blob: b8459c14a1b7245855a4b91eba0783da0cbf3d6d [file] [log] [blame]
Mike Looijmans19fbbbb2015-06-03 07:25:19 +02001/*
2 * Driver for TI Dual PLL CDCE925 clock synthesizer
3 *
4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
5 * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
6 * basis. Clients can directly request any frequency that the chip can
7 * deliver using the standard clk framework. In addition, the device can
8 * be configured and activated via the devicetree.
9 *
10 * Copyright (C) 2014, Topic Embedded Products
11 * Licenced under GPL
12 */
Stephen Boyda826a1a2015-06-10 14:14:28 -070013#include <linux/clk.h>
Mike Looijmans19fbbbb2015-06-03 07:25:19 +020014#include <linux/clk-provider.h>
15#include <linux/delay.h>
16#include <linux/module.h>
17#include <linux/i2c.h>
18#include <linux/regmap.h>
19#include <linux/slab.h>
20#include <linux/gcd.h>
21
22/* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
23 * Model this as 2 PLL clocks which are parents to the outputs.
24 */
25#define NUMBER_OF_PLLS 2
26#define NUMBER_OF_OUTPUTS 5
27
28#define CDCE925_REG_GLOBAL1 0x01
29#define CDCE925_REG_Y1SPIPDIVH 0x02
30#define CDCE925_REG_PDIVL 0x03
31#define CDCE925_REG_XCSEL 0x05
32/* PLL parameters start at 0x10, steps of 0x10 */
33#define CDCE925_OFFSET_PLL 0x10
34/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
35#define CDCE925_PLL_MUX_OUTPUTS 0x14
36#define CDCE925_PLL_MULDIV 0x18
37
38#define CDCE925_PLL_FREQUENCY_MIN 80000000ul
39#define CDCE925_PLL_FREQUENCY_MAX 230000000ul
40struct clk_cdce925_chip;
41
42struct clk_cdce925_output {
43 struct clk_hw hw;
44 struct clk_cdce925_chip *chip;
45 u8 index;
46 u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
47};
48#define to_clk_cdce925_output(_hw) \
49 container_of(_hw, struct clk_cdce925_output, hw)
50
51struct clk_cdce925_pll {
52 struct clk_hw hw;
53 struct clk_cdce925_chip *chip;
54 u8 index;
55 u16 m; /* 1..511 */
56 u16 n; /* 1..4095 */
57};
58#define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
59
60struct clk_cdce925_chip {
61 struct regmap *regmap;
62 struct i2c_client *i2c_client;
63 struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
64 struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
Mike Looijmans19fbbbb2015-06-03 07:25:19 +020065};
66
67/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
68
69static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
70 u16 n, u16 m)
71{
72 if ((!m || !n) || (m == n))
73 return parent_rate; /* In bypass mode runs at same frequency */
74 return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
75}
76
77static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
78 unsigned long parent_rate)
79{
80 /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
81 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
82
83 return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
84}
85
86static void cdce925_pll_find_rate(unsigned long rate,
87 unsigned long parent_rate, u16 *n, u16 *m)
88{
89 unsigned long un;
90 unsigned long um;
91 unsigned long g;
92
93 if (rate <= parent_rate) {
94 /* Can always deliver parent_rate in bypass mode */
95 rate = parent_rate;
96 *n = 0;
97 *m = 0;
98 } else {
99 /* In PLL mode, need to apply min/max range */
100 if (rate < CDCE925_PLL_FREQUENCY_MIN)
101 rate = CDCE925_PLL_FREQUENCY_MIN;
102 else if (rate > CDCE925_PLL_FREQUENCY_MAX)
103 rate = CDCE925_PLL_FREQUENCY_MAX;
104
105 g = gcd(rate, parent_rate);
106 um = parent_rate / g;
107 un = rate / g;
108 /* When outside hw range, reduce to fit (rounding errors) */
109 while ((un > 4095) || (um > 511)) {
110 un >>= 1;
111 um >>= 1;
112 }
113 if (un == 0)
114 un = 1;
115 if (um == 0)
116 um = 1;
117
118 *n = un;
119 *m = um;
120 }
121}
122
123static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
124 unsigned long *parent_rate)
125{
126 u16 n, m;
127
128 cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
129 return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
130}
131
132static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
133 unsigned long parent_rate)
134{
135 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
136
137 if (!rate || (rate == parent_rate)) {
138 data->m = 0; /* Bypass mode */
139 data->n = 0;
140 return 0;
141 }
142
143 if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
144 (rate > CDCE925_PLL_FREQUENCY_MAX)) {
145 pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
146 return -EINVAL;
