blob: 04c94ab6c18b19f7eac1ffc47a5e11bfe11bed38 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/arm/mach-sa1100/cpu-sa1110.c
3 *
4 * Copyright (C) 2001 Russell King
5 *
6 * $Id: cpu-sa1110.c,v 1.9 2002/07/06 16:53:18 rmk Exp $
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * Note: there are two erratas that apply to the SA1110 here:
13 * 7 - SDRAM auto-power-up failure (rev A0)
14 * 13 - Corruption of internal register reads/writes following
15 * SDRAM reads (rev A0, B0, B1)
16 *
17 * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
18 */
19#include <linux/types.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/cpufreq.h>
23#include <linux/delay.h>
24#include <linux/init.h>
25
26#include <asm/hardware.h>
27#include <asm/mach-types.h>
28#include <asm/io.h>
29#include <asm/system.h>
30
31#include "generic.h"
32
33#undef DEBUG
34
35static struct cpufreq_driver sa1110_driver;
36
37struct sdram_params {
38 u_char rows; /* bits */
39 u_char cas_latency; /* cycles */
40 u_char tck; /* clock cycle time (ns) */
41 u_char trcd; /* activate to r/w (ns) */
42 u_char trp; /* precharge to activate (ns) */
43 u_char twr; /* write recovery time (ns) */
44 u_short refresh; /* refresh time for array (us) */
45};
46
47struct sdram_info {
48 u_int mdcnfg;
49 u_int mdrefr;
50 u_int mdcas[3];
51};
52
53static struct sdram_params tc59sm716_cl2_params __initdata = {
54 .rows = 12,
55 .tck = 10,
56 .trcd = 20,
57 .trp = 20,
58 .twr = 10,
59 .refresh = 64000,
60 .cas_latency = 2,
61};
62
63static struct sdram_params tc59sm716_cl3_params __initdata = {
64 .rows = 12,
65 .tck = 8,
66 .trcd = 20,
67 .trp = 20,
68 .twr = 8,
69 .refresh = 64000,
70 .cas_latency = 3,
71};
72
73static struct sdram_params samsung_k4s641632d_tc75 __initdata = {
74 .rows = 14,
75 .tck = 9,
76 .trcd = 27,
77 .trp = 20,
78 .twr = 9,
79 .refresh = 64000,
80 .cas_latency = 3,
81};
82
83static struct sdram_params samsung_km416s4030ct __initdata = {
84 .rows = 13,
85 .tck = 8,
86 .trcd = 24, /* 3 CLKs */
87 .trp = 24, /* 3 CLKs */
88 .twr = 16, /* Trdl: 2 CLKs */
89 .refresh = 64000,
90 .cas_latency = 3,
91};
92
93static struct sdram_params wbond_w982516ah75l_cl3_params __initdata = {
94 .rows = 16,
95 .tck = 8,
96 .trcd = 20,
97 .trp = 20,
98 .twr = 8,
99 .refresh = 64000,
100 .cas_latency = 3,
101};
102
103static struct sdram_params sdram_params;
104
105/*
106 * Given a period in ns and frequency in khz, calculate the number of
107 * cycles of frequency in period. Note that we round up to the next
108 * cycle, even if we are only slightly over.
109 */
110static inline u_int ns_to_cycles(u_int ns, u_int khz)
111{
112 return (ns * khz + 999999) / 1000000;
113}
114
115/*
116 * Create the MDCAS register bit pattern.
117 */
118static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
119{
120 u_int shift;
121
122 rcd = 2 * rcd - 1;
123 shift = delayed + 1 + rcd;
124
125 mdcas[0] = (1 << rcd) - 1;
126 mdcas[0] |= 0x55555555 << shift;
127 mdcas[1] = mdcas[2] = 0x55555555 << (shift & 1);
128}
129
130static void
131sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
132 struct sdram_params *sdram)
133{
134 u_int mem_khz, sd_khz, trp, twr;
135
136 mem_khz = cpu_khz / 2;
137 sd_khz = mem_khz;
138
139 /*
140 * If SDCLK would invalidate the SDRAM timings,
141 * run SDCLK at half speed.
142 *
143 * CPU steppings prior to B2 must either run the memory at
144 * half speed or use delayed read latching (errata 13).
145 */
146 if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
147 (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000))
148 sd_khz /= 2;
149
150 sd->mdcnfg = MDCNFG & 0x007f007f;
151
152 twr = ns_to_cycles(sdram->twr, mem_khz);
153
154 /* trp should always be >1 */
155 trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
156 if (trp < 1)
157 trp = 1;
158
159 sd->mdcnfg |= trp << 8;
160 sd->mdcnfg |= trp << 24;
161 sd->mdcnfg |= sdram->cas_latency << 12;
162 sd->mdcnfg |= sdram->cas_latency << 28;
163 sd->mdcnfg |= twr << 14;
164 sd->mdcnfg |= twr << 30;
165
166 sd->mdrefr = MDREFR & 0xffbffff0;
167 sd->mdrefr |= 7;
168
169 if (sd_khz != mem_khz)
170 sd->mdrefr |= MDREFR_K1DB2;
171
172 /* initial number of '1's in MDCAS + 1 */
173 set_mdcas(sd->mdcas, sd_khz >= 62000, ns_to_cycles(sdram->trcd, mem_khz));
174
175#ifdef DEBUG
176 printk("MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
177 sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1], sd->mdcas[2]);
178#endif
179}
180
181/*
182 * Set the SDRAM refresh rate.
183 */
184static inline void sdram_set_refresh(u_int dri)
185{
186 MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
187 (void) MDREFR;
188}
189
190/*
191 * Update the refresh period. We do this such that we always refresh
192 * the SDRAMs within their permissible period. The refresh period is
193 * always a multiple of the memory clock (fixed at cpu_clock / 2).
