blob: efc7d1ede825d1b24fa085e1801d1b600fcd1646 [file] [log] [blame]
Robin Murphye5fc9752016-01-26 17:13:13 +00001/*
2 * CPU-agnostic ARM page table allocator.
3 *
4 * ARMv7 Short-descriptor format, supporting
5 * - Basic memory attributes
6 * - Simplified access permissions (AP[2:1] model)
7 * - Backwards-compatible TEX remap
8 * - Large pages/supersections (if indicated by the caller)
9 *
10 * Not supporting:
11 * - Legacy access permissions (AP[2:0] model)
12 *
13 * Almost certainly never supporting:
14 * - PXN
15 * - Domains
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License version 2 as
19 * published by the Free Software Foundation.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program. If not, see <http://www.gnu.org/licenses/>.
28 *
29 * Copyright (C) 2014-2015 ARM Limited
30 * Copyright (c) 2014-2015 MediaTek Inc.
31 */
32
33#define pr_fmt(fmt) "arm-v7s io-pgtable: " fmt
34
35#include <linux/dma-mapping.h>
36#include <linux/gfp.h>
37#include <linux/iommu.h>
38#include <linux/kernel.h>
39#include <linux/kmemleak.h>
40#include <linux/sizes.h>
41#include <linux/slab.h>
42#include <linux/types.h>
43
44#include <asm/barrier.h>
45
46#include "io-pgtable.h"
47
48/* Struct accessors */
49#define io_pgtable_to_data(x) \
50 container_of((x), struct arm_v7s_io_pgtable, iop)
51
52#define io_pgtable_ops_to_data(x) \
53 io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
54
55/*
56 * We have 32 bits total; 12 bits resolved at level 1, 8 bits at level 2,
57 * and 12 bits in a page. With some carefully-chosen coefficients we can
58 * hide the ugly inconsistencies behind these macros and at least let the
59 * rest of the code pretend to be somewhat sane.
60 */
61#define ARM_V7S_ADDR_BITS 32
62#define _ARM_V7S_LVL_BITS(lvl) (16 - (lvl) * 4)
63#define ARM_V7S_LVL_SHIFT(lvl) (ARM_V7S_ADDR_BITS - (4 + 8 * (lvl)))
64#define ARM_V7S_TABLE_SHIFT 10
65
66#define ARM_V7S_PTES_PER_LVL(lvl) (1 << _ARM_V7S_LVL_BITS(lvl))
67#define ARM_V7S_TABLE_SIZE(lvl) \
68 (ARM_V7S_PTES_PER_LVL(lvl) * sizeof(arm_v7s_iopte))
69
70#define ARM_V7S_BLOCK_SIZE(lvl) (1UL << ARM_V7S_LVL_SHIFT(lvl))
71#define ARM_V7S_LVL_MASK(lvl) ((u32)(~0U << ARM_V7S_LVL_SHIFT(lvl)))
72#define ARM_V7S_TABLE_MASK ((u32)(~0U << ARM_V7S_TABLE_SHIFT))
73#define _ARM_V7S_IDX_MASK(lvl) (ARM_V7S_PTES_PER_LVL(lvl) - 1)
74#define ARM_V7S_LVL_IDX(addr, lvl) ({ \
75 int _l = lvl; \
76 ((u32)(addr) >> ARM_V7S_LVL_SHIFT(_l)) & _ARM_V7S_IDX_MASK(_l); \
77})
78
79/*
80 * Large page/supersection entries are effectively a block of 16 page/section
81 * entries, along the lines of the LPAE contiguous hint, but all with the
82 * same output address. For want of a better common name we'll call them
83 * "contiguous" versions of their respective page/section entries here, but
84 * noting the distinction (WRT to TLB maintenance) that they represent *one*
85 * entry repeated 16 times, not 16 separate entries (as in the LPAE case).