147 }
148
149 if (rate < parent_rate) {
150 pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
151 rate, parent_rate);
152 return -EINVAL;
153 }
154
155 cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
156 return 0;
157}
158
159
160/* calculate p = max(0, 4 - int(log2 (n/m))) */
161static u8 cdce925_pll_calc_p(u16 n, u16 m)
162{
163 u8 p;
164 u16 r = n / m;
165
166 if (r >= 16)
167 return 0;
168 p = 4;
169 while (r > 1) {
170 r >>= 1;
171 --p;
172 }
173 return p;
174}
175
176/* Returns VCO range bits for VCO1_0_RANGE */
177static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
178{
179 struct clk *parent = clk_get_parent(hw->clk);
180 unsigned long rate = clk_get_rate(parent);
181
182 rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
183 if (rate >= 175000000)
184 return 0x3;
185 if (rate >= 150000000)
186 return 0x02;
187 if (rate >= 125000000)
188 return 0x01;
189 return 0x00;
190}
191
192/* I2C clock, hence everything must happen in (un)prepare because this
193 * may sleep */
194static int cdce925_pll_prepare(struct clk_hw *hw)
195{
196 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
197 u16 n = data->n;
198 u16 m = data->m;
199 u16 r;
200 u8 q;
201 u8 p;
202 u16 nn;
203 u8 pll[4]; /* Bits are spread out over 4 byte registers */
204 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
205 unsigned i;
206
207 if ((!m || !n) || (m == n)) {
208 /* Set PLL mux to bypass mode, leave the rest as is */
209 regmap_update_bits(data->chip->regmap,
210 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
211 } else {
212 /* According to data sheet: */
213 /* p = max(0, 4 - int(log2 (n/m))) */
214 p = cdce925_pll_calc_p(n, m);
215 /* nn = n * 2^p */
216 nn = n * BIT(p);
217 /* q = int(nn/m) */
218 q = nn / m;
219 if ((q < 16) || (1 > 64)) {
220 pr_debug("%s invalid q=%d\n", __func__, q);
221 return -EINVAL;
222 }
223 r = nn - (m*q);
224 if (r > 511) {
225 pr_debug("%s invalid r=%d\n", __func__, r);
226 return -EINVAL;
227 }
228 pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
229 n, m, p, q, r);
230 /* encode into register bits */
231 pll[0] = n >> 4;
232 pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
233 pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
234 pll[3] = ((q & 0x07) << 5) | (p << 2) |
235 cdce925_pll_calc_range_bits(hw, n, m);
236 /* Write to registers */
237 for (i = 0; i < ARRAY_SIZE(pll); ++i)
238 regmap_write(data->chip->regmap,
239 reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
240 /* Enable PLL */
241 regmap_update_bits(data->chip->regmap,
242 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
243 }
244
245 return 0;
246}
247
248static void cdce925_pll_unprepare(struct clk_hw *hw)
249{
250 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
251 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
252
253 regmap_update_bits(data->chip->regmap,
254 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
255}
256
257static const struct clk_ops cdce925_pll_ops = {
258 .prepare = cdce925_pll_prepare,
259 .unprepare = cdce925_pll_unprepare,
260 .recalc_rate = cdce925_pll_recalc_rate,
261 .round_rate = cdce925_pll_round_rate,
262 .set_rate = cdce925_pll_set_rate,
263};
264
265
266static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
267{
268 switch (data->index) {
269 case 0:
270 regmap_update_bits(data->chip->regmap,
271 CDCE925_REG_Y1SPIPDIVH,
272 0x03, (pdiv >> 8) & 0x03);
273 regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
274 break;
275 case 1:
276 regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
277 break;
278 case 2:
279 regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
280 break;
281 case 3:
282 regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
283 break;
284 case 4:
285 regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
286 break;
287 }
288}
289
290static void cdce925_clk_activate(struct clk_cdce925_output *data)
291{
292 switch (data->index) {
293 case 0:
294 regmap_update_bits(data->chip->regmap,
295 CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
296 break;
297 case 1:
298 case 2:
299 regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
300 break;
301 case 3:
302 case 4:
303 regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
304 break;
305 }
306}
307
308static int cdce925_clk_prepare(struct clk_hw *hw)
309{
310 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
311
312 cdce925_clk_set_pdiv(data, data->pdiv);
