blob: 879da20617fb328d22e713975204d77a9efbfb09 [file] [log] [blame]
Will Deacon45ae7cf2013-06-24 18:31:25 +01001/*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - 4k and 64k pages, with contiguous pte hints.
27 * - Up to 39-bit addressing
28 * - Context fault reporting
29 */
30
31#define pr_fmt(fmt) "arm-smmu: " fmt
32
33#include <linux/delay.h>
34#include <linux/dma-mapping.h>
35#include <linux/err.h>
36#include <linux/interrupt.h>
37#include <linux/io.h>
38#include <linux/iommu.h>
39#include <linux/mm.h>
40#include <linux/module.h>
41#include <linux/of.h>
42#include <linux/platform_device.h>
43#include <linux/slab.h>
44#include <linux/spinlock.h>
45
46#include <linux/amba/bus.h>
47
48#include <asm/pgalloc.h>
49
50/* Maximum number of stream IDs assigned to a single device */
51#define MAX_MASTER_STREAMIDS 8
52
53/* Maximum number of context banks per SMMU */
54#define ARM_SMMU_MAX_CBS 128
55
56/* Maximum number of mapping groups per SMMU */
57#define ARM_SMMU_MAX_SMRS 128
58
Will Deacon45ae7cf2013-06-24 18:31:25 +010059/* SMMU global address space */
60#define ARM_SMMU_GR0(smmu) ((smmu)->base)
61#define ARM_SMMU_GR1(smmu) ((smmu)->base + (smmu)->pagesize)
62
63/* Page table bits */
64#define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
65#define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
66#define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
67#define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
68#define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
69#define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
70
71#if PAGE_SIZE == SZ_4K
72#define ARM_SMMU_PTE_CONT_ENTRIES 16
73#elif PAGE_SIZE == SZ_64K
74#define ARM_SMMU_PTE_CONT_ENTRIES 32
75#else
76#define ARM_SMMU_PTE_CONT_ENTRIES 1
77#endif
78
79#define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
80#define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
81#define ARM_SMMU_PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(pte_t))
82
83/* Stage-1 PTE */
84#define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
85#define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
86#define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
Will Deacon1463fe42013-07-31 19:21:27 +010087#define ARM_SMMU_PTE_nG (((pteval_t)1) << 11)
Will Deacon45ae7cf2013-06-24 18:31:25 +010088
89/* Stage-2 PTE */
90#define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
91#define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
92#define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
93#define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
94#define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
95#define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
96
97/* Configuration registers */
98#define ARM_SMMU_GR0_sCR0 0x0
99#define sCR0_CLIENTPD (1 << 0)
100#define sCR0_GFRE (1 << 1)
101#define sCR0_GFIE (1 << 2)
102#define sCR0_GCFGFRE (1 << 4)
103#define sCR0_GCFGFIE (1 << 5)
104#define sCR0_USFCFG (1 << 10)
105#define sCR0_VMIDPNE (1 << 11)
106#define sCR0_PTM (1 << 12)
107#define sCR0_FB (1 << 13)
108#define sCR0_BSU_SHIFT 14
109#define sCR0_BSU_MASK 0x3
110
111/* Identification registers */
112#define ARM_SMMU_GR0_ID0 0x20
113#define ARM_SMMU_GR0_ID1 0x24
114#define ARM_SMMU_GR0_ID2 0x28
115#define ARM_SMMU_GR0_ID3 0x2c
116#define ARM_SMMU_GR0_ID4 0x30
117#define ARM_SMMU_GR0_ID5 0x34
118#define ARM_SMMU_GR0_ID6 0x38
119#define ARM_SMMU_GR0_ID7 0x3c
120#define ARM_SMMU_GR0_sGFSR 0x48
121#define ARM_SMMU_GR0_sGFSYNR0 0x50
122#define ARM_SMMU_GR0_sGFSYNR1 0x54
123#define ARM_SMMU_GR0_sGFSYNR2 0x58
124#define ARM_SMMU_GR0_PIDR0 0xfe0
125#define ARM_SMMU_GR0_PIDR1 0xfe4
126#define ARM_SMMU_GR0_PIDR2 0xfe8
127
128#define ID0_S1TS (1 << 30)
129#define ID0_S2TS (1 << 29)
130#define ID0_NTS (1 << 28)
131#define ID0_SMS (1 << 27)
132#define ID0_PTFS_SHIFT 24
133#define ID0_PTFS_MASK 0x2
134#define ID0_PTFS_V8_ONLY 0x2
135#define ID0_CTTW (1 << 14)
136#define ID0_NUMIRPT_SHIFT 16
137#define ID0_NUMIRPT_MASK 0xff
138#define ID0_NUMSMRG_SHIFT 0
139#define ID0_NUMSMRG_MASK 0xff
140
141#define ID1_PAGESIZE (1 << 31)
142#define ID1_NUMPAGENDXB_SHIFT 28
143#define ID1_NUMPAGENDXB_MASK 7
144#define ID1_NUMS2CB_SHIFT 16
145#define ID1_NUMS2CB_MASK 0xff
146#define ID1_NUMCB_SHIFT 0
147#define ID1_NUMCB_MASK 0xff
148
149#define ID2_OAS_SHIFT 4
150#define ID2_OAS_MASK 0xf
151#define ID2_IAS_SHIFT 0
152#define ID2_IAS_MASK 0xf
153#define ID2_UBS_SHIFT 8
154#define ID2_UBS_MASK 0xf
155#define ID2_PTFS_4K (1 << 12)
156#define ID2_PTFS_16K (1 << 13)
157#define ID2_PTFS_64K (1 << 14)
158
159#define PIDR2_ARCH_SHIFT 4
160#define PIDR2_ARCH_MASK 0xf
161
162/* Global TLB invalidation */
163#define ARM_SMMU_GR0_STLBIALL 0x60
164#define ARM_SMMU_GR0_TLBIVMID 0x64
165#define ARM_SMMU_GR0_TLBIALLNSNH 0x68
166#define ARM_SMMU_GR0_TLBIALLH 0x6c
167#define ARM_SMMU_GR0_sTLBGSYNC 0x70
168#define ARM_SMMU_GR0_sTLBGSTATUS 0x74
169#define sTLBGSTATUS_GSACTIVE (1 << 0)
170#define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
171
172/* Stream mapping registers */
173#define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
174#define SMR_VALID (1 << 31)
175#define SMR_MASK_SHIFT 16
176#define SMR_MASK_MASK 0x7fff
177#define SMR_ID_SHIFT 0
178#define SMR_ID_MASK 0x7fff
179
180#define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
181#define S2CR_CBNDX_SHIFT 0
182#define S2CR_CBNDX_MASK 0xff
183#define S2CR_TYPE_SHIFT 16
184#define S2CR_TYPE_MASK 0x3
185#define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
186#define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
187#define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
188
189/* Context bank attribute registers */
190#define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
191#define CBAR_VMID_SHIFT 0
192#define CBAR_VMID_MASK 0xff
193#define CBAR_S1_MEMATTR_SHIFT 12
194#define CBAR_S1_MEMATTR_MASK 0xf
195#define CBAR_S1_MEMATTR_WB 0xf