86 */
87#define ARM_V7S_CONT_PAGES 16
88
89/* PTE type bits: these are all mixed up with XN/PXN bits in most cases */
90#define ARM_V7S_PTE_TYPE_TABLE 0x1
91#define ARM_V7S_PTE_TYPE_PAGE 0x2
92#define ARM_V7S_PTE_TYPE_CONT_PAGE 0x1
93
94#define ARM_V7S_PTE_IS_VALID(pte) (((pte) & 0x3) != 0)
95#define ARM_V7S_PTE_IS_TABLE(pte, lvl) (lvl == 1 && ((pte) & ARM_V7S_PTE_TYPE_TABLE))
96
97/* Page table bits */
98#define ARM_V7S_ATTR_XN(lvl) BIT(4 * (2 - (lvl)))
99#define ARM_V7S_ATTR_B BIT(2)
100#define ARM_V7S_ATTR_C BIT(3)
101#define ARM_V7S_ATTR_NS_TABLE BIT(3)
102#define ARM_V7S_ATTR_NS_SECTION BIT(19)
103
104#define ARM_V7S_CONT_SECTION BIT(18)
105#define ARM_V7S_CONT_PAGE_XN_SHIFT 15
106
107/*
108 * The attribute bits are consistently ordered*, but occupy bits [17:10] of
109 * a level 1 PTE vs. bits [11:4] at level 2. Thus we define the individual
110 * fields relative to that 8-bit block, plus a total shift relative to the PTE.
111 */
112#define ARM_V7S_ATTR_SHIFT(lvl) (16 - (lvl) * 6)
113
114#define ARM_V7S_ATTR_MASK 0xff
115#define ARM_V7S_ATTR_AP0 BIT(0)
116#define ARM_V7S_ATTR_AP1 BIT(1)
117#define ARM_V7S_ATTR_AP2 BIT(5)
118#define ARM_V7S_ATTR_S BIT(6)
119#define ARM_V7S_ATTR_NG BIT(7)
120#define ARM_V7S_TEX_SHIFT 2
121#define ARM_V7S_TEX_MASK 0x7
122#define ARM_V7S_ATTR_TEX(val) (((val) & ARM_V7S_TEX_MASK) << ARM_V7S_TEX_SHIFT)
123
124/* *well, except for TEX on level 2 large pages, of course :( */
125#define ARM_V7S_CONT_PAGE_TEX_SHIFT 6
126#define ARM_V7S_CONT_PAGE_TEX_MASK (ARM_V7S_TEX_MASK << ARM_V7S_CONT_PAGE_TEX_SHIFT)
127
128/* Simplified access permissions */
129#define ARM_V7S_PTE_AF ARM_V7S_ATTR_AP0
130#define ARM_V7S_PTE_AP_UNPRIV ARM_V7S_ATTR_AP1
131#define ARM_V7S_PTE_AP_RDONLY ARM_V7S_ATTR_AP2
132
133/* Register bits */
134#define ARM_V7S_RGN_NC 0
135#define ARM_V7S_RGN_WBWA 1
136#define ARM_V7S_RGN_WT 2
137#define ARM_V7S_RGN_WB 3
138
139#define ARM_V7S_PRRR_TYPE_DEVICE 1
140#define ARM_V7S_PRRR_TYPE_NORMAL 2
141#define ARM_V7S_PRRR_TR(n, type) (((type) & 0x3) << ((n) * 2))
142#define ARM_V7S_PRRR_DS0 BIT(16)
143#define ARM_V7S_PRRR_DS1 BIT(17)
144#define ARM_V7S_PRRR_NS0 BIT(18)
145#define ARM_V7S_PRRR_NS1 BIT(19)
146#define ARM_V7S_PRRR_NOS(n) BIT((n) + 24)
147
148#define ARM_V7S_NMRR_IR(n, attr) (((attr) & 0x3) << ((n) * 2))
149#define ARM_V7S_NMRR_OR(n, attr) (((attr) & 0x3) << ((n) * 2 + 16))
150
151#define ARM_V7S_TTBR_S BIT(1)
152#define ARM_V7S_TTBR_NOS BIT(5)
153#define ARM_V7S_TTBR_ORGN_ATTR(attr) (((attr) & 0x3) << 3)
154#define ARM_V7S_TTBR_IRGN_ATTR(attr) \
155 ((((attr) & 0x1) << 6) | (((attr) & 0x2) >> 1))
156
157#define ARM_V7S_TCR_PD1 BIT(5)
158
159typedef u32 arm_v7s_iopte;
160
161static bool selftest_running;
162
163struct arm_v7s_io_pgtable {
164 struct io_pgtable iop;
165
166 arm_v7s_iopte *pgd;
167 struct kmem_cache *l2_tables;
168};
169
170static dma_addr_t __arm_v7s_dma_addr(void *pages)
171{
172 return (dma_addr_t)virt_to_phys(pages);
173}
174
175static arm_v7s_iopte *iopte_deref(arm_v7s_iopte pte, int lvl)
176{
177 if (ARM_V7S_PTE_IS_TABLE(pte, lvl))
178 pte &= ARM_V7S_TABLE_MASK;
179 else
180 pte &= ARM_V7S_LVL_MASK(lvl);
181 return phys_to_virt(pte);
182}
183
184static void *__arm_v7s_alloc_table(int lvl, gfp_t gfp,
185 struct arm_v7s_io_pgtable *data)
186{
187 struct device *dev = data->iop.cfg.iommu_dev;
188 dma_addr_t dma;
189 size_t size = ARM_V7S_TABLE_SIZE(lvl);
190 void *table = NULL;
191
192 if (lvl == 1)
193 table = (void *)__get_dma_pages(__GFP_ZERO, get_order(size));
194 else if (lvl == 2)
195 table = kmem_cache_zalloc(data->l2_tables, gfp);
196 if (table && !selftest_running) {
197 dma = dma_map_single(dev, table, size, DMA_TO_DEVICE);
198 if (dma_mapping_error(dev, dma))
199 goto out_free;
200 /*
201 * We depend on the IOMMU being able to work with any physical
202 * address directly, so if the DMA layer suggests otherwise by
203 * translating or truncating them, that bodes very badly...
