blob: 68e2bccd90d34418d3b85070b0f7b09ee468a93f [file] [log] [blame]
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001/*
2 * PHY functions
3 *
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03004 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
Nick Kossifidis33a31822009-02-09 06:00:34 +02005 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03006 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02007 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
Jiri Slabyfa1c1142007-08-12 17:33:16 +02008 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
Nick Kossifidisc6e387a2008-08-29 22:45:39 +030023#define _ATH5K_PHY
24
Jiri Slabyfa1c1142007-08-12 17:33:16 +020025#include <linux/delay.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090026#include <linux/slab.h>
Jiri Slabyfa1c1142007-08-12 17:33:16 +020027
28#include "ath5k.h"
29#include "reg.h"
30#include "base.h"
Nick Kossifidis33a31822009-02-09 06:00:34 +020031#include "rfbuffer.h"
32#include "rfgain.h"
Jiri Slabyfa1c1142007-08-12 17:33:16 +020033
34/*
35 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
36 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020037static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
38 const struct ath5k_rf_reg *rf_regs,
39 u32 val, u8 reg_id, bool set)
Jiri Slabyfa1c1142007-08-12 17:33:16 +020040{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020041 const struct ath5k_rf_reg *rfreg = NULL;
42 u8 offset, bank, num_bits, col, position;
43 u16 entry;
44 u32 mask, data, last_bit, bits_shifted, first_bit;
45 u32 *rfb;
46 s32 bits_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020047 int i;
48
49 data = 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020050 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020051
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020052 for (i = 0; i < ah->ah_rf_regs_count; i++) {
53 if (rf_regs[i].index == reg_id) {
54 rfreg = &rf_regs[i];
55 break;
56 }
57 }
58
59 if (rfb == NULL || rfreg == NULL) {
60 ATH5K_PRINTF("Rf register not found!\n");
Jiri Slabyfa1c1142007-08-12 17:33:16 +020061 /* should not happen */
62 return 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020063 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +020064
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020065 bank = rfreg->bank;
66 num_bits = rfreg->field.len;
67 first_bit = rfreg->field.pos;
68 col = rfreg->field.col;
69
70 /* first_bit is an offset from bank's
71 * start. Since we have all banks on
72 * the same array, we use this offset
73 * to mark each bank's start */
74 offset = ah->ah_offset[bank];
75
76 /* Boundary check */
77 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +020078 ATH5K_PRINTF("invalid values at offset %u\n", offset);
79 return 0;
80 }
81
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020082 entry = ((first_bit - 1) / 8) + offset;
83 position = (first_bit - 1) % 8;
Jiri Slabyfa1c1142007-08-12 17:33:16 +020084
Joe Perchese9010e22008-03-07 14:21:16 -080085 if (set)
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020086 data = ath5k_hw_bitswap(val, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +020087
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020088 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
89 position = 0, entry++) {
90
91 last_bit = (position + bits_left > 8) ? 8 :
92 position + bits_left;
93
94 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
95 (col * 8);
Jiri Slabyfa1c1142007-08-12 17:33:16 +020096
Joe Perchese9010e22008-03-07 14:21:16 -080097 if (set) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +020098 rfb[entry] &= ~mask;
99 rfb[entry] |= ((data << position) << (col * 8)) & mask;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200100 data >>= (8 - position);
101 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200102 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
103 << bits_shifted;
104 bits_shifted += last_bit - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200105 }
106
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200107 bits_left -= 8 - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200108 }
109
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200110 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200111
112 return data;
113}
114
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200115/**********************\
116* RF Gain optimization *
117\**********************/
118
119/*
120 * This code is used to optimize rf gain on different environments
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200121 * (temperature mostly) based on feedback from a power detector.
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200122 *
123 * It's only used on RF5111 and RF5112, later RF chips seem to have
124 * auto adjustment on hw -notice they have a much smaller BANK 7 and
125 * no gain optimization ladder-.