196#define CBAR_TYPE_SHIFT 16
197#define CBAR_TYPE_MASK 0x3
198#define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
199#define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
200#define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
201#define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
202#define CBAR_IRPTNDX_SHIFT 24
203#define CBAR_IRPTNDX_MASK 0xff
204
205#define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
206#define CBA2R_RW64_32BIT (0 << 0)
207#define CBA2R_RW64_64BIT (1 << 0)
208
209/* Translation context bank */
210#define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
211#define ARM_SMMU_CB(smmu, n) ((n) * (smmu)->pagesize)
212
213#define ARM_SMMU_CB_SCTLR 0x0
214#define ARM_SMMU_CB_RESUME 0x8
215#define ARM_SMMU_CB_TTBCR2 0x10
216#define ARM_SMMU_CB_TTBR0_LO 0x20
217#define ARM_SMMU_CB_TTBR0_HI 0x24
218#define ARM_SMMU_CB_TTBCR 0x30
219#define ARM_SMMU_CB_S1_MAIR0 0x38
220#define ARM_SMMU_CB_FSR 0x58
221#define ARM_SMMU_CB_FAR_LO 0x60
222#define ARM_SMMU_CB_FAR_HI 0x64
223#define ARM_SMMU_CB_FSYNR0 0x68
Will Deacon1463fe42013-07-31 19:21:27 +0100224#define ARM_SMMU_CB_S1_TLBIASID 0x610
Will Deacon45ae7cf2013-06-24 18:31:25 +0100225
226#define SCTLR_S1_ASIDPNE (1 << 12)
227#define SCTLR_CFCFG (1 << 7)
228#define SCTLR_CFIE (1 << 6)
229#define SCTLR_CFRE (1 << 5)
230#define SCTLR_E (1 << 4)
231#define SCTLR_AFE (1 << 2)
232#define SCTLR_TRE (1 << 1)
233#define SCTLR_M (1 << 0)
234#define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
235
236#define RESUME_RETRY (0 << 0)
237#define RESUME_TERMINATE (1 << 0)
238
239#define TTBCR_EAE (1 << 31)
240
241#define TTBCR_PASIZE_SHIFT 16
242#define TTBCR_PASIZE_MASK 0x7
243
244#define TTBCR_TG0_4K (0 << 14)
245#define TTBCR_TG0_64K (1 << 14)
246
247#define TTBCR_SH0_SHIFT 12
248#define TTBCR_SH0_MASK 0x3
249#define TTBCR_SH_NS 0
250#define TTBCR_SH_OS 2
251#define TTBCR_SH_IS 3
252
253#define TTBCR_ORGN0_SHIFT 10
254#define TTBCR_IRGN0_SHIFT 8
255#define TTBCR_RGN_MASK 0x3
256#define TTBCR_RGN_NC 0
257#define TTBCR_RGN_WBWA 1
258#define TTBCR_RGN_WT 2
259#define TTBCR_RGN_WB 3
260
261#define TTBCR_SL0_SHIFT 6
262#define TTBCR_SL0_MASK 0x3
263#define TTBCR_SL0_LVL_2 0
264#define TTBCR_SL0_LVL_1 1
265
266#define TTBCR_T1SZ_SHIFT 16
267#define TTBCR_T0SZ_SHIFT 0
268#define TTBCR_SZ_MASK 0xf
269
270#define TTBCR2_SEP_SHIFT 15
271#define TTBCR2_SEP_MASK 0x7
272
273#define TTBCR2_PASIZE_SHIFT 0
274#define TTBCR2_PASIZE_MASK 0x7
275
276/* Common definitions for PASize and SEP fields */
277#define TTBCR2_ADDR_32 0
278#define TTBCR2_ADDR_36 1
279#define TTBCR2_ADDR_40 2
280#define TTBCR2_ADDR_42 3
281#define TTBCR2_ADDR_44 4
282#define TTBCR2_ADDR_48 5
283
Will Deacon1463fe42013-07-31 19:21:27 +0100284#define TTBRn_HI_ASID_SHIFT 16
285
Will Deacon45ae7cf2013-06-24 18:31:25 +0100286#define MAIR_ATTR_SHIFT(n) ((n) << 3)
287#define MAIR_ATTR_MASK 0xff
288#define MAIR_ATTR_DEVICE 0x04
289#define MAIR_ATTR_NC 0x44
290#define MAIR_ATTR_WBRWA 0xff
291#define MAIR_ATTR_IDX_NC 0
292#define MAIR_ATTR_IDX_CACHE 1
293#define MAIR_ATTR_IDX_DEV 2
294
295#define FSR_MULTI (1 << 31)
296#define FSR_SS (1 << 30)
297#define FSR_UUT (1 << 8)
298#define FSR_ASF (1 << 7)
299#define FSR_TLBLKF (1 << 6)
300#define FSR_TLBMCF (1 << 5)
301#define FSR_EF (1 << 4)
302#define FSR_PF (1 << 3)
303#define FSR_AFF (1 << 2)
304#define FSR_TF (1 << 1)
305
306#define FSR_IGN (FSR_AFF | FSR_ASF | FSR_TLBMCF | \
307 FSR_TLBLKF)
308#define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
Will Deaconadaba322013-07-31 19:21:26 +0100309 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
Will Deacon45ae7cf2013-06-24 18:31:25 +0100310
311#define FSYNR0_WNR (1 << 4)
312
313struct arm_smmu_smr {
314 u8 idx;
315 u16 mask;
316 u16 id;
317};
318
319struct arm_smmu_master {
320 struct device_node *of_node;
321
322 /*
323 * The following is specific to the master's position in the
324 * SMMU chain.
325 */
326 struct rb_node node;
327 int num_streamids;
328 u16 streamids[MAX_MASTER_STREAMIDS];
329
330 /*
331 * We only need to allocate these on the root SMMU, as we
332 * configure unmatched streams to bypass translation.
333 */
334 struct arm_smmu_smr *smrs;
335};
336
337struct arm_smmu_device {
338 struct device *dev;
339 struct device_node *parent_of_node;
340
341 void __iomem *base;
342 unsigned long size;
343 unsigned long pagesize;
344
345#define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
346#define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
347#define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
348#define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
349#define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
350 u32 features;
351 int version;
352
353 u32 num_context_banks;
354 u32 num_s2_context_banks;
355 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
356 atomic_t irptndx;
357
358 u32 num_mapping_groups;
359 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
360
361 unsigned long input_size;
362 unsigned long s1_output_size;
363 unsigned long s2_output_size;
364
365 u32 num_global_irqs;
366 u32 num_context_irqs;
367 unsigned int *irqs;
368
Will Deacon45ae7cf2013-06-24 18:31:25 +0100369 struct list_head list;
370 struct rb_root masters;
371};
372
373struct arm_smmu_cfg {
374 struct arm_smmu_device *smmu;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100375 u8 cbndx;
376 u8 irptndx;
377 u32 cbar;
378 pgd_t *pgd;
379};
Dan Carpenterfaea13b72013-08-21 09:33:30 +0100380#define INVALID_IRPTNDX 0xff
Will Deacon45ae7cf2013-06-24 18:31:25 +0100381
Will Deaconecfadb62013-07-31 19:21:28 +0100382#define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
383#define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
384
Will Deacon45ae7cf2013-06-24 18:31:25 +0100385struct arm_smmu_domain {
386 /*
387 * A domain can span across multiple, chained SMMUs and requires
388 * all devices within the domain to follow the same translation
389 * path.