204 */
205 if (dma != virt_to_phys(table))
206 goto out_unmap;
207 }
208 kmemleak_ignore(table);
209 return table;
210
211out_unmap:
212 dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n");
213 dma_unmap_single(dev, dma, size, DMA_TO_DEVICE);
214out_free:
215 if (lvl == 1)
216 free_pages((unsigned long)table, get_order(size));
217 else
218 kmem_cache_free(data->l2_tables, table);
219 return NULL;
220}
221
222static void __arm_v7s_free_table(void *table, int lvl,
223 struct arm_v7s_io_pgtable *data)
224{
225 struct device *dev = data->iop.cfg.iommu_dev;
226 size_t size = ARM_V7S_TABLE_SIZE(lvl);
227
228 if (!selftest_running)
229 dma_unmap_single(dev, __arm_v7s_dma_addr(table), size,
230 DMA_TO_DEVICE);
231 if (lvl == 1)
232 free_pages((unsigned long)table, get_order(size));
233 else
234 kmem_cache_free(data->l2_tables, table);
235}
236
237static void __arm_v7s_pte_sync(arm_v7s_iopte *ptep, int num_entries,
238 struct io_pgtable_cfg *cfg)
239{
240 if (selftest_running)
241 return;
242
243 dma_sync_single_for_device(cfg->iommu_dev, __arm_v7s_dma_addr(ptep),
244 num_entries * sizeof(*ptep), DMA_TO_DEVICE);
245}
246static void __arm_v7s_set_pte(arm_v7s_iopte *ptep, arm_v7s_iopte pte,
247 int num_entries, struct io_pgtable_cfg *cfg)
248{
249 int i;
250
251 for (i = 0; i < num_entries; i++)
252 ptep[i] = pte;
253
254 __arm_v7s_pte_sync(ptep, num_entries, cfg);
255}
256
257static arm_v7s_iopte arm_v7s_prot_to_pte(int prot, int lvl,
258 struct io_pgtable_cfg *cfg)
259{
260 bool ap = !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS);
261 arm_v7s_iopte pte = ARM_V7S_ATTR_NG | ARM_V7S_ATTR_S |
262 ARM_V7S_ATTR_TEX(1);
263
264 if (ap) {
265 pte |= ARM_V7S_PTE_AF | ARM_V7S_PTE_AP_UNPRIV;
266 if (!(prot & IOMMU_WRITE))
267 pte |= ARM_V7S_PTE_AP_RDONLY;
268 }
269 pte <<= ARM_V7S_ATTR_SHIFT(lvl);
270
271 if ((prot & IOMMU_NOEXEC) && ap)
272 pte |= ARM_V7S_ATTR_XN(lvl);
273 if (prot & IOMMU_CACHE)
274 pte |= ARM_V7S_ATTR_B | ARM_V7S_ATTR_C;
275
276 return pte;
277}
278
279static int arm_v7s_pte_to_prot(arm_v7s_iopte pte, int lvl)
280{
281 int prot = IOMMU_READ;
282
283 if (pte & (ARM_V7S_PTE_AP_RDONLY << ARM_V7S_ATTR_SHIFT(lvl)))
284 prot |= IOMMU_WRITE;
285 if (pte & ARM_V7S_ATTR_C)
286 prot |= IOMMU_CACHE;
287
288 return prot;
289}
290
291static arm_v7s_iopte arm_v7s_pte_to_cont(arm_v7s_iopte pte, int lvl)
292{
293 if (lvl == 1) {
294 pte |= ARM_V7S_CONT_SECTION;
295 } else if (lvl == 2) {
296 arm_v7s_iopte xn = pte & ARM_V7S_ATTR_XN(lvl);
297 arm_v7s_iopte tex = pte & ARM_V7S_CONT_PAGE_TEX_MASK;
298
299 pte ^= xn | tex | ARM_V7S_PTE_TYPE_PAGE;
300 pte |= (xn << ARM_V7S_CONT_PAGE_XN_SHIFT) |
301 (tex << ARM_V7S_CONT_PAGE_TEX_SHIFT) |
302 ARM_V7S_PTE_TYPE_CONT_PAGE;
303 }
304 return pte;
305}
306
307static arm_v7s_iopte arm_v7s_cont_to_pte(arm_v7s_iopte pte, int lvl)
308{
309 if (lvl == 1) {
310 pte &= ~ARM_V7S_CONT_SECTION;
311 } else if (lvl == 2) {
312 arm_v7s_iopte xn = pte & BIT(ARM_V7S_CONT_PAGE_XN_SHIFT);
313 arm_v7s_iopte tex = pte & (ARM_V7S_CONT_PAGE_TEX_MASK <<
314 ARM_V7S_CONT_PAGE_TEX_SHIFT);
315