126 *
127 * For more infos check out this patent doc
128 * http://www.freepatentsonline.com/7400691.html
129 *
130 * This paper describes power drops as seen on the receiver due to
131 * probe packets
132 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
133 * %20of%20Power%20Control.pdf
134 *
135 * And this is the MadWiFi bug entry related to the above
136 * http://madwifi-project.org/ticket/1659
137 * with various measurements and diagrams
138 *
139 * TODO: Deal with power drops due to probes by setting an apropriate
140 * tx power on the probe packets ! Make this part of the calibration process.
141 */
142
143/* Initialize ah_gain durring attach */
144int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
145{
146 /* Initialize the gain optimization values */
147 switch (ah->ah_radio) {
148 case AR5K_RF5111:
149 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
150 ah->ah_gain.g_low = 20;
151 ah->ah_gain.g_high = 35;
152 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
153 break;
154 case AR5K_RF5112:
155 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
156 ah->ah_gain.g_low = 20;
157 ah->ah_gain.g_high = 85;
158 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
159 break;
160 default:
161 return -EINVAL;
162 }
163
164 return 0;
165}
166
167/* Schedule a gain probe check on the next transmited packet.
168 * That means our next packet is going to be sent with lower
169 * tx power and a Peak to Average Power Detector (PAPD) will try
170 * to measure the gain.
171 *
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200172 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
173 * just after we enable the probe so that we don't mess with
174 * standard traffic ? Maybe it's time to use sw interrupts and
175 * a probe tasklet !!!
176 */
177static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
178{
179
180 /* Skip if gain calibration is inactive or
181 * we already handle a probe request */
182 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
183 return;
184
Nick Kossifidis8f655dd2009-03-15 22:20:35 +0200185 /* Send the packet with 2dB below max power as
186 * patent doc suggest */
Nick Kossifidisa0823812009-04-30 15:55:44 -0400187 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200188 AR5K_PHY_PAPD_PROBE_TXPOWER) |
189 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
190
191 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
192
193}
194
195/* Calculate gain_F measurement correction
196 * based on the current step for RF5112 rev. 2 */
197static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200198{
199 u32 mix, step;
200 u32 *rf;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200201 const struct ath5k_gain_opt *go;
202 const struct ath5k_gain_opt_step *g_step;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200203 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200204
205 /* Only RF5112 Rev. 2 supports it */
206 if ((ah->ah_radio != AR5K_RF5112) ||
207 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
208 return 0;
209
210 go = &rfgain_opt_5112;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200211 rf_regs = rf_regs_5112a;
212 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200213
214 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200215
216 if (ah->ah_rf_banks == NULL)
217 return 0;
218
219 rf = ah->ah_rf_banks;
220 ah->ah_gain.g_f_corr = 0;
221
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200222 /* No VGA (Variable Gain Amplifier) override, skip */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200223 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200224 return 0;
225
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200226 /* Mix gain stepping */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200227 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200228
229 /* Mix gain override */
230 mix = g_step->gos_param[0];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200231
232 switch (mix) {
233 case 3:
234 ah->ah_gain.g_f_corr = step * 2;
235 break;
236 case 2:
237 ah->ah_gain.g_f_corr = (step - 5) * 2;
238 break;
239 case 1:
240 ah->ah_gain.g_f_corr = step;
241 break;
242 default:
243 ah->ah_gain.g_f_corr = 0;
244 break;
245 }
246
247 return ah->ah_gain.g_f_corr;
248}
249
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200250/* Check if current gain_F measurement is in the range of our
251 * power detector windows. If we get a measurement outside range
252 * we know it's not accurate (detectors can't measure anything outside
253 * their detection window) so we must ignore it */
254static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200255{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200256 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200257 u32 step, mix_ovr, level[4];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200258 u32 *rf;
259
260 if (ah->ah_rf_banks == NULL)