390 */
391 struct arm_smmu_device *leaf_smmu;
392 struct arm_smmu_cfg root_cfg;
393 phys_addr_t output_mask;
394
Will Deacona44a97912013-11-07 18:47:50 +0000395 struct mutex lock;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100396};
397
398static DEFINE_SPINLOCK(arm_smmu_devices_lock);
399static LIST_HEAD(arm_smmu_devices);
400
401static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
402 struct device_node *dev_node)
403{
404 struct rb_node *node = smmu->masters.rb_node;
405
406 while (node) {
407 struct arm_smmu_master *master;
408 master = container_of(node, struct arm_smmu_master, node);
409
410 if (dev_node < master->of_node)
411 node = node->rb_left;
412 else if (dev_node > master->of_node)
413 node = node->rb_right;
414 else
415 return master;
416 }
417
418 return NULL;
419}
420
421static int insert_smmu_master(struct arm_smmu_device *smmu,
422 struct arm_smmu_master *master)
423{
424 struct rb_node **new, *parent;
425
426 new = &smmu->masters.rb_node;
427 parent = NULL;
428 while (*new) {
429 struct arm_smmu_master *this;
430 this = container_of(*new, struct arm_smmu_master, node);
431
432 parent = *new;
433 if (master->of_node < this->of_node)
434 new = &((*new)->rb_left);
435 else if (master->of_node > this->of_node)
436 new = &((*new)->rb_right);
437 else
438 return -EEXIST;
439 }
440
441 rb_link_node(&master->node, parent, new);
442 rb_insert_color(&master->node, &smmu->masters);
443 return 0;
444}
445
446static int register_smmu_master(struct arm_smmu_device *smmu,
447 struct device *dev,
448 struct of_phandle_args *masterspec)
449{
450 int i;
451 struct arm_smmu_master *master;
452
453 master = find_smmu_master(smmu, masterspec->np);
454 if (master) {
455 dev_err(dev,
456 "rejecting multiple registrations for master device %s\n",
457 masterspec->np->name);
458 return -EBUSY;
459 }
460
461 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
462 dev_err(dev,
463 "reached maximum number (%d) of stream IDs for master device %s\n",
464 MAX_MASTER_STREAMIDS, masterspec->np->name);
465 return -ENOSPC;
466 }
467
468 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
469 if (!master)
470 return -ENOMEM;
471
472 master->of_node = masterspec->np;
473 master->num_streamids = masterspec->args_count;
474
475 for (i = 0; i < master->num_streamids; ++i)
476 master->streamids[i] = masterspec->args[i];
477
478 return insert_smmu_master(smmu, master);
479}
480
481static struct arm_smmu_device *find_parent_smmu(struct arm_smmu_device *smmu)
482{
483 struct arm_smmu_device *parent;
484
485 if (!smmu->parent_of_node)
486 return NULL;
487
488 spin_lock(&arm_smmu_devices_lock);
489 list_for_each_entry(parent, &arm_smmu_devices, list)
490 if (parent->dev->of_node == smmu->parent_of_node)
491 goto out_unlock;
492
493 parent = NULL;
494 dev_warn(smmu->dev,
495 "Failed to find SMMU parent despite parent in DT\n");
496out_unlock:
497 spin_unlock(&arm_smmu_devices_lock);
498 return parent;
499}
500
501static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
502{
503 int idx;
504
505 do {
506 idx = find_next_zero_bit(map, end, start);
507 if (idx == end)
508 return -ENOSPC;
509 } while (test_and_set_bit(idx, map));
510
511 return idx;
512}
513
514static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
515{
516 clear_bit(idx, map);
517}
518
519/* Wait for any pending TLB invalidations to complete */
520static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
521{
522 int count = 0;
523 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
524
525 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
526 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
527 & sTLBGSTATUS_GSACTIVE) {
528 cpu_relax();
529 if (++count == TLB_LOOP_TIMEOUT) {
530 dev_err_ratelimited(smmu->dev,
531 "TLB sync timed out -- SMMU may be deadlocked\n");
532 return;
533 }
534 udelay(1);
535 }
536}
537
Will Deacon1463fe42013-07-31 19:21:27 +0100538static void arm_smmu_tlb_inv_context(struct arm_smmu_cfg *cfg)
539{
540 struct arm_smmu_device *smmu = cfg->smmu;
541 void __iomem *base = ARM_SMMU_GR0(smmu);
542 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
543
544 if (stage1) {
545 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
Will Deaconecfadb62013-07-31 19:21:28 +0100546 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
547 base + ARM_SMMU_CB_S1_TLBIASID);
Will Deacon1463fe42013-07-31 19:21:27 +0100548 } else {
549 base = ARM_SMMU_GR0(smmu);
Will Deaconecfadb62013-07-31 19:21:28 +0100550 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
551 base + ARM_SMMU_GR0_TLBIVMID);
Will Deacon1463fe42013-07-31 19:21:27 +0100552 }
553
554 arm_smmu_tlb_sync(smmu);
555}
556
Will Deacon45ae7cf2013-06-24 18:31:25 +0100557static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
558{
559 int flags, ret;
560 u32 fsr, far, fsynr, resume;
561 unsigned long iova;
562 struct iommu_domain *domain = dev;
563 struct arm_smmu_domain *smmu_domain = domain->priv;
564 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
565 struct arm_smmu_device *smmu = root_cfg->smmu;
566 void __iomem *cb_base;
567
568 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
569 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
570
571 if (!(fsr & FSR_FAULT))
572 return IRQ_NONE;
573
574 if (fsr & FSR_IGN)
575 dev_err_ratelimited(smmu->dev,
576 "Unexpected context fault (fsr 0x%u)\n",
577 fsr);
578
579 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
580 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
581
582 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
583 iova = far;
584#ifdef CONFIG_64BIT
585 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
586 iova |= ((unsigned long)far << 32);
587#endif
588
589 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
590 ret = IRQ_HANDLED;
591 resume = RESUME_RETRY;
592 } else {
Andreas Herrmann2ef0f032013-10-01 13:39:08 +0100593 dev_err_ratelimited(smmu->dev,
594 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
595 iova, fsynr, root_cfg->cbndx);
Will Deacon45ae7cf2013-06-24 18:31:25 +0100596 ret = IRQ_NONE;
597 resume = RESUME_TERMINATE;
598 }
599
600 /* Clear the faulting FSR */
601 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
602
603 /* Retry or terminate any stalled transactions */
604 if (fsr & FSR_SS)
605 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
606
607 return ret;
608}
609
610static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
611{
612 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
613 struct arm_smmu_device *smmu = dev;
614 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
615
616 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
Will Deaconadaba322013-07-31 19:21:26 +0100617 if (!gfsr)
618 return IRQ_NONE;
619
Will Deacon45ae7cf2013-06-24 18:31:25 +0100620 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
621 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
622 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
623
624 dev_err_ratelimited(smmu->dev,
625 "Unexpected global fault, this could be serious\n");
626 dev_err_ratelimited(smmu->dev,
627 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
628 gfsr, gfsynr0, gfsynr1, gfsynr2);
629
630 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
Will Deaconadaba322013-07-31 19:21:26 +0100631 return IRQ_HANDLED;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100632}
633
634static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
635{
636 u32 reg;
637 bool stage1;
638 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
639 struct arm_smmu_device *smmu = root_cfg->smmu;
640 void __iomem *cb_base, *gr0_base, *gr1_base;
641
642 gr0_base = ARM_SMMU_GR0(smmu);
643 gr1_base = ARM_SMMU_GR1(smmu);
644 stage1 = root_cfg->cbar != CBAR_TYPE_S2_TRANS;
645 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
646
647 /* CBAR */
Will Deacon1463fe42013-07-31 19:21:27 +0100648 reg = root_cfg->cbar;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100649 if (smmu->version == 1)
650 reg |= root_cfg->irptndx << CBAR_IRPTNDX_SHIFT;
651
652 /* Use the weakest memory type, so it is overridden by the pte */
653 if (stage1)
654 reg |= (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
Will Deacon1463fe42013-07-31 19:21:27 +0100655 else
Will Deaconecfadb62013-07-31 19:21:28 +0100656 reg |= ARM_SMMU_CB_VMID(root_cfg) << CBAR_VMID_SHIFT;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100657 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(root_cfg->cbndx));
658
659 if (smmu->version > 1) {
660 /* CBA2R */
661#ifdef CONFIG_64BIT
662 reg = CBA2R_RW64_64BIT;
663#else
664 reg = CBA2R_RW64_32BIT;
665#endif
666 writel_relaxed(reg,
667 gr1_base + ARM_SMMU_GR1_CBA2R(root_cfg->cbndx));
668
669 /* TTBCR2 */
670 switch (smmu->input_size) {
671 case 32:
672 reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
673 break;
674 case 36:
675 reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
676 break;
677 case 39:
678 reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
679 break;
680 case 42:
681 reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
682 break;
683 case 44:
684 reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
685 break;
686 case 48:
687 reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
688 break;
689 }
690
691 switch (smmu->s1_output_size) {
692 case 32:
693 reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
694 break;
695 case 36:
696 reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
697 break;
698 case 39:
699 reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
700 break;
701 case 42:
702 reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
703 break;
704 case 44:
705 reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
706 break;
707 case 48:
708 reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
709 break;
710 }
711
712 if (stage1)
713 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
714 }
715
716 /* TTBR0 */
717 reg = __pa(root_cfg->pgd);
Will Deacon45ae7cf2013-06-24 18:31:25 +0100718 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
719 reg = (phys_addr_t)__pa(root_cfg->pgd) >> 32;
Will Deacon1463fe42013-07-31 19:21:27 +0100720 if (stage1)
Will Deaconecfadb62013-07-31 19:21:28 +0100721 reg |= ARM_SMMU_CB_ASID(root_cfg) << TTBRn_HI_ASID_SHIFT;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100722 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
Will Deacon45ae7cf2013-06-24 18:31:25 +0100723
724 /*
725 * TTBCR
726 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
727 */
728 if (smmu->version > 1) {
729 if (PAGE_SIZE == SZ_4K)
730 reg = TTBCR_TG0_4K;
731 else
732 reg = TTBCR_TG0_64K;
733
734 if (!stage1) {
735 switch (smmu->s2_output_size) {
736 case 32:
737 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
738 break;
739 case 36:
740 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
741 break;
742 case 40:
743 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
744 break;
745 case 42:
746 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
747 break;
748 case 44:
749 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
750 break;
751 case 48:
752 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
753 break;
754 }
755 } else {
756 reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;
757 }
758 } else {
759 reg = 0;
760 }
761
762 reg |= TTBCR_EAE |
763 (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
764 (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
765 (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT) |
766 (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
767 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
768
769 /* MAIR0 (stage-1 only) */
770 if (stage1) {
771 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
772 (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
773 (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
774 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
775 }
776
Will Deacon45ae7cf2013-06-24 18:31:25 +0100777 /* SCTLR */
778 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
779 if (stage1)
780 reg |= SCTLR_S1_ASIDPNE;
781#ifdef __BIG_ENDIAN
782 reg |= SCTLR_E;
783#endif
Will Deacon25724842013-08-21 13:49:53 +0100784 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
Will Deacon45ae7cf2013-06-24 18:31:25 +0100785}
786
787static int arm_smmu_init_domain_context(struct iommu_domain *domain,
788 struct device *dev)
789{
790 int irq, ret, start;
791 struct arm_smmu_domain *smmu_domain = domain->priv;
792 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
793 struct arm_smmu_device *smmu, *parent;
794
795 /*
796 * Walk the SMMU chain to find the root device for this chain.