316 pte ^= xn | tex | ARM_V7S_PTE_TYPE_CONT_PAGE;
317 pte |= (xn >> ARM_V7S_CONT_PAGE_XN_SHIFT) |
318 (tex >> ARM_V7S_CONT_PAGE_TEX_SHIFT) |
319 ARM_V7S_PTE_TYPE_PAGE;
320 }
321 return pte;
322}
323
324static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl)
325{
326 if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte, lvl))
327 return pte & ARM_V7S_CONT_SECTION;
328 else if (lvl == 2)
329 return !(pte & ARM_V7S_PTE_TYPE_PAGE);
330 return false;
331}
332
333static int __arm_v7s_unmap(struct arm_v7s_io_pgtable *, unsigned long,
334 size_t, int, arm_v7s_iopte *);
335
336static int arm_v7s_init_pte(struct arm_v7s_io_pgtable *data,
337 unsigned long iova, phys_addr_t paddr, int prot,
338 int lvl, int num_entries, arm_v7s_iopte *ptep)
339{
340 struct io_pgtable_cfg *cfg = &data->iop.cfg;
341 arm_v7s_iopte pte = arm_v7s_prot_to_pte(prot, lvl, cfg);
342 int i;
343
344 for (i = 0; i < num_entries; i++)
345 if (ARM_V7S_PTE_IS_TABLE(ptep[i], lvl)) {
346 /*
347 * We need to unmap and free the old table before
348 * overwriting it with a block entry.
349 */
350 arm_v7s_iopte *tblp;
351 size_t sz = ARM_V7S_BLOCK_SIZE(lvl);
352
353 tblp = ptep - ARM_V7S_LVL_IDX(iova, lvl);
354 if (WARN_ON(__arm_v7s_unmap(data, iova + i * sz,
355 sz, lvl, tblp) != sz))
356 return -EINVAL;
357 } else if (ptep[i]) {
358 /* We require an unmap first */
359 WARN_ON(!selftest_running);
360 return -EEXIST;
361 }
362
363 pte |= ARM_V7S_PTE_TYPE_PAGE;
364 if (lvl == 1 && (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS))
365 pte |= ARM_V7S_ATTR_NS_SECTION;
366
367 if (num_entries > 1)
368 pte = arm_v7s_pte_to_cont(pte, lvl);
369
370 pte |= paddr & ARM_V7S_LVL_MASK(lvl);
371
372 __arm_v7s_set_pte(ptep, pte, num_entries, cfg);
373 return 0;
374}
375
376static int __arm_v7s_map(struct arm_v7s_io_pgtable *data, unsigned long iova,
377 phys_addr_t paddr, size_t size, int prot,
378 int lvl, arm_v7s_iopte *ptep)
379{
380 struct io_pgtable_cfg *cfg = &data->iop.cfg;
381 arm_v7s_iopte pte, *cptep;
382 int num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
383
384 /* Find our entry at the current level */
385 ptep += ARM_V7S_LVL_IDX(iova, lvl);
386
387 /* If we can install a leaf entry at this level, then do so */
388 if (num_entries)
389 return arm_v7s_init_pte(data, iova, paddr, prot,
390 lvl, num_entries, ptep);
391
392 /* We can't allocate tables at the final level */
393 if (WARN_ON(lvl == 2))
394 return -EINVAL;
395
396 /* Grab a pointer to the next level */
397 pte = *ptep;
398 if (!pte) {
399 cptep = __arm_v7s_alloc_table(lvl + 1, GFP_ATOMIC, data);
400 if (!cptep)
401 return -ENOMEM;
402
403 pte = virt_to_phys(cptep) | ARM_V7S_PTE_TYPE_TABLE;
404 if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
405 pte |= ARM_V7S_ATTR_NS_TABLE;
406
407 __arm_v7s_set_pte(ptep, pte, 1, cfg);
408 } else {
409 cptep = iopte_deref(pte, lvl);
410 }
411
412 /* Rinse, repeat */
413 return __arm_v7s_map(data, iova, paddr, size, prot, lvl + 1, cptep);
414}
415
416static int arm_v7s_map(struct io_pgtable_ops *ops, unsigned long iova,
417 phys_addr_t paddr, size_t size, int prot)