261 return false;
262
263 rf = ah->ah_rf_banks;
264
265 if (ah->ah_radio == AR5K_RF5111) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200266
267 rf_regs = rf_regs_5111;
268 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
269
270 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
271 false);
272
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200273 level[0] = 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200274 level[1] = (step == 63) ? 50 : step + 4;
275 level[2] = (step != 63) ? 64 : level[0];
276 level[3] = level[2] + 50 ;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200277
278 ah->ah_gain.g_high = level[3] -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200279 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200280 ah->ah_gain.g_low = level[0] +
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200281 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200282 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200283
284 rf_regs = rf_regs_5112;
285 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
286
287 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
288 false);
289
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200290 level[0] = level[2] = 0;
291
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200292 if (mix_ovr == 1) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200293 level[1] = level[3] = 83;
294 } else {
295 level[1] = level[3] = 107;
296 ah->ah_gain.g_high = 55;
297 }
298 }
299
300 return (ah->ah_gain.g_current >= level[0] &&
301 ah->ah_gain.g_current <= level[1]) ||
302 (ah->ah_gain.g_current >= level[2] &&
303 ah->ah_gain.g_current <= level[3]);
304}
305
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200306/* Perform gain_F adjustment by choosing the right set
307 * of parameters from rf gain optimization ladder */
308static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200309{
310 const struct ath5k_gain_opt *go;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200311 const struct ath5k_gain_opt_step *g_step;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200312 int ret = 0;
313
314 switch (ah->ah_radio) {
315 case AR5K_RF5111:
316 go = &rfgain_opt_5111;
317 break;
318 case AR5K_RF5112:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200319 go = &rfgain_opt_5112;
320 break;
321 default:
322 return 0;
323 }
324
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200325 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200326
327 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200328
329 /* Reached maximum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200330 if (ah->ah_gain.g_step_idx == 0)
331 return -1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200332
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200333 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
334 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
335 ah->ah_gain.g_step_idx > 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200336 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200337 ah->ah_gain.g_target -= 2 *
338 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200339 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200340
341 ret = 1;
342 goto done;
343 }
344
345 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200346
347 /* Reached minimum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200348 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
349 return -2;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200350
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200351 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
352 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
353 ah->ah_gain.g_step_idx < go->go_steps_count-1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200354 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200355 ah->ah_gain.g_target -= 2 *
356 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200357 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200358
359 ret = 2;
360 goto done;
361 }
362
363done:
364 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
365 "ret %d, gain step %u, current gain %u, target gain %u\n",
366 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
367 ah->ah_gain.g_target);
368
369 return ret;
370}
371
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200372/* Main callback for thermal rf gain calibration engine
373 * Check for a new gain reading and schedule an adjustment
374 * if needed.
375 *
376 * TODO: Use sw interrupt to schedule reset if gain_F needs
377 * adjustment */
378enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
379{
380 u32 data, type;
381 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
382
383 ATH5K_TRACE(ah->ah_sc);
384
385 if (ah->ah_rf_banks == NULL ||
386 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
387 return AR5K_RFGAIN_INACTIVE;