797 * We assume that no masters have translations which terminate
798 * early, and therefore check that the root SMMU does indeed have
799 * a StreamID for the master in question.
800 */
801 parent = dev->archdata.iommu;
802 smmu_domain->output_mask = -1;
803 do {
804 smmu = parent;
805 smmu_domain->output_mask &= (1ULL << smmu->s2_output_size) - 1;
806 } while ((parent = find_parent_smmu(smmu)));
807
808 if (!find_smmu_master(smmu, dev->of_node)) {
809 dev_err(dev, "unable to find root SMMU for device\n");
810 return -ENODEV;
811 }
812
Will Deacon45ae7cf2013-06-24 18:31:25 +0100813 if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
814 /*
815 * We will likely want to change this if/when KVM gets
816 * involved.
817 */
818 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
819 start = smmu->num_s2_context_banks;
820 } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) {
821 root_cfg->cbar = CBAR_TYPE_S2_TRANS;
822 start = 0;
823 } else {
824 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
825 start = smmu->num_s2_context_banks;
826 }
827
828 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
829 smmu->num_context_banks);
830 if (IS_ERR_VALUE(ret))
Will Deaconecfadb62013-07-31 19:21:28 +0100831 return ret;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100832
833 root_cfg->cbndx = ret;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100834 if (smmu->version == 1) {
835 root_cfg->irptndx = atomic_inc_return(&smmu->irptndx);
836 root_cfg->irptndx %= smmu->num_context_irqs;
837 } else {
838 root_cfg->irptndx = root_cfg->cbndx;
839 }
840
841 irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
842 ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
843 "arm-smmu-context-fault", domain);
844 if (IS_ERR_VALUE(ret)) {
845 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
846 root_cfg->irptndx, irq);
Dan Carpenterfaea13b72013-08-21 09:33:30 +0100847 root_cfg->irptndx = INVALID_IRPTNDX;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100848 goto out_free_context;
849 }
850
851 root_cfg->smmu = smmu;
852 arm_smmu_init_context_bank(smmu_domain);
853 return ret;
854
855out_free_context:
856 __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
Will Deacon45ae7cf2013-06-24 18:31:25 +0100857 return ret;
858}
859
860static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
861{
862 struct arm_smmu_domain *smmu_domain = domain->priv;
863 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
864 struct arm_smmu_device *smmu = root_cfg->smmu;
Will Deacon1463fe42013-07-31 19:21:27 +0100865 void __iomem *cb_base;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100866 int irq;
867
868 if (!smmu)
869 return;
870
Will Deacon1463fe42013-07-31 19:21:27 +0100871 /* Disable the context bank and nuke the TLB before freeing it. */
872 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
873 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
874 arm_smmu_tlb_inv_context(root_cfg);
875
Dan Carpenterfaea13b72013-08-21 09:33:30 +0100876 if (root_cfg->irptndx != INVALID_IRPTNDX) {
Will Deacon45ae7cf2013-06-24 18:31:25 +0100877 irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
878 free_irq(irq, domain);
879 }
880
Will Deacon45ae7cf2013-06-24 18:31:25 +0100881 __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
882}
883
884static int arm_smmu_domain_init(struct iommu_domain *domain)
885{
886 struct arm_smmu_domain *smmu_domain;
887 pgd_t *pgd;
888
889 /*
890 * Allocate the domain and initialise some of its data structures.
891 * We can't really do anything meaningful until we've added a
892 * master.
893 */
894 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
895 if (!smmu_domain)
896 return -ENOMEM;
897
898 pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
899 if (!pgd)
900 goto out_free_domain;
901 smmu_domain->root_cfg.pgd = pgd;
902
Will Deacona44a97912013-11-07 18:47:50 +0000903 mutex_init(&smmu_domain->lock);
Will Deacon45ae7cf2013-06-24 18:31:25 +0100904 domain->priv = smmu_domain;
905 return 0;
906
907out_free_domain:
908 kfree(smmu_domain);
909 return -ENOMEM;
910}
911
912static void arm_smmu_free_ptes(pmd_t *pmd)
913{
914 pgtable_t table = pmd_pgtable(*pmd);
915 pgtable_page_dtor(table);
916 __free_page(table);
917}
918
919static void arm_smmu_free_pmds(pud_t *pud)
920{
921 int i;
922 pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
923
924 pmd = pmd_base;
925 for (i = 0; i < PTRS_PER_PMD; ++i) {
926 if (pmd_none(*pmd))
927 continue;
928
929 arm_smmu_free_ptes(pmd);
930 pmd++;
931 }
932
933 pmd_free(NULL, pmd_base);
934}
935
936static void arm_smmu_free_puds(pgd_t *pgd)
937{
938 int i;
939 pud_t *pud, *pud_base = pud_offset(pgd, 0);
940
941 pud = pud_base;
942 for (i = 0; i < PTRS_PER_PUD; ++i) {
943 if (pud_none(*pud))
944 continue;
945
946 arm_smmu_free_pmds(pud);
947 pud++;
948 }
949
950 pud_free(NULL, pud_base);
951}
952
953static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
954{
955 int i;
956 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
957 pgd_t *pgd, *pgd_base = root_cfg->pgd;
958
959 /*
960 * Recursively free the page tables for this domain. We don't
961 * care about speculative TLB filling, because the TLB will be
962 * nuked next time this context bank is re-allocated and no devices
963 * currently map to these tables.
964 */
965 pgd = pgd_base;
966 for (i = 0; i < PTRS_PER_PGD; ++i) {
967 if (pgd_none(*pgd))
968 continue;
969 arm_smmu_free_puds(pgd);
970 pgd++;
971 }
972
973 kfree(pgd_base);
974}
975
976static void arm_smmu_domain_destroy(struct iommu_domain *domain)
977{
978 struct arm_smmu_domain *smmu_domain = domain->priv;
Will Deacon1463fe42013-07-31 19:21:27 +0100979
980 /*
981 * Free the domain resources. We assume that all devices have
982 * already been detached.