418{
419 struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
420 struct io_pgtable_cfg *cfg = &data->iop.cfg;
421 const struct iommu_gather_ops *tlb = cfg->tlb;
422 void *cookie = data->iop.cookie;
423 int ret;
424
425 /* If no access, then nothing to do */
426 if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
427 return 0;
428
429 ret = __arm_v7s_map(data, iova, paddr, size, prot, 1, data->pgd);
430 /*
431 * Synchronise all PTE updates for the new mapping before there's
432 * a chance for anything to kick off a table walk for the new iova.
433 */
434 if (cfg->quirks & IO_PGTABLE_QUIRK_TLBI_ON_MAP) {
435 tlb->tlb_add_flush(iova, size, ARM_V7S_BLOCK_SIZE(2), false,
436 cookie);
437 tlb->tlb_sync(cookie);
438 } else {
439 wmb();
440 }
441
442 return ret;
443}
444
445static void arm_v7s_free_pgtable(struct io_pgtable *iop)
446{
447 struct arm_v7s_io_pgtable *data = io_pgtable_to_data(iop);
448 int i;
449
450 for (i = 0; i < ARM_V7S_PTES_PER_LVL(1); i++) {
451 arm_v7s_iopte pte = data->pgd[i];
452
453 if (ARM_V7S_PTE_IS_TABLE(pte, 1))
454 __arm_v7s_free_table(iopte_deref(pte, 1), 2, data);
455 }
456 __arm_v7s_free_table(data->pgd, 1, data);
457 kmem_cache_destroy(data->l2_tables);
458 kfree(data);
459}
460
461static void arm_v7s_split_cont(struct arm_v7s_io_pgtable *data,
462 unsigned long iova, int idx, int lvl,
463 arm_v7s_iopte *ptep)
464{
465 struct io_pgtable_cfg *cfg = &data->iop.cfg;
466 void *cookie = data->iop.cookie;
467 arm_v7s_iopte pte;
468 size_t size = ARM_V7S_BLOCK_SIZE(lvl);
469 int i;
470
471 ptep -= idx & (ARM_V7S_CONT_PAGES - 1);
472 pte = arm_v7s_cont_to_pte(*ptep, lvl);
473 for (i = 0; i < ARM_V7S_CONT_PAGES; i++) {
474 ptep[i] = pte;
475 pte += size;
476 }
477
478 __arm_v7s_pte_sync(ptep, ARM_V7S_CONT_PAGES, cfg);
479
480 size *= ARM_V7S_CONT_PAGES;
481 cfg->tlb->tlb_add_flush(iova, size, size, true, cookie);
482 cfg->tlb->tlb_sync(cookie);
483}
484
485static int arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable *data,
486 unsigned long iova, size_t size,
487 arm_v7s_iopte *ptep)
488{
489 unsigned long blk_start, blk_end, blk_size;
490 phys_addr_t blk_paddr;
491 arm_v7s_iopte table = 0;
492 struct io_pgtable_cfg *cfg = &data->iop.cfg;
493 int prot = arm_v7s_pte_to_prot(*ptep, 1);
494
495 blk_size = ARM_V7S_BLOCK_SIZE(1);
496 blk_start = iova & ARM_V7S_LVL_MASK(1);
497 blk_end = blk_start + ARM_V7S_BLOCK_SIZE(1);
498 blk_paddr = *ptep & ARM_V7S_LVL_MASK(1);
499
500 for (; blk_start < blk_end; blk_start += size, blk_paddr += size) {
501 arm_v7s_iopte *tablep;
502
503 /* Unmap! */
504 if (blk_start == iova)
505 continue;
506
507 /* __arm_v7s_map expects a pointer to the start of the table */
508 tablep = &table - ARM_V7S_LVL_IDX(blk_start, 1);
509 if (__arm_v7s_map(data, blk_start, blk_paddr, size, prot, 1,
510 tablep) < 0) {
511 if (table) {
512 /* Free the table we allocated */
513 tablep = iopte_deref(table, 1);
514 __arm_v7s_free_table(tablep, 2, data);
515 }
516 return 0; /* Bytes unmapped */
517 }
518 }
519
520 __arm_v7s_set_pte(ptep, table, 1, cfg);