194 *
195 * FIXME: we don't currently take account of burst accesses here,
196 * but neither do Intels DM nor Angel.
197 */
198static void
199sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
200{
201 u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
202 u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
203
204#ifdef DEBUG
205 mdelay(250);
206 printk("new dri value = %d\n", dri);
207#endif
208
209 sdram_set_refresh(dri);
210}
211
212/*
213 * Ok, set the CPU frequency.
214 */
215static int sa1110_target(struct cpufreq_policy *policy,
216 unsigned int target_freq,
217 unsigned int relation)
218{
219 struct sdram_params *sdram = &sdram_params;
220 struct cpufreq_freqs freqs;
221 struct sdram_info sd;
222 unsigned long flags;
223 unsigned int ppcr, unused;
224
225 switch(relation){
226 case CPUFREQ_RELATION_L:
227 ppcr = sa11x0_freq_to_ppcr(target_freq);
228 if (sa11x0_ppcr_to_freq(ppcr) > policy->max)
229 ppcr--;
230 break;
231 case CPUFREQ_RELATION_H:
232 ppcr = sa11x0_freq_to_ppcr(target_freq);
233 if (ppcr && (sa11x0_ppcr_to_freq(ppcr) > target_freq) &&
234 (sa11x0_ppcr_to_freq(ppcr-1) >= policy->min))
235 ppcr--;
236 break;
237 default:
238 return -EINVAL;
239 }
240
241 freqs.old = sa11x0_getspeed(0);
242 freqs.new = sa11x0_ppcr_to_freq(ppcr);
243 freqs.cpu = 0;
244
245 sdram_calculate_timing(&sd, freqs.new, sdram);
246
247#if 0
248 /*
249 * These values are wrong according to the SA1110 documentation
250 * and errata, but they seem to work. Need to get a storage
251 * scope on to the SDRAM signals to work out why.
252 */
253 if (policy->max < 147500) {
254 sd.mdrefr |= MDREFR_K1DB2;
255 sd.mdcas[0] = 0xaaaaaa7f;
256 } else {
257 sd.mdrefr &= ~MDREFR_K1DB2;
258 sd.mdcas[0] = 0xaaaaaa9f;
259 }
260 sd.mdcas[1] = 0xaaaaaaaa;
261 sd.mdcas[2] = 0xaaaaaaaa;
262#endif
263
264 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
265
266 /*
267 * The clock could be going away for some time. Set the SDRAMs
268 * to refresh rapidly (every 64 memory clock cycles). To get
269 * through the whole array, we need to wait 262144 mclk cycles.
270 * We wait 20ms to be safe.
271 */
272 sdram_set_refresh(2);
273 if (!irqs_disabled()) {
Nishanth Aravamudandb579552005-07-01 12:11:51 +0100274 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275 } else {
276 mdelay(20);
277 }
278
279 /*
280 * Reprogram the DRAM timings with interrupts disabled, and
281 * ensure that we are doing this within a complete cache line.
282 * This means that we won't access SDRAM for the duration of
283 * the programming.
284 */
285 local_irq_save(flags);
286 asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
287 udelay(10);
288 __asm__ __volatile__(" \n\
289 b 2f \n\
290 .align 5 \n\
2911: str %3, [%1, #0] @ MDCNFG \n\
292 str %4, [%1, #28] @ MDREFR \n\
293 str %5, [%1, #4] @ MDCAS0 \n\
294 str %6, [%1, #8] @ MDCAS1 \n\
295 str %7, [%1, #12] @ MDCAS2 \n\
296 str %8, [%2, #0] @ PPCR \n\
297 ldr %0, [%1, #0] \n\
298 b 3f \n\
2992: b 1b \n\
3003: nop \n\
301 nop"
302 : "=&r" (unused)
303 : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
304 "r" (sd.mdrefr), "r" (sd.mdcas[0]),
305 "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
306 local_irq_restore(flags);
307
308 /*
309 * Now, return the SDRAM refresh back to normal.
310 */
311 sdram_update_refresh(freqs.new, sdram);
312
313 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
314
315 return 0;
316}
317
318static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
319{
320 if (policy->cpu != 0)
321 return -EINVAL;
322 policy->cur = policy->min = policy->max = sa11x0_getspeed(0);
323 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
324 policy->cpuinfo.min_freq = 59000;
325 policy->cpuinfo.max_freq = 287000;
326 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
327 return 0;
328}
329
330static struct cpufreq_driver sa1110_driver = {
331 .flags = CPUFREQ_STICKY,
332 .verify = sa11x0_verify_speed,
333 .target = sa1110_target,
334 .get = sa11x0_getspeed,
335 .init = sa1110_cpu_init,
336 .name = "sa1110",
337};
338
339static int __init sa1110_clk_init(void)
340{
341 struct sdram_params *sdram = NULL;
342
343 if (machine_is_assabet())
344 sdram = &tc59sm716_cl3_params;
345
346 if (machine_is_pt_system3())
347 sdram = &samsung_k4s641632d_tc75;
348
349 if (machine_is_h3100())
350 sdram = &samsung_km416s4030ct;
351
352 if (sdram) {
353 printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
354 " twr: %d refresh: %d cas_latency: %d\n",
355 sdram->tck, sdram->trcd, sdram->trp,
356 sdram->twr, sdram->refresh, sdram->cas_latency);
357
358 memcpy(&sdram_params, sdram, sizeof(sdram_params));
359
360 return cpufreq_register_driver(&sa1110_driver);
361 }
362
363 return 0;
364}
365
366arch_initcall(sa1110_clk_init);