983 */
Will Deacon45ae7cf2013-06-24 18:31:25 +0100984 arm_smmu_destroy_domain_context(domain);
985 arm_smmu_free_pgtables(smmu_domain);
986 kfree(smmu_domain);
987}
988
989static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
990 struct arm_smmu_master *master)
991{
992 int i;
993 struct arm_smmu_smr *smrs;
994 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
995
996 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
997 return 0;
998
999 if (master->smrs)
1000 return -EEXIST;
1001
1002 smrs = kmalloc(sizeof(*smrs) * master->num_streamids, GFP_KERNEL);
1003 if (!smrs) {
1004 dev_err(smmu->dev, "failed to allocate %d SMRs for master %s\n",
1005 master->num_streamids, master->of_node->name);
1006 return -ENOMEM;
1007 }
1008
1009 /* Allocate the SMRs on the root SMMU */
1010 for (i = 0; i < master->num_streamids; ++i) {
1011 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1012 smmu->num_mapping_groups);
1013 if (IS_ERR_VALUE(idx)) {
1014 dev_err(smmu->dev, "failed to allocate free SMR\n");
1015 goto err_free_smrs;
1016 }
1017
1018 smrs[i] = (struct arm_smmu_smr) {
1019 .idx = idx,
1020 .mask = 0, /* We don't currently share SMRs */
1021 .id = master->streamids[i],
1022 };
1023 }
1024
1025 /* It worked! Now, poke the actual hardware */
1026 for (i = 0; i < master->num_streamids; ++i) {
1027 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1028 smrs[i].mask << SMR_MASK_SHIFT;
1029 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1030 }
1031
1032 master->smrs = smrs;
1033 return 0;
1034
1035err_free_smrs:
1036 while (--i >= 0)
1037 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1038 kfree(smrs);
1039 return -ENOSPC;
1040}
1041
1042static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1043 struct arm_smmu_master *master)
1044{
1045 int i;
1046 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1047 struct arm_smmu_smr *smrs = master->smrs;
1048
1049 /* Invalidate the SMRs before freeing back to the allocator */
1050 for (i = 0; i < master->num_streamids; ++i) {
1051 u8 idx = smrs[i].idx;
1052 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1053 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1054 }
1055
1056 master->smrs = NULL;
1057 kfree(smrs);
1058}
1059
1060static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device *smmu,
1061 struct arm_smmu_master *master)
1062{
1063 int i;
1064 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1065
1066 for (i = 0; i < master->num_streamids; ++i) {
1067 u16 sid = master->streamids[i];
1068 writel_relaxed(S2CR_TYPE_BYPASS,
1069 gr0_base + ARM_SMMU_GR0_S2CR(sid));
1070 }
1071}
1072
1073static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1074 struct arm_smmu_master *master)
1075{
1076 int i, ret;
1077 struct arm_smmu_device *parent, *smmu = smmu_domain->root_cfg.smmu;
1078 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1079
1080 ret = arm_smmu_master_configure_smrs(smmu, master);
1081 if (ret)
1082 return ret;
1083
1084 /* Bypass the leaves */
1085 smmu = smmu_domain->leaf_smmu;
1086 while ((parent = find_parent_smmu(smmu))) {
1087 /*
1088 * We won't have a StreamID match for anything but the root
1089 * smmu, so we only need to worry about StreamID indexing,
1090 * where we must install bypass entries in the S2CRs.
1091 */
1092 if (smmu->features & ARM_SMMU_FEAT_STREAM_MATCH)
1093 continue;
1094
1095 arm_smmu_bypass_stream_mapping(smmu, master);
1096 smmu = parent;
1097 }
1098
1099 /* Now we're at the root, time to point at our context bank */
1100 for (i = 0; i < master->num_streamids; ++i) {
1101 u32 idx, s2cr;
1102 idx = master->smrs ? master->smrs[i].idx : master->streamids[i];
1103 s2cr = (S2CR_TYPE_TRANS << S2CR_TYPE_SHIFT) |
1104 (smmu_domain->root_cfg.cbndx << S2CR_CBNDX_SHIFT);
1105 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1106 }
1107
1108 return 0;
1109}
1110
1111static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1112 struct arm_smmu_master *master)
1113{
1114 struct arm_smmu_device *smmu = smmu_domain->root_cfg.smmu;
1115
1116 /*
1117 * We *must* clear the S2CR first, because freeing the SMR means
1118 * that it can be re-allocated immediately.
1119 */
1120 arm_smmu_bypass_stream_mapping(smmu, master);
1121 arm_smmu_master_free_smrs(smmu, master);
1122}
1123
1124static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1125{
1126 int ret = -EINVAL;
1127 struct arm_smmu_domain *smmu_domain = domain->priv;
1128 struct arm_smmu_device *device_smmu = dev->archdata.iommu;
1129 struct arm_smmu_master *master;
1130
1131 if (!device_smmu) {
1132 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1133 return -ENXIO;
1134 }
1135
1136 /*
1137 * Sanity check the domain. We don't currently support domains
1138 * that cross between different SMMU chains.
1139 */
Will Deacona44a97912013-11-07 18:47:50 +00001140 mutex_lock(&smmu_domain->lock);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001141 if (!smmu_domain->leaf_smmu) {
1142 /* Now that we have a master, we can finalise the domain */
1143 ret = arm_smmu_init_domain_context(domain, dev);
1144 if (IS_ERR_VALUE(ret))
1145 goto err_unlock;
1146
1147 smmu_domain->leaf_smmu = device_smmu;
1148 } else if (smmu_domain->leaf_smmu != device_smmu) {
1149 dev_err(dev,
1150 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1151 dev_name(smmu_domain->leaf_smmu->dev),
1152 dev_name(device_smmu->dev));
1153 goto err_unlock;
1154 }
Will Deacona44a97912013-11-07 18:47:50 +00001155 mutex_unlock(&smmu_domain->lock);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001156
1157 /* Looks ok, so add the device to the domain */
1158 master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1159 if (!master)
1160 return -ENODEV;
1161
1162 return arm_smmu_domain_add_master(smmu_domain, master);
1163
1164err_unlock:
Will Deacona44a97912013-11-07 18:47:50 +00001165 mutex_unlock(&smmu_domain->lock);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001166 return ret;
1167}
1168
1169static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1170{
1171 struct arm_smmu_domain *smmu_domain = domain->priv;
1172 struct arm_smmu_master *master;
1173
1174 master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1175 if (master)
1176 arm_smmu_domain_remove_master(smmu_domain, master);
1177}
1178
1179static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
1180 size_t size)
1181{
1182 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
1183
1184 /*
1185 * If the SMMU can't walk tables in the CPU caches, treat them
1186 * like non-coherent DMA since we need to flush the new entries
1187 * all the way out to memory. There's no possibility of recursion
1188 * here as the SMMU table walker will not be wired through another
1189 * SMMU.
1190 */
1191 if (!(smmu->features & ARM_SMMU_FEAT_COHERENT_WALK))
1192 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
1193 DMA_TO_DEVICE);
1194}
1195
1196static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1197 unsigned long end)
1198{
1199 return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1200 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1201}
1202
1203static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1204 unsigned long addr, unsigned long end,
1205 unsigned long pfn, int flags, int stage)
1206{
1207 pte_t *pte, *start;
1208 pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF;
1209
1210 if (pmd_none(*pmd)) {
1211 /* Allocate a new set of tables */
1212 pgtable_t table = alloc_page(PGALLOC_GFP);
1213 if (!table)
1214 return -ENOMEM;
1215
1216 arm_smmu_flush_pgtable(smmu, page_address(table),
1217 ARM_SMMU_PTE_HWTABLE_SIZE);
Kirill A. Shutemov01058e72013-11-14 14:31:49 -08001218 if (!pgtable_page_ctor(table)) {
1219 __free_page(table);
1220 return -ENOMEM;
1221 }
Will Deacon45ae7cf2013-06-24 18:31:25 +01001222 pmd_populate(NULL, pmd, table);
1223 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1224 }
1225
1226 if (stage == 1) {
Will Deacon1463fe42013-07-31 19:21:27 +01001227 pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001228 if (!(flags & IOMMU_WRITE) && (flags & IOMMU_READ))
1229 pteval |= ARM_SMMU_PTE_AP_RDONLY;
1230
1231 if (flags & IOMMU_CACHE)
1232 pteval |= (MAIR_ATTR_IDX_CACHE <<
1233 ARM_SMMU_PTE_ATTRINDX_SHIFT);
1234 } else {
1235 pteval |= ARM_SMMU_PTE_HAP_FAULT;
1236 if (flags & IOMMU_READ)
1237 pteval |= ARM_SMMU_PTE_HAP_READ;
1238 if (flags & IOMMU_WRITE)
1239 pteval |= ARM_SMMU_PTE_HAP_WRITE;
1240 if (flags & IOMMU_CACHE)
1241 pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1242 else
1243 pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1244 }
1245
1246 /* If no access, create a faulting entry to avoid TLB fills */
1247 if (!(flags & (IOMMU_READ | IOMMU_WRITE)))
1248 pteval &= ~ARM_SMMU_PTE_PAGE;
1249
1250 pteval |= ARM_SMMU_PTE_SH_IS;
1251 start = pmd_page_vaddr(*pmd) + pte_index(addr);
1252 pte = start;
1253
1254 /*
1255 * Install the page table entries. This is fairly complicated
1256 * since we attempt to make use of the contiguous hint in the
1257 * ptes where possible. The contiguous hint indicates a series
1258 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1259 * contiguous region with the following constraints:
1260 *
1261 * - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1262 * - Each pte in the region has the contiguous hint bit set
1263 *
1264 * This complicates unmapping (also handled by this code, when
1265 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1266 * possible, yet highly unlikely, that a client may unmap only
1267 * part of a contiguous range. This requires clearing of the
1268 * contiguous hint bits in the range before installing the new
1269 * faulting entries.