388
389 /* No check requested, either engine is inactive
390 * or an adjustment is already requested */
391 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
392 goto done;
393
394 /* Read the PAPD (Peak to Average Power Detector)
395 * register */
396 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
397
398 /* No probe is scheduled, read gain_F measurement */
399 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
400 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
401 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
402
403 /* If tx packet is CCK correct the gain_F measurement
404 * by cck ofdm gain delta */
405 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
406 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
407 ah->ah_gain.g_current +=
408 ee->ee_cck_ofdm_gain_delta;
409 else
410 ah->ah_gain.g_current +=
411 AR5K_GAIN_CCK_PROBE_CORR;
412 }
413
414 /* Further correct gain_F measurement for
415 * RF5112A radios */
416 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
417 ath5k_hw_rf_gainf_corr(ah);
418 ah->ah_gain.g_current =
419 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
420 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
421 0;
422 }
423
424 /* Check if measurement is ok and if we need
425 * to adjust gain, schedule a gain adjustment,
426 * else switch back to the acive state */
427 if (ath5k_hw_rf_check_gainf_readback(ah) &&
428 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
429 ath5k_hw_rf_gainf_adjust(ah)) {
430 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
431 } else {
432 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
433 }
434 }
435
436done:
437 return ah->ah_gain.g_state;
438}
439
440/* Write initial rf gain table to set the RF sensitivity
441 * this one works on all RF chips and has nothing to do
442 * with gain_F calibration */
443int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
444{
445 const struct ath5k_ini_rfgain *ath5k_rfg;
446 unsigned int i, size;
447
448 switch (ah->ah_radio) {
449 case AR5K_RF5111:
450 ath5k_rfg = rfgain_5111;
451 size = ARRAY_SIZE(rfgain_5111);
452 break;
453 case AR5K_RF5112:
454 ath5k_rfg = rfgain_5112;
455 size = ARRAY_SIZE(rfgain_5112);
456 break;
457 case AR5K_RF2413:
458 ath5k_rfg = rfgain_2413;
459 size = ARRAY_SIZE(rfgain_2413);
460 break;
461 case AR5K_RF2316:
462 ath5k_rfg = rfgain_2316;
463 size = ARRAY_SIZE(rfgain_2316);
464 break;
465 case AR5K_RF5413:
466 ath5k_rfg = rfgain_5413;
467 size = ARRAY_SIZE(rfgain_5413);
468 break;
469 case AR5K_RF2317:
470 case AR5K_RF2425:
471 ath5k_rfg = rfgain_2425;
472 size = ARRAY_SIZE(rfgain_2425);
473 break;
474 default:
475 return -EINVAL;
476 }
477
478 switch (freq) {
479 case AR5K_INI_RFGAIN_2GHZ:
480 case AR5K_INI_RFGAIN_5GHZ:
481 break;
482 default:
483 return -EINVAL;
484 }
485
486 for (i = 0; i < size; i++) {
487 AR5K_REG_WAIT(i);
488 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
489 (u32)ath5k_rfg[i].rfg_register);
490 }
491
492 return 0;
493}
494
495
496
497/********************\
498* RF Registers setup *
499\********************/
500
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200501
502/*
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200503 * Setup RF registers by writing rf buffer on hw
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200504 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200505int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200506 unsigned int mode)
507{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200508 const struct ath5k_rf_reg *rf_regs;
509 const struct ath5k_ini_rfbuffer *ini_rfb;
510 const struct ath5k_gain_opt *go = NULL;
511 const struct ath5k_gain_opt_step *g_step;
512 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
513 u8 ee_mode = 0;
514 u32 *rfb;
515 int i, obdb = -1, bank = -1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200516
517 switch (ah->ah_radio) {
518 case AR5K_RF5111:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200519 rf_regs = rf_regs_5111;
520 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
521 ini_rfb = rfb_5111;
522 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
523 go = &rfgain_opt_5111;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200524 break;
525 case AR5K_RF5112:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200526 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
527 rf_regs = rf_regs_5112a;
528 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
529 ini_rfb = rfb_5112a;
530 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
531 } else {
532 rf_regs = rf_regs_5112;
533 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
534 ini_rfb = rfb_5112;
535 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
536 }
537 go = &rfgain_opt_5112;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200538 break;
