlinear.vector.Weight}</li>
* </ul>
* @return {@inheritDoc}
* @throws TooManyEvaluationsException if the maximal number of
* evaluations is exceeded.
* @throws DimensionMismatchException if the initial guess, target, and weight
* arguments have inconsistent dimensions.
*/
@Override
public PointVectorValuePair optimize(OptimizationData... optData)
throws TooManyEvaluationsException {
// Set up base class and perform computation.
return super.optimize(optData);
}
/**
* Computes the residuals.
* The residual is the difference between the observed (target)
* values and the model (objective function) value.
* There is one residual for each element of the vector-valued
* function.
*
* @param objectiveValue Value of the the objective function. This is
* the value returned from a call to
* {@link #computeObjectiveValue(double[]) computeObjectiveValue}
* (whose array argument contains the model parameters).
* @return the residuals.
* @throws DimensionMismatchException if {@code params} has a wrong
* length.
*/
protected double[] computeResiduals(double[] objectiveValue) {
final double[] target = getTarget();
if (objectiveValue.length != target.length) {
throw new DimensionMismatchException(target.length,
objectiveValue.length);
}
final double[] residuals = new double[target.length];
for (int i = 0; i < target.length; i++) {
residuals[i] = target[i] - objectiveValue[i];
}
return residuals;
}
/**
* Scans the list of (required and optional) optimization data that
* characterize the problem.
* If the weight matrix is specified, the {@link #weightMatrixSqrt}
* field is recomputed.
*
* @param optData Optimization data. The following data will be looked for:
* <ul>
* <li>{@link Weight}</li>
* </ul>
*/
@Override
protected void parseOptimizationData(OptimizationData... optData) {
// Allow base class to register its own data.
super.parseOptimizationData(optData);
// The existing values (as set by the previous call) are reused if
// not provided in the argument list.
for (OptimizationData data : optData) {
if (data instanceof Weight) {
weightMatrixSqrt = squareRoot(((Weight) data).getWeight());
// If more data must be parsed, this statement _must_ be
// changed to "continue".
break;
}
}
}
/**
* Computes the square-root of the weight matrix.
*
* @param m Symmetric, positive-definite (weight) matrix.
* @return the square-root of the weight matrix.
*/
private RealMatrix squareRoot(RealMatrix m) {
if (m instanceof DiagonalMatrix) {
final int dim = m.getRowDimension();
final RealMatrix sqrtM = new DiagonalMatrix(dim);
for (int i = 0; i < dim; i++) {
sqrtM.setEntry(i, i, FastMath.sqrt(m.getEntry(i, i)));
}
return sqrtM;
} else {
final EigenDecomposition dec = new EigenDecomposition(m);
return dec.getSquareRoot();
}
}
}