1270 *
1271 * Note that re-mapping an address range without first unmapping
1272 * it is not supported, so TLB invalidation is not required here
1273 * and is instead performed at unmap and domain-init time.
1274 */
1275 do {
1276 int i = 1;
1277 pteval &= ~ARM_SMMU_PTE_CONT;
1278
1279 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1280 i = ARM_SMMU_PTE_CONT_ENTRIES;
1281 pteval |= ARM_SMMU_PTE_CONT;
1282 } else if (pte_val(*pte) &
1283 (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1284 int j;
1285 pte_t *cont_start;
1286 unsigned long idx = pte_index(addr);
1287
1288 idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1289 cont_start = pmd_page_vaddr(*pmd) + idx;
1290 for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1291 pte_val(*(cont_start + j)) &= ~ARM_SMMU_PTE_CONT;
1292
1293 arm_smmu_flush_pgtable(smmu, cont_start,
1294 sizeof(*pte) *
1295 ARM_SMMU_PTE_CONT_ENTRIES);
1296 }
1297
1298 do {
1299 *pte = pfn_pte(pfn, __pgprot(pteval));
1300 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1301 } while (addr != end);
1302
1303 arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1304 return 0;
1305}
1306
1307static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1308 unsigned long addr, unsigned long end,
1309 phys_addr_t phys, int flags, int stage)
1310{
1311 int ret;
1312 pmd_t *pmd;
1313 unsigned long next, pfn = __phys_to_pfn(phys);
1314
1315#ifndef __PAGETABLE_PMD_FOLDED
1316 if (pud_none(*pud)) {
1317 pmd = pmd_alloc_one(NULL, addr);
1318 if (!pmd)
1319 return -ENOMEM;
1320 } else
1321#endif
1322 pmd = pmd_offset(pud, addr);
1323
1324 do {
1325 next = pmd_addr_end(addr, end);
1326 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, end, pfn,
1327 flags, stage);
1328 pud_populate(NULL, pud, pmd);
1329 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1330 phys += next - addr;
1331 } while (pmd++, addr = next, addr < end);
1332
1333 return ret;
1334}
1335
1336static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1337 unsigned long addr, unsigned long end,
1338 phys_addr_t phys, int flags, int stage)
1339{
1340 int ret = 0;
1341 pud_t *pud;
1342 unsigned long next;
1343
1344#ifndef __PAGETABLE_PUD_FOLDED
1345 if (pgd_none(*pgd)) {
1346 pud = pud_alloc_one(NULL, addr);
1347 if (!pud)
1348 return -ENOMEM;
1349 } else
1350#endif
1351 pud = pud_offset(pgd, addr);
1352
1353 do {
1354 next = pud_addr_end(addr, end);
1355 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1356 flags, stage);
1357 pgd_populate(NULL, pud, pgd);
1358 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1359 phys += next - addr;
1360 } while (pud++, addr = next, addr < end);
1361
1362 return ret;
1363}
1364
1365static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1366 unsigned long iova, phys_addr_t paddr,
1367 size_t size, int flags)
1368{
1369 int ret, stage;
1370 unsigned long end;
1371 phys_addr_t input_mask, output_mask;
1372 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1373 pgd_t *pgd = root_cfg->pgd;
1374 struct arm_smmu_device *smmu = root_cfg->smmu;
1375
1376 if (root_cfg->cbar == CBAR_TYPE_S2_TRANS) {
1377 stage = 2;
1378 output_mask = (1ULL << smmu->s2_output_size) - 1;
1379 } else {
1380 stage = 1;
1381 output_mask = (1ULL << smmu->s1_output_size) - 1;
1382 }
1383
1384 if (!pgd)
1385 return -EINVAL;
1386
1387 if (size & ~PAGE_MASK)
1388 return -EINVAL;
1389
1390 input_mask = (1ULL << smmu->input_size) - 1;
1391 if ((phys_addr_t)iova & ~input_mask)
1392 return -ERANGE;
1393
1394 if (paddr & ~output_mask)
1395 return -ERANGE;
1396
Will Deacona44a97912013-11-07 18:47:50 +00001397 mutex_lock(&smmu_domain->lock);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001398 pgd += pgd_index(iova);
1399 end = iova + size;
1400 do {
1401 unsigned long next = pgd_addr_end(iova, end);
1402
1403 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1404 flags, stage);
1405 if (ret)
1406 goto out_unlock;
1407
1408 paddr += next - iova;
1409 iova = next;
1410 } while (pgd++, iova != end);
1411
1412out_unlock:
Will Deacona44a97912013-11-07 18:47:50 +00001413 mutex_unlock(&smmu_domain->lock);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001414
1415 /* Ensure new page tables are visible to the hardware walker */
1416 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1417 dsb();
1418
1419 return ret;
1420}
1421
1422static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1423 phys_addr_t paddr, size_t size, int flags)
1424{
1425 struct arm_smmu_domain *smmu_domain = domain->priv;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001426
Will Deacon5552ecd2013-11-08 15:08:06 +00001427 if (!smmu_domain)
Will Deacon45ae7cf2013-06-24 18:31:25 +01001428 return -ENODEV;
1429
1430 /* Check for silent address truncation up the SMMU chain. */
1431 if ((phys_addr_t)iova & ~smmu_domain->output_mask)
1432 return -ERANGE;
1433
1434 return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, flags);
1435}
1436
1437static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1438 size_t size)
1439{
1440 int ret;
1441 struct arm_smmu_domain *smmu_domain = domain->priv;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001442
1443 ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
Will Deacon1463fe42013-07-31 19:21:27 +01001444 arm_smmu_tlb_inv_context(&smmu_domain->root_cfg);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001445 return ret ? ret : size;
1446}
1447
1448static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1449 dma_addr_t iova)
1450{
Will Deacona44a97912013-11-07 18:47:50 +00001451 pgd_t *pgdp, pgd;
1452 pud_t pud;
1453 pmd_t pmd;
1454 pte_t pte;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001455 struct arm_smmu_domain *smmu_domain = domain->priv;
1456 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001457
Will Deacona44a97912013-11-07 18:47:50 +00001458 pgdp = root_cfg->pgd;
1459 if (!pgdp)
1460 return 0;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001461
Will Deacona44a97912013-11-07 18:47:50 +00001462 pgd = *(pgdp + pgd_index(iova));
1463 if (pgd_none(pgd))
1464 return 0;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001465
Will Deacona44a97912013-11-07 18:47:50 +00001466 pud = *pud_offset(&pgd, iova);
1467 if (pud_none(pud))
1468 return 0;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001469
Will Deacona44a97912013-11-07 18:47:50 +00001470 pmd = *pmd_offset(&pud, iova);
1471 if (pmd_none(pmd))
1472 return 0;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001473
Will Deacona44a97912013-11-07 18:47:50 +00001474 pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
Will Deacon45ae7cf2013-06-24 18:31:25 +01001475 if (pte_none(pte))
Will Deacona44a97912013-11-07 18:47:50 +00001476 return 0;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001477
Will Deacona44a97912013-11-07 18:47:50 +00001478 return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001479}
1480
1481static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
1482 unsigned long cap)
1483{
1484 unsigned long caps = 0;
1485 struct arm_smmu_domain *smmu_domain = domain->priv;
1486
1487 if (smmu_domain->root_cfg.smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1488 caps |= IOMMU_CAP_CACHE_COHERENCY;
1489
1490 return !!(cap & caps);
1491}
1492
1493static int arm_smmu_add_device(struct device *dev)
1494{
1495 struct arm_smmu_device *child, *parent, *smmu;
1496 struct arm_smmu_master *master = NULL;
Antonios Motakis5fc63a72013-10-18 16:08:29 +01001497 struct iommu_group *group;
1498 int ret;
1499
1500 if (dev->archdata.iommu) {
1501 dev_warn(dev, "IOMMU driver already assigned to device\n");
1502 return -EINVAL;
1503 }
Will Deacon45ae7cf2013-06-24 18:31:25 +01001504
1505 spin_lock(&arm_smmu_devices_lock);
1506 list_for_each_entry(parent, &arm_smmu_devices, list) {
1507 smmu = parent;
1508
1509 /* Try to find a child of the current SMMU. */
1510 list_for_each_entry(child, &arm_smmu_devices, list) {
1511 if (child->parent_of_node == parent->dev->of_node) {
1512 /* Does the child sit above our master? */
1513 master = find_smmu_master(child, dev->of_node);
1514 if (master) {
1515 smmu = NULL;
1516 break;
1517 }
1518 }
1519 }
1520
1521 /* We found some children, so keep searching. */
1522 if (!smmu) {
1523 master = NULL;
1524 continue;
1525 }
1526