521 iova &= ~(blk_size - 1);
522 cfg->tlb->tlb_add_flush(iova, blk_size, blk_size, true, data->iop.cookie);
523 return size;
524}
525
526static int __arm_v7s_unmap(struct arm_v7s_io_pgtable *data,
527 unsigned long iova, size_t size, int lvl,
528 arm_v7s_iopte *ptep)
529{
530 arm_v7s_iopte pte[ARM_V7S_CONT_PAGES];
531 struct io_pgtable_cfg *cfg = &data->iop.cfg;
532 const struct iommu_gather_ops *tlb = cfg->tlb;
533 void *cookie = data->iop.cookie;
534 int idx, i = 0, num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
535
536 /* Something went horribly wrong and we ran out of page table */
537 if (WARN_ON(lvl > 2))
538 return 0;
539
540 idx = ARM_V7S_LVL_IDX(iova, lvl);
541 ptep += idx;
542 do {
543 if (WARN_ON(!ARM_V7S_PTE_IS_VALID(ptep[i])))
544 return 0;
545 pte[i] = ptep[i];
546 } while (++i < num_entries);
547
548 /*
549 * If we've hit a contiguous 'large page' entry at this level, it
550 * needs splitting first, unless we're unmapping the whole lot.
551 */
552 if (num_entries <= 1 && arm_v7s_pte_is_cont(pte[0], lvl))
553 arm_v7s_split_cont(data, iova, idx, lvl, ptep);
554
555 /* If the size matches this level, we're in the right place */
556 if (num_entries) {
557 size_t blk_size = ARM_V7S_BLOCK_SIZE(lvl);
558
559 __arm_v7s_set_pte(ptep, 0, num_entries, cfg);
560
561 for (i = 0; i < num_entries; i++) {
562 if (ARM_V7S_PTE_IS_TABLE(pte[i], lvl)) {
563 /* Also flush any partial walks */
564 tlb->tlb_add_flush(iova, blk_size,
565 ARM_V7S_BLOCK_SIZE(lvl + 1),
566 false, cookie);
567 tlb->tlb_sync(cookie);
568 ptep = iopte_deref(pte[i], lvl);
569 __arm_v7s_free_table(ptep, lvl + 1, data);
570 } else {
571 tlb->tlb_add_flush(iova, blk_size, blk_size,
572 true, cookie);
573 }
574 iova += blk_size;
575 }
576 return size;
577 } else if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte[0], lvl)) {
578 /*
579 * Insert a table at the next level to map the old region,
580 * minus the part we want to unmap
581 */
582 return arm_v7s_split_blk_unmap(data, iova, size, ptep);
583 }
584
585 /* Keep on walkin' */
586 ptep = iopte_deref(pte[0], lvl);
587 return __arm_v7s_unmap(data, iova, size, lvl + 1, ptep);
588}
589
590static int arm_v7s_unmap(struct io_pgtable_ops *ops, unsigned long iova,
591 size_t size)
592{
593 size_t unmapped;
594 struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
595 struct io_pgtable *iop = &data->iop;
596
597 unmapped = __arm_v7s_unmap(data, iova, size, 1, data->pgd);
598 if (unmapped)
599 iop->cfg.tlb->tlb_sync(iop->cookie);
600
601 return unmapped;
602}
603
604static phys_addr_t arm_v7s_iova_to_phys(struct io_pgtable_ops *ops,
605 unsigned long iova)
606{
607 struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
608 arm_v7s_iopte *ptep = data->pgd, pte;
609 int lvl = 0;
610 u32 mask;
611
612 do {
613 pte = ptep[ARM_V7S_LVL_IDX(iova, ++lvl)];
614 ptep = iopte_deref(pte, lvl);
615 } while (ARM_V7S_PTE_IS_TABLE(pte, lvl));
616
617 if (!ARM_V7S_PTE_IS_VALID(pte))
618 return 0;
619
620 mask = ARM_V7S_LVL_MASK(lvl);
621 if (arm_v7s_pte_is_cont(pte, lvl))
622 mask *= ARM_V7S_CONT_PAGES;