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500539 case AR5K_RF2413:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200540 rf_regs = rf_regs_2413;
541 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
542 ini_rfb = rfb_2413;
543 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
544 break;
545 case AR5K_RF2316:
546 rf_regs = rf_regs_2316;
547 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
548 ini_rfb = rfb_2316;
549 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
550 break;
551 case AR5K_RF5413:
552 rf_regs = rf_regs_5413;
553 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
554 ini_rfb = rfb_5413;
555 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
556 break;
557 case AR5K_RF2317:
558 rf_regs = rf_regs_2425;
559 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
560 ini_rfb = rfb_2317;
561 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500562 break;
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300563 case AR5K_RF2425:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200564 rf_regs = rf_regs_2425;
565 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
566 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
567 ini_rfb = rfb_2425;
568 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
569 } else {
570 ini_rfb = rfb_2417;
571 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
572 }
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300573 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200574 default:
575 return -EINVAL;
576 }
577
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200578 /* If it's the first time we set rf buffer, allocate
579 * ah->ah_rf_banks based on ah->ah_rf_banks_size
580 * we set above */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200581 if (ah->ah_rf_banks == NULL) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200582 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
583 GFP_KERNEL);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200584 if (ah->ah_rf_banks == NULL) {
585 ATH5K_ERR(ah->ah_sc, "out of memory\n");
586 return -ENOMEM;
587 }
588 }
589
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200590 /* Copy values to modify them */
591 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200592
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200593 for (i = 0; i < ah->ah_rf_banks_size; i++) {
594 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
595 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
596 return -EINVAL;
597 }
598
599 /* Bank changed, write down the offset */
600 if (bank != ini_rfb[i].rfb_bank) {
601 bank = ini_rfb[i].rfb_bank;
602 ah->ah_offset[bank] = i;
603 }
604
605 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
606 }
607
608 /* Set Output and Driver bias current (OB/DB) */
609 if (channel->hw_value & CHANNEL_2GHZ) {
610
611 if (channel->hw_value & CHANNEL_CCK)
612 ee_mode = AR5K_EEPROM_MODE_11B;
613 else
614 ee_mode = AR5K_EEPROM_MODE_11G;
615
616 /* For RF511X/RF211X combination we
617 * use b_OB and b_DB parameters stored
618 * in eeprom on ee->ee_ob[ee_mode][0]
619 *
620 * For all other chips we use OB/DB for 2Ghz
621 * stored in the b/g modal section just like
622 * 802.11a on ee->ee_ob[ee_mode][1] */
623 if ((ah->ah_radio == AR5K_RF5111) ||
624 (ah->ah_radio == AR5K_RF5112))
625 obdb = 0;
626 else
627 obdb = 1;
628
629 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
630 AR5K_RF_OB_2GHZ, true);
631
632 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
633 AR5K_RF_DB_2GHZ, true);
634
635 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
636 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
637 (ah->ah_radio == AR5K_RF5111)) {
638
639 /* For 11a, Turbo and XR we need to choose
640 * OB/DB based on frequency range */
641 ee_mode = AR5K_EEPROM_MODE_11A;
642 obdb = channel->center_freq >= 5725 ? 3 :
643 (channel->center_freq >= 5500 ? 2 :
644 (channel->center_freq >= 5260 ? 1 :
645 (channel->center_freq > 4000 ? 0 : -1)));
646
647 if (obdb < 0)
648 return -EINVAL;
649
650 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
651 AR5K_RF_OB_5GHZ, true);
652
653 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
654 AR5K_RF_DB_5GHZ, true);
655 }
656
657 g_step = &go->go_step[ah->ah_gain.g_step_idx];
658
659 /* Bank Modifications (chip-specific) */
660 if (ah->ah_radio == AR5K_RF5111) {
661
662 /* Set gain_F settings according to current step */
663 if (channel->hw_value & CHANNEL_OFDM) {
664
665 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
666 AR5K_PHY_FRAME_CTL_TX_CLIP,
667 g_step->gos_param[0]);
668
669 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
670 AR5K_RF_PWD_90, true);
671
672 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
673 AR5K_RF_PWD_84, true);
674
675 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
676 AR5K_RF_RFGAIN_SEL, true);
677
678 /* We programmed gain_F parameters, switch back
679 * to active state */
680 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