1527 master = find_smmu_master(smmu, dev->of_node);
1528 if (master)
1529 break;
1530 }
1531 spin_unlock(&arm_smmu_devices_lock);
1532
1533 if (!master)
1534 return -ENODEV;
1535
Antonios Motakis5fc63a72013-10-18 16:08:29 +01001536 group = iommu_group_alloc();
1537 if (IS_ERR(group)) {
1538 dev_err(dev, "Failed to allocate IOMMU group\n");
1539 return PTR_ERR(group);
1540 }
1541
1542 ret = iommu_group_add_device(group, dev);
1543 iommu_group_put(group);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001544 dev->archdata.iommu = smmu;
Antonios Motakis5fc63a72013-10-18 16:08:29 +01001545
1546 return ret;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001547}
1548
1549static void arm_smmu_remove_device(struct device *dev)
1550{
1551 dev->archdata.iommu = NULL;
Antonios Motakis5fc63a72013-10-18 16:08:29 +01001552 iommu_group_remove_device(dev);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001553}
1554
1555static struct iommu_ops arm_smmu_ops = {
1556 .domain_init = arm_smmu_domain_init,
1557 .domain_destroy = arm_smmu_domain_destroy,
1558 .attach_dev = arm_smmu_attach_dev,
1559 .detach_dev = arm_smmu_detach_dev,
1560 .map = arm_smmu_map,
1561 .unmap = arm_smmu_unmap,
1562 .iova_to_phys = arm_smmu_iova_to_phys,
1563 .domain_has_cap = arm_smmu_domain_has_cap,
1564 .add_device = arm_smmu_add_device,
1565 .remove_device = arm_smmu_remove_device,
1566 .pgsize_bitmap = (SECTION_SIZE |
1567 ARM_SMMU_PTE_CONT_SIZE |
1568 PAGE_SIZE),
1569};
1570
1571static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1572{
1573 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
Andreas Herrmann659db6f2013-10-01 13:39:09 +01001574 void __iomem *cb_base;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001575 int i = 0;
Andreas Herrmann659db6f2013-10-01 13:39:09 +01001576 u32 reg;
1577
1578 /* Clear Global FSR */
1579 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
1580 writel(reg, gr0_base + ARM_SMMU_GR0_sGFSR);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001581
1582 /* Mark all SMRn as invalid and all S2CRn as bypass */
1583 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1584 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(i));
1585 writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(i));
1586 }
1587
Andreas Herrmann659db6f2013-10-01 13:39:09 +01001588 /* Make sure all context banks are disabled and clear CB_FSR */
1589 for (i = 0; i < smmu->num_context_banks; ++i) {
1590 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1591 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1592 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1593 }
Will Deacon1463fe42013-07-31 19:21:27 +01001594
Will Deacon45ae7cf2013-06-24 18:31:25 +01001595 /* Invalidate the TLB, just in case */
1596 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1597 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1598 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1599
Andreas Herrmann659db6f2013-10-01 13:39:09 +01001600 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sCR0);
1601
Will Deacon45ae7cf2013-06-24 18:31:25 +01001602 /* Enable fault reporting */
Andreas Herrmann659db6f2013-10-01 13:39:09 +01001603 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001604
1605 /* Disable TLB broadcasting. */
Andreas Herrmann659db6f2013-10-01 13:39:09 +01001606 reg |= (sCR0_VMIDPNE | sCR0_PTM);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001607
1608 /* Enable client access, but bypass when no mapping is found */
Andreas Herrmann659db6f2013-10-01 13:39:09 +01001609 reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001610
1611 /* Disable forced broadcasting */
Andreas Herrmann659db6f2013-10-01 13:39:09 +01001612 reg &= ~sCR0_FB;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001613
1614 /* Don't upgrade barriers */
Andreas Herrmann659db6f2013-10-01 13:39:09 +01001615 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001616
1617 /* Push the button */
1618 arm_smmu_tlb_sync(smmu);
Andreas Herrmann659db6f2013-10-01 13:39:09 +01001619 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sCR0);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001620}
1621
1622static int arm_smmu_id_size_to_bits(int size)
1623{
1624 switch (size) {
1625 case 0:
1626 return 32;
1627 case 1:
1628 return 36;
1629 case 2:
1630 return 40;
1631 case 3:
1632 return 42;
1633 case 4:
1634 return 44;
1635 case 5:
1636 default:
1637 return 48;
1638 }
1639}
1640
1641static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1642{
1643 unsigned long size;
1644 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1645 u32 id;
1646
1647 dev_notice(smmu->dev, "probing hardware configuration...\n");
1648
1649 /* Primecell ID */
1650 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
1651 smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
1652 dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1653
1654 /* ID0 */
1655 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1656#ifndef CONFIG_64BIT
1657 if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1658 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1659 return -ENODEV;
1660 }
1661#endif
1662 if (id & ID0_S1TS) {
1663 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1664 dev_notice(smmu->dev, "\tstage 1 translation\n");
1665 }
1666
1667 if (id & ID0_S2TS) {
1668 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1669 dev_notice(smmu->dev, "\tstage 2 translation\n");
1670 }
1671
1672 if (id & ID0_NTS) {
1673 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1674 dev_notice(smmu->dev, "\tnested translation\n");
1675 }
1676
1677 if (!(smmu->features &
1678 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
1679 ARM_SMMU_FEAT_TRANS_NESTED))) {
1680 dev_err(smmu->dev, "\tno translation support!\n");
1681 return -ENODEV;
1682 }
1683
1684 if (id & ID0_CTTW) {
1685 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1686 dev_notice(smmu->dev, "\tcoherent table walk\n");
1687 }
1688
1689 if (id & ID0_SMS) {
1690 u32 smr, sid, mask;
1691
1692 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1693 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1694 ID0_NUMSMRG_MASK;
1695 if (smmu->num_mapping_groups == 0) {
1696 dev_err(smmu->dev,
1697 "stream-matching supported, but no SMRs present!\n");
1698 return -ENODEV;
1699 }
1700
1701 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1702 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1703 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1704 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1705
1706 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1707 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1708 if ((mask & sid) != sid) {
1709 dev_err(smmu->dev,
1710 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1711 mask, sid);
1712 return -ENODEV;
1713 }
1714
1715 dev_notice(smmu->dev,
1716 "\tstream matching with %u register groups, mask 0x%x",
1717 smmu->num_mapping_groups, mask);
1718 }
1719
1720 /* ID1 */
1721 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1722 smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;
1723
Andreas Herrmannc55af7f2013-10-01 13:39:06 +01001724 /* Check for size mismatch of SMMU address space from mapped region */
Will Deacon45ae7cf2013-06-24 18:31:25 +01001725 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1726 size *= (smmu->pagesize << 1);
Andreas Herrmannc55af7f2013-10-01 13:39:06 +01001727 if (smmu->size != size)
1728 dev_warn(smmu->dev, "SMMU address space size (0x%lx) differs "
1729 "from mapped region size (0x%lx)!\n", size, smmu->size);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001730
1731 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1732 ID1_NUMS2CB_MASK;
1733 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1734 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1735 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1736 return -ENODEV;
1737 }
1738 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1739 smmu->num_context_banks, smmu->num_s2_context_banks);
1740
1741 /* ID2 */
1742 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1743 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1744
1745 /*
1746 * Stage-1 output limited by stage-2 input size due to pgd
1747 * allocation (PTRS_PER_PGD).