623 return (pte & mask) | (iova & ~mask);
624}
625
626static struct io_pgtable *arm_v7s_alloc_pgtable(struct io_pgtable_cfg *cfg,
627 void *cookie)
628{
629 struct arm_v7s_io_pgtable *data;
630
631 if (cfg->ias > ARM_V7S_ADDR_BITS || cfg->oas > ARM_V7S_ADDR_BITS)
632 return NULL;
633
634 data = kmalloc(sizeof(*data), GFP_KERNEL);
635 if (!data)
636 return NULL;
637
638 data->l2_tables = kmem_cache_create("io-pgtable_armv7s_l2",
639 ARM_V7S_TABLE_SIZE(2),
640 ARM_V7S_TABLE_SIZE(2),
641 SLAB_CACHE_DMA, NULL);
642 if (!data->l2_tables)
643 goto out_free_data;
644
645 data->iop.ops = (struct io_pgtable_ops) {
646 .map = arm_v7s_map,
647 .unmap = arm_v7s_unmap,
648 .iova_to_phys = arm_v7s_iova_to_phys,
649 };
650
651 /* We have to do this early for __arm_v7s_alloc_table to work... */
652 data->iop.cfg = *cfg;
653
654 /*
655 * Unless the IOMMU driver indicates supersection support by
656 * having SZ_16M set in the initial bitmap, they won't be used.
657 */
658 cfg->pgsize_bitmap &= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
659
660 /* TCR: T0SZ=0, disable TTBR1 */
661 cfg->arm_v7s_cfg.tcr = ARM_V7S_TCR_PD1;
662
663 /*
664 * TEX remap: the indices used map to the closest equivalent types
665 * under the non-TEX-remap interpretation of those attribute bits,
666 * excepting various implementation-defined aspects of shareability.
667 */
668 cfg->arm_v7s_cfg.prrr = ARM_V7S_PRRR_TR(1, ARM_V7S_PRRR_TYPE_DEVICE) |
669 ARM_V7S_PRRR_TR(4, ARM_V7S_PRRR_TYPE_NORMAL) |
670 ARM_V7S_PRRR_TR(7, ARM_V7S_PRRR_TYPE_NORMAL) |
671 ARM_V7S_PRRR_DS0 | ARM_V7S_PRRR_DS1 |
672 ARM_V7S_PRRR_NS1 | ARM_V7S_PRRR_NOS(7);
673 cfg->arm_v7s_cfg.nmrr = ARM_V7S_NMRR_IR(7, ARM_V7S_RGN_WBWA) |
674 ARM_V7S_NMRR_OR(7, ARM_V7S_RGN_WBWA);
675
676 /* Looking good; allocate a pgd */
677 data->pgd = __arm_v7s_alloc_table(1, GFP_KERNEL, data);
678 if (!data->pgd)
679 goto out_free_data;
680
681 /* Ensure the empty pgd is visible before any actual TTBR write */
682 wmb();
683
684 /* TTBRs */
685 cfg->arm_v7s_cfg.ttbr[0] = virt_to_phys(data->pgd) |
686 ARM_V7S_TTBR_S | ARM_V7S_TTBR_NOS |
687 ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_WBWA) |
688 ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_WBWA);
689 cfg->arm_v7s_cfg.ttbr[1] = 0;
690 return &data->iop;
691
692out_free_data:
693 kmem_cache_destroy(data->l2_tables);
694 kfree(data);
695 return NULL;
696}
697
698struct io_pgtable_init_fns io_pgtable_arm_v7s_init_fns = {
699 .alloc = arm_v7s_alloc_pgtable,
700 .free = arm_v7s_free_pgtable,
701};
702
703#ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S_SELFTEST
704
705static struct io_pgtable_cfg *cfg_cookie;
706
707static void dummy_tlb_flush_all(void *cookie)
708{
709 WARN_ON(cookie != cfg_cookie);
710}
711
712static void dummy_tlb_add_flush(unsigned long iova, size_t size,
713 size_t granule, bool leaf, void *cookie)
714{
715 WARN_ON(cookie != cfg_cookie);
716 WARN_ON(!(size & cfg_cookie->pgsize_bitmap));
717}
718
719static void dummy_tlb_sync(void *cookie)
720{
721 WARN_ON(cookie != cfg_cookie);
722}
723