313 cdce925_clk_activate(data);
314 return 0;
315}
316
317static void cdce925_clk_unprepare(struct clk_hw *hw)
318{
319 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
320
321 /* Disable clock by setting divider to "0" */
322 cdce925_clk_set_pdiv(data, 0);
323}
324
325static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
326 unsigned long parent_rate)
327{
328 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
329
330 if (data->pdiv)
331 return parent_rate / data->pdiv;
332 return 0;
333}
334
335static u16 cdce925_calc_divider(unsigned long rate,
336 unsigned long parent_rate)
337{
338 unsigned long divider;
339
340 if (!rate)
341 return 0;
342 if (rate >= parent_rate)
343 return 1;
344
345 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
346 if (divider > 0x7F)
347 divider = 0x7F;
348
349 return (u16)divider;
350}
351
352static unsigned long cdce925_clk_best_parent_rate(
353 struct clk_hw *hw, unsigned long rate)
354{
355 struct clk *pll = clk_get_parent(hw->clk);
356 struct clk *root = clk_get_parent(pll);
357 unsigned long root_rate = clk_get_rate(root);
358 unsigned long best_rate_error = rate;
359 u16 pdiv_min;
360 u16 pdiv_max;
361 u16 pdiv_best;
362 u16 pdiv_now;
363
364 if (root_rate % rate == 0)
365 return root_rate; /* Don't need the PLL, use bypass */
366
367 pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
368 pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
369
370 if (pdiv_min > pdiv_max)
371 return 0; /* No can do? */
372
373 pdiv_best = pdiv_min;
374 for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
375 unsigned long target_rate = rate * pdiv_now;
376 long pll_rate = clk_round_rate(pll, target_rate);
377 unsigned long actual_rate;
378 unsigned long rate_error;
379
380 if (pll_rate <= 0)
381 continue;
382 actual_rate = pll_rate / pdiv_now;
383 rate_error = abs((long)actual_rate - (long)rate);
384 if (rate_error < best_rate_error) {
385 pdiv_best = pdiv_now;
386 best_rate_error = rate_error;
387 }
388 /* TODO: Consider PLL frequency based on smaller n/m values
389 * and pick the better one if the error is equal */
390 }
391
392 return rate * pdiv_best;
393}
394
395static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
396 unsigned long *parent_rate)
397{
398 unsigned long l_parent_rate = *parent_rate;
399 u16 divider = cdce925_calc_divider(rate, l_parent_rate);
400
401 if (l_parent_rate / divider != rate) {
402 l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
403 divider = cdce925_calc_divider(rate, l_parent_rate);
404 *parent_rate = l_parent_rate;
405 }
406
407 if (divider)
408 return (long)(l_parent_rate / divider);
409 return 0;
410}
411
412static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
413 unsigned long parent_rate)
414{
415 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
416
417 data->pdiv = cdce925_calc_divider(rate, parent_rate);
418
419 return 0;
420}
421
422static const struct clk_ops cdce925_clk_ops = {
423 .prepare = cdce925_clk_prepare,
424 .unprepare = cdce925_clk_unprepare,
425 .recalc_rate = cdce925_clk_recalc_rate,
426 .round_rate = cdce925_clk_round_rate,
427 .set_rate = cdce925_clk_set_rate,
428};
429
430
431static u16 cdce925_y1_calc_divider(unsigned long rate,
432 unsigned long parent_rate)
433{
434 unsigned long divider;
435
436 if (!rate)
437 return 0;
438 if (rate >= parent_rate)
439 return 1;
440
441 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
442 if (divider > 0x3FF) /* Y1 has 10-bit divider */
443 divider = 0x3FF;
444
445 return (u16)divider;
446}
447
448static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
449 unsigned long *parent_rate)
450{
451 unsigned long l_parent_rate = *parent_rate;
452 u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
453
454 if (divider)
455 return (long)(l_parent_rate / divider);
456 return 0;
457}
458
459static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
460 unsigned long parent_rate)
461{
462 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
463
464 data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
465
466 return 0;
467}
468
469static const struct clk_ops cdce925_clk_y1_ops = {
470 .prepare = cdce925_clk_prepare,
471 .unprepare = cdce925_clk_unprepare,
472 .recalc_rate = cdce925_clk_recalc_rate,
473 .round_rate = cdce925_clk_y1_round_rate,
474 .set_rate = cdce925_clk_y1_set_rate,
475};
476
477
478static struct regmap_config cdce925_regmap_config = {
479 .name = "configuration0",