681
682 }
683
684 /* Bank 6/7 setup */
685
686 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
687 AR5K_RF_PWD_XPD, true);
688
689 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
690 AR5K_RF_XPD_GAIN, true);
691
692 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
693 AR5K_RF_GAIN_I, true);
694
695 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
696 AR5K_RF_PLO_SEL, true);
697
698 /* TODO: Half/quarter channel support */
699 }
700
701 if (ah->ah_radio == AR5K_RF5112) {
702
703 /* Set gain_F settings according to current step */
704 if (channel->hw_value & CHANNEL_OFDM) {
705
706 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
707 AR5K_RF_MIXGAIN_OVR, true);
708
709 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
710 AR5K_RF_PWD_138, true);
711
712 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
713 AR5K_RF_PWD_137, true);
714
715 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
716 AR5K_RF_PWD_136, true);
717
718 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
719 AR5K_RF_PWD_132, true);
720
721 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
722 AR5K_RF_PWD_131, true);
723
724 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
725 AR5K_RF_PWD_130, true);
726
727 /* We programmed gain_F parameters, switch back
728 * to active state */
729 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
730 }
731
732 /* Bank 6/7 setup */
733
734 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
735 AR5K_RF_XPD_SEL, true);
736
737 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
738 /* Rev. 1 supports only one xpd */
739 ath5k_hw_rfb_op(ah, rf_regs,
740 ee->ee_x_gain[ee_mode],
741 AR5K_RF_XPD_GAIN, true);
742
743 } else {
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300744 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
745 if (ee->ee_pd_gains[ee_mode] > 1) {
746 ath5k_hw_rfb_op(ah, rf_regs,
747 pdg_curve_to_idx[0],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200748 AR5K_RF_PD_GAIN_LO, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300749 ath5k_hw_rfb_op(ah, rf_regs,
750 pdg_curve_to_idx[1],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200751 AR5K_RF_PD_GAIN_HI, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300752 } else {
753 ath5k_hw_rfb_op(ah, rf_regs,
754 pdg_curve_to_idx[0],
755 AR5K_RF_PD_GAIN_LO, true);
756 ath5k_hw_rfb_op(ah, rf_regs,
757 pdg_curve_to_idx[0],
758 AR5K_RF_PD_GAIN_HI, true);
759 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200760
761 /* Lower synth voltage on Rev 2 */
762 ath5k_hw_rfb_op(ah, rf_regs, 2,
763 AR5K_RF_HIGH_VC_CP, true);
764
765 ath5k_hw_rfb_op(ah, rf_regs, 2,
766 AR5K_RF_MID_VC_CP, true);
767
768 ath5k_hw_rfb_op(ah, rf_regs, 2,
769 AR5K_RF_LOW_VC_CP, true);
770
771 ath5k_hw_rfb_op(ah, rf_regs, 2,
772 AR5K_RF_PUSH_UP, true);
773
774 /* Decrease power consumption on 5213+ BaseBand */
775 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
776 ath5k_hw_rfb_op(ah, rf_regs, 1,
777 AR5K_RF_PAD2GND, true);
778
779 ath5k_hw_rfb_op(ah, rf_regs, 1,
780 AR5K_RF_XB2_LVL, true);
781
782 ath5k_hw_rfb_op(ah, rf_regs, 1,
783 AR5K_RF_XB5_LVL, true);
784
785 ath5k_hw_rfb_op(ah, rf_regs, 1,
786 AR5K_RF_PWD_167, true);
787
788 ath5k_hw_rfb_op(ah, rf_regs, 1,
789 AR5K_RF_PWD_166, true);
790 }
791 }
792
793 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
794 AR5K_RF_GAIN_I, true);
795
796 /* TODO: Half/quarter channel support */
797
798 }
799
800 if (ah->ah_radio == AR5K_RF5413 &&
801 channel->hw_value & CHANNEL_2GHZ) {
802
803 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
804 true);
805
806 /* Set optimum value for early revisions (on pci-e chips) */
807 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
808 ah->ah_mac_srev < AR5K_SREV_AR5413)
809 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
810 AR5K_RF_PWD_ICLOBUF_2G, true);
811
812 }
813
814 /* Write RF banks on hw */
815 for (i = 0; i < ah->ah_rf_banks_size; i++) {
816 AR5K_REG_WAIT(i);
817 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
818 }
819
820 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200821}
822
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200823
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200824/**************************\
825 PHY/RF channel functions
826\**************************/
827
828/*
829 * Check if a channel is supported
830 */
831bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
832{
833 /* Check if the channel is in our supported range */
834 if (flags & CHANNEL_2GHZ) {
835 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
836 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
837 return true;
838 } else if (flags & CHANNEL_5GHZ)
839 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
840 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
841 return true;
842
843 return false;
844}
845
846/*
847 * Convertion needed