724static struct iommu_gather_ops dummy_tlb_ops = {
725 .tlb_flush_all = dummy_tlb_flush_all,
726 .tlb_add_flush = dummy_tlb_add_flush,
727 .tlb_sync = dummy_tlb_sync,
728};
729
730#define __FAIL(ops) ({ \
731 WARN(1, "selftest: test failed\n"); \
732 selftest_running = false; \
733 -EFAULT; \
734})
735
736static int __init arm_v7s_do_selftests(void)
737{
738 struct io_pgtable_ops *ops;
739 struct io_pgtable_cfg cfg = {
740 .tlb = &dummy_tlb_ops,
741 .oas = 32,
742 .ias = 32,
743 .quirks = IO_PGTABLE_QUIRK_ARM_NS,
744 .pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
745 };
746 unsigned int iova, size, iova_start;
747 unsigned int i, loopnr = 0;
748
749 selftest_running = true;
750
751 cfg_cookie = &cfg;
752
753 ops = alloc_io_pgtable_ops(ARM_V7S, &cfg, &cfg);
754 if (!ops) {
755 pr_err("selftest: failed to allocate io pgtable ops\n");
756 return -EINVAL;
757 }
758
759 /*
760 * Initial sanity checks.
761 * Empty page tables shouldn't provide any translations.
762 */
763 if (ops->iova_to_phys(ops, 42))
764 return __FAIL(ops);
765
766 if (ops->iova_to_phys(ops, SZ_1G + 42))
767 return __FAIL(ops);
768
769 if (ops->iova_to_phys(ops, SZ_2G + 42))
770 return __FAIL(ops);
771
772 /*
773 * Distinct mappings of different granule sizes.
774 */
775 iova = 0;
776 i = find_first_bit(&cfg.pgsize_bitmap, BITS_PER_LONG);
777 while (i != BITS_PER_LONG) {
778 size = 1UL << i;
779 if (ops->map(ops, iova, iova, size, IOMMU_READ |
780 IOMMU_WRITE |
781 IOMMU_NOEXEC |
782 IOMMU_CACHE))
783 return __FAIL(ops);
784
785 /* Overlapping mappings */
786 if (!ops->map(ops, iova, iova + size, size,
787 IOMMU_READ | IOMMU_NOEXEC))
788 return __FAIL(ops);
789
790 if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
791 return __FAIL(ops);
792
793 iova += SZ_16M;
794 i++;
795 i = find_next_bit(&cfg.pgsize_bitmap, BITS_PER_LONG, i);
796 loopnr++;
797 }
798
799 /* Partial unmap */
800 i = 1;
801 size = 1UL << __ffs(cfg.pgsize_bitmap);
802 while (i < loopnr) {
803 iova_start = i * SZ_16M;
804 if (ops->unmap(ops, iova_start + size, size) != size)
805 return __FAIL(ops);
806
807 /* Remap of partial unmap */
808 if (ops->map(ops, iova_start + size, size, size, IOMMU_READ))
809 return __FAIL(ops);
810
811 if (ops->iova_to_phys(ops, iova_start + size + 42)
812 != (size + 42))
813 return __FAIL(ops);
814 i++;
815 }
816
817 /* Full unmap */
818 iova = 0;
819 i = find_first_bit(&cfg.pgsize_bitmap, BITS_PER_LONG);
820 while (i != BITS_PER_LONG) {
821 size = 1UL << i;
822
823 if (ops->unmap(ops, iova, size) != size)
824 return __FAIL(ops);
825
826 if (ops->iova_to_phys(ops, iova + 42))
827 return __FAIL(ops);
828
829 /* Remap full block */
830 if (ops->map(ops, iova, iova, size, IOMMU_WRITE))
831 return __FAIL(ops);
832
833 if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
834 return __FAIL(ops);
835
836 iova += SZ_16M;
837 i++;
838 i = find_next_bit(&cfg.pgsize_bitmap, BITS_PER_LONG, i);
839 }
840
841 free_io_pgtable_ops(ops);
842
843 selftest_running = false;
844
845 pr_info("self test ok\n");
846 return 0;
847}
848subsys_initcall(arm_v7s_do_selftests);
849#endif