480 .reg_bits = 8,
481 .val_bits = 8,
482 .cache_type = REGCACHE_RBTREE,
483 .max_register = 0x2F,
484};
485
486#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00
487#define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80
488
489static int cdce925_regmap_i2c_write(
490 void *context, const void *data, size_t count)
491{
492 struct device *dev = context;
493 struct i2c_client *i2c = to_i2c_client(dev);
494 int ret;
495 u8 reg_data[2];
496
497 if (count != 2)
498 return -ENOTSUPP;
499
500 /* First byte is command code */
501 reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
502 reg_data[1] = ((u8 *)data)[1];
503
504 dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
505 reg_data[0], reg_data[1]);
506
507 ret = i2c_master_send(i2c, reg_data, count);
508 if (likely(ret == count))
509 return 0;
510 else if (ret < 0)
511 return ret;
512 else
513 return -EIO;
514}
515
516static int cdce925_regmap_i2c_read(void *context,
517 const void *reg, size_t reg_size, void *val, size_t val_size)
518{
519 struct device *dev = context;
520 struct i2c_client *i2c = to_i2c_client(dev);
521 struct i2c_msg xfer[2];
522 int ret;
523 u8 reg_data[2];
524
525 if (reg_size != 1)
526 return -ENOTSUPP;
527
528 xfer[0].addr = i2c->addr;
529 xfer[0].flags = 0;
530 xfer[0].buf = reg_data;
531 if (val_size == 1) {
532 reg_data[0] =
533 CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
534 xfer[0].len = 1;
535 } else {
536 reg_data[0] =
537 CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
538 reg_data[1] = val_size;
539 xfer[0].len = 2;
540 }
541
542 xfer[1].addr = i2c->addr;
543 xfer[1].flags = I2C_M_RD;
544 xfer[1].len = val_size;
545 xfer[1].buf = val;
546
547 ret = i2c_transfer(i2c->adapter, xfer, 2);
548 if (likely(ret == 2)) {
Stephen Boydb41c7bf2015-06-10 14:14:28 -0700549 dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200550 reg_size, val_size, reg_data[0], *((u8 *)val));
551 return 0;
552 } else if (ret < 0)
553 return ret;
554 else
555 return -EIO;
556}
557
Stephen Boyda85d1172016-06-01 16:15:11 -0700558static struct clk_hw *
559of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
560{
561 struct clk_cdce925_chip *data = _data;
562 unsigned int idx = clkspec->args[0];
563
564 if (idx >= ARRAY_SIZE(data->clk)) {
565 pr_err("%s: invalid index %u\n", __func__, idx);
566 return ERR_PTR(-EINVAL);
567 }
568
569 return &data->clk[idx].hw;
570}
571
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200572/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
573 * just weird, so just use the single byte mode exclusively. */
574static struct regmap_bus regmap_cdce925_bus = {
575 .write = cdce925_regmap_i2c_write,
576 .read = cdce925_regmap_i2c_read,
577};
578
579static int cdce925_probe(struct i2c_client *client,
580 const struct i2c_device_id *id)
581{
582 struct clk_cdce925_chip *data;
583 struct device_node *node = client->dev.of_node;
584 const char *parent_name;
585 const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
586 struct clk_init_data init;
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200587 u32 value;
588 int i;
589 int err;
590 struct device_node *np_output;
591 char child_name[6];
592
593 dev_dbg(&client->dev, "%s\n", __func__);
594 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
595 if (!data)
596 return -ENOMEM;
597
598 data->i2c_client = client;
599 data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
600 &client->dev, &cdce925_regmap_config);
601 if (IS_ERR(data->regmap)) {
602 dev_err(&client->dev, "failed to allocate register map\n");
603 return PTR_ERR(data->regmap);
604 }
605 i2c_set_clientdata(client, data);
606
607 parent_name = of_clk_get_parent_name(node, 0);
608 if (!parent_name) {
609 dev_err(&client->dev, "missing parent clock\n");
610 return -ENODEV;
611 }
612 dev_dbg(&client->dev, "parent is: %s\n", parent_name);
613
614 if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
615 regmap_write(data->regmap,
616 CDCE925_REG_XCSEL, (value << 3) & 0xF8);
617 /* PWDN bit */
618 regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
619
620 /* Set input source for Y1 to be the XTAL */
621 regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
622
623 init.ops = &cdce925_pll_ops;
624 init.flags = 0;
625 init.parent_names = &parent_name;
626 init.num_parents = parent_name ? 1 : 0;
627
628 /* Register PLL clocks */
629 for (i = 0; i < NUMBER_OF_PLLS; ++i) {
630 pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