1748 */
1749#ifdef CONFIG_64BIT
1750 /* Current maximum output size of 39 bits */
1751 smmu->s1_output_size = min(39UL, size);
1752#else
1753 smmu->s1_output_size = min(32UL, size);
1754#endif
1755
1756 /* The stage-2 output mask is also applied for bypass */
1757 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1758 smmu->s2_output_size = min((unsigned long)PHYS_MASK_SHIFT, size);
1759
1760 if (smmu->version == 1) {
1761 smmu->input_size = 32;
1762 } else {
1763#ifdef CONFIG_64BIT
1764 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1765 size = min(39, arm_smmu_id_size_to_bits(size));
1766#else
1767 size = 32;
1768#endif
1769 smmu->input_size = size;
1770
1771 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1772 (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1773 (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1774 dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1775 PAGE_SIZE);
1776 return -ENODEV;
1777 }
1778 }
1779
1780 dev_notice(smmu->dev,
1781 "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1782 smmu->input_size, smmu->s1_output_size, smmu->s2_output_size);
1783 return 0;
1784}
1785
1786static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1787{
1788 struct resource *res;
1789 struct arm_smmu_device *smmu;
1790 struct device_node *dev_node;
1791 struct device *dev = &pdev->dev;
1792 struct rb_node *node;
1793 struct of_phandle_args masterspec;
1794 int num_irqs, i, err;
1795
1796 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1797 if (!smmu) {
1798 dev_err(dev, "failed to allocate arm_smmu_device\n");
1799 return -ENOMEM;
1800 }
1801 smmu->dev = dev;
1802
1803 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
Julia Lawall8a7f4312013-08-19 12:20:37 +01001804 smmu->base = devm_ioremap_resource(dev, res);
1805 if (IS_ERR(smmu->base))
1806 return PTR_ERR(smmu->base);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001807 smmu->size = resource_size(res);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001808
1809 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1810 &smmu->num_global_irqs)) {
1811 dev_err(dev, "missing #global-interrupts property\n");
1812 return -ENODEV;
1813 }
1814
1815 num_irqs = 0;
1816 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1817 num_irqs++;
1818 if (num_irqs > smmu->num_global_irqs)
1819 smmu->num_context_irqs++;
1820 }
1821
Andreas Herrmann44a08de2013-10-01 13:39:07 +01001822 if (!smmu->num_context_irqs) {
1823 dev_err(dev, "found %d interrupts but expected at least %d\n",
1824 num_irqs, smmu->num_global_irqs + 1);
1825 return -ENODEV;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001826 }
Will Deacon45ae7cf2013-06-24 18:31:25 +01001827
1828 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1829 GFP_KERNEL);
1830 if (!smmu->irqs) {
1831 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1832 return -ENOMEM;
1833 }
1834
1835 for (i = 0; i < num_irqs; ++i) {
1836 int irq = platform_get_irq(pdev, i);
1837 if (irq < 0) {
1838 dev_err(dev, "failed to get irq index %d\n", i);
1839 return -ENODEV;
1840 }
1841 smmu->irqs[i] = irq;
1842 }
1843
1844 i = 0;
1845 smmu->masters = RB_ROOT;
1846 while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1847 "#stream-id-cells", i,
1848 &masterspec)) {
1849 err = register_smmu_master(smmu, dev, &masterspec);
1850 if (err) {
1851 dev_err(dev, "failed to add master %s\n",
1852 masterspec.np->name);
1853 goto out_put_masters;
1854 }
1855
1856 i++;
1857 }
1858 dev_notice(dev, "registered %d master devices\n", i);
1859
1860 if ((dev_node = of_parse_phandle(dev->of_node, "smmu-parent", 0)))
1861 smmu->parent_of_node = dev_node;
1862
1863 err = arm_smmu_device_cfg_probe(smmu);
1864 if (err)
1865 goto out_put_parent;
1866
1867 if (smmu->version > 1 &&
1868 smmu->num_context_banks != smmu->num_context_irqs) {
1869 dev_err(dev,
1870 "found only %d context interrupt(s) but %d required\n",
1871 smmu->num_context_irqs, smmu->num_context_banks);
Wei Yongjun89a23cde2013-11-15 09:42:30 +00001872 err = -ENODEV;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001873 goto out_put_parent;
1874 }
1875
Will Deacon45ae7cf2013-06-24 18:31:25 +01001876 for (i = 0; i < smmu->num_global_irqs; ++i) {
1877 err = request_irq(smmu->irqs[i],
1878 arm_smmu_global_fault,
1879 IRQF_SHARED,
1880 "arm-smmu global fault",
1881 smmu);
1882 if (err) {
1883 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1884 i, smmu->irqs[i]);
1885 goto out_free_irqs;
1886 }
1887 }
1888
1889 INIT_LIST_HEAD(&smmu->list);
1890 spin_lock(&arm_smmu_devices_lock);
1891 list_add(&smmu->list, &arm_smmu_devices);
1892 spin_unlock(&arm_smmu_devices_lock);
Will Deaconfd90cec2013-08-21 13:56:34 +01001893
1894 arm_smmu_device_reset(smmu);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001895 return 0;
1896
1897out_free_irqs:
1898 while (i--)
1899 free_irq(smmu->irqs[i], smmu);
1900
1901out_put_parent:
1902 if (smmu->parent_of_node)
1903 of_node_put(smmu->parent_of_node);
1904
1905out_put_masters:
1906 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1907 struct arm_smmu_master *master;
1908 master = container_of(node, struct arm_smmu_master, node);
1909 of_node_put(master->of_node);
1910 }
1911
1912 return err;
1913}
1914
1915static int arm_smmu_device_remove(struct platform_device *pdev)
1916{
1917 int i;
1918 struct device *dev = &pdev->dev;
1919 struct arm_smmu_device *curr, *smmu = NULL;
1920 struct rb_node *node;
1921
1922 spin_lock(&arm_smmu_devices_lock);
1923 list_for_each_entry(curr, &arm_smmu_devices, list) {
1924 if (curr->dev == dev) {
1925 smmu = curr;
1926 list_del(&smmu->list);
1927 break;
1928 }
1929 }
1930 spin_unlock(&arm_smmu_devices_lock);
1931
1932 if (!smmu)
1933 return -ENODEV;
1934
1935 if (smmu->parent_of_node)
1936 of_node_put(smmu->parent_of_node);
1937
1938 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1939 struct arm_smmu_master *master;
1940 master = container_of(node, struct arm_smmu_master, node);
1941 of_node_put(master->of_node);
1942 }
1943
Will Deaconecfadb62013-07-31 19:21:28 +01001944 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
Will Deacon45ae7cf2013-06-24 18:31:25 +01001945 dev_err(dev, "removing device with active domains!\n");
1946
1947 for (i = 0; i < smmu->num_global_irqs; ++i)
1948 free_irq(smmu->irqs[i], smmu);
1949
1950 /* Turn the thing off */
Will Deacon25724842013-08-21 13:49:53 +01001951 writel_relaxed(sCR0_CLIENTPD, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_sCR0);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001952 return 0;
1953}
1954
1955#ifdef CONFIG_OF
1956static struct of_device_id arm_smmu_of_match[] = {
1957 { .compatible = "arm,smmu-v1", },
1958 { .compatible = "arm,smmu-v2", },
1959 { .compatible = "arm,mmu-400", },
1960 { .compatible = "arm,mmu-500", },
1961 { },
1962};
1963MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1964#endif
1965
1966static struct platform_driver arm_smmu_driver = {
1967 .driver = {
1968 .owner = THIS_MODULE,
1969 .name = "arm-smmu",
1970 .of_match_table = of_match_ptr(arm_smmu_of_match),
1971 },
1972 .probe = arm_smmu_device_dt_probe,
1973 .remove = arm_smmu_device_remove,
1974};
1975
1976static int __init arm_smmu_init(void)
1977{
1978 int ret;
1979
1980 ret = platform_driver_register(&arm_smmu_driver);
1981 if (ret)
1982 return ret;
1983
1984 /* Oh, for a proper bus abstraction */
Dan Carpenter6614ee72013-08-21 09:34:20 +01001985 if (!iommu_present(&platform_bus_type))
Will Deacon45ae7cf2013-06-24 18:31:25 +01001986 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1987
Dan Carpenter6614ee72013-08-21 09:34:20 +01001988 if (!iommu_present(&amba_bustype))
Will Deacon45ae7cf2013-06-24 18:31:25 +01001989 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1990
1991 return 0;
1992}
1993
1994static void __exit arm_smmu_exit(void)
1995{
1996 return platform_driver_unregister(&arm_smmu_driver);
1997}
1998
Andreas Herrmannb1950b22013-10-01 13:39:05 +01001999subsys_initcall(arm_smmu_init);
Will Deacon45ae7cf2013-06-24 18:31:25 +01002000module_exit(arm_smmu_exit);
2001
2002MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2003MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2004MODULE_LICENSE("GPL v2");