631 client->dev.of_node->name, i);
632 init.name = pll_clk_name[i];
633 data->pll[i].chip = data;
634 data->pll[i].hw.init = &init;
635 data->pll[i].index = i;
Stephen Boyda85d1172016-06-01 16:15:11 -0700636 err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
637 if (err) {
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200638 dev_err(&client->dev, "Failed register PLL %d\n", i);
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200639 goto error;
640 }
641 sprintf(child_name, "PLL%d", i+1);
642 np_output = of_get_child_by_name(node, child_name);
643 if (!np_output)
644 continue;
645 if (!of_property_read_u32(np_output,
646 "clock-frequency", &value)) {
Stephen Boyda85d1172016-06-01 16:15:11 -0700647 err = clk_set_rate(data->pll[i].hw.clk, value);
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200648 if (err)
649 dev_err(&client->dev,
650 "unable to set PLL frequency %ud\n",
651 value);
652 }
653 if (!of_property_read_u32(np_output,
654 "spread-spectrum", &value)) {
655 u8 flag = of_property_read_bool(np_output,
656 "spread-spectrum-center") ? 0x80 : 0x00;
657 regmap_update_bits(data->regmap,
658 0x16 + (i*CDCE925_OFFSET_PLL),
659 0x80, flag);
660 regmap_update_bits(data->regmap,
661 0x12 + (i*CDCE925_OFFSET_PLL),
662 0x07, value & 0x07);
663 }
664 }
665
666 /* Register output clock Y1 */
667 init.ops = &cdce925_clk_y1_ops;
668 init.flags = 0;
669 init.num_parents = 1;
670 init.parent_names = &parent_name; /* Mux Y1 to input */
671 init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
672 data->clk[0].chip = data;
673 data->clk[0].hw.init = &init;
674 data->clk[0].index = 0;
675 data->clk[0].pdiv = 1;
Stephen Boyda85d1172016-06-01 16:15:11 -0700676 err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200677 kfree(init.name); /* clock framework made a copy of the name */
Stephen Boyda85d1172016-06-01 16:15:11 -0700678 if (err) {
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200679 dev_err(&client->dev, "clock registration Y1 failed\n");
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200680 goto error;
681 }
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200682
683 /* Register output clocks Y2 .. Y5*/
684 init.ops = &cdce925_clk_ops;
685 init.flags = CLK_SET_RATE_PARENT;
686 init.num_parents = 1;
687 for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
688 init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
689 client->dev.of_node->name, i+1);
690 data->clk[i].chip = data;
691 data->clk[i].hw.init = &init;
692 data->clk[i].index = i;
693 data->clk[i].pdiv = 1;
694 switch (i) {
695 case 1:
696 case 2:
697 /* Mux Y2/3 to PLL1 */
698 init.parent_names = &pll_clk_name[0];
699 break;
700 case 3:
701 case 4:
702 /* Mux Y4/5 to PLL2 */
703 init.parent_names = &pll_clk_name[1];
704 break;
705 }
Stephen Boyda85d1172016-06-01 16:15:11 -0700706 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200707 kfree(init.name); /* clock framework made a copy of the name */
Stephen Boyda85d1172016-06-01 16:15:11 -0700708 if (err) {
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200709 dev_err(&client->dev, "clock registration failed\n");
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200710 goto error;
711 }
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200712 }
713
714 /* Register the output clocks */
Stephen Boyda85d1172016-06-01 16:15:11 -0700715 err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
716 data);
Mike Looijmans19fbbbb2015-06-03 07:25:19 +0200717 if (err)
718 dev_err(&client->dev, "unable to add OF clock provider\n");
719
720 err = 0;
721
722error:
723 for (i = 0; i < NUMBER_OF_PLLS; ++i)
724 /* clock framework made a copy of the name */
725 kfree(pll_clk_name[i]);
726
727 return err;
728}
729
730static const struct i2c_device_id cdce925_id[] = {
731 { "cdce925", 0 },
732 { }
733};
734MODULE_DEVICE_TABLE(i2c, cdce925_id);
735
736static const struct of_device_id clk_cdce925_of_match[] = {
737 { .compatible = "ti,cdce925" },
738 { },
739};
740MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
741
742static struct i2c_driver cdce925_driver = {
743 .driver = {
744 .name = "cdce925",
745 .of_match_table = of_match_ptr(clk_cdce925_of_match),
746 },
747 .probe = cdce925_probe,
748 .id_table = cdce925_id,
749};
750module_i2c_driver(cdce925_driver);
751
752MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
753MODULE_DESCRIPTION("cdce925 driver");
754MODULE_LICENSE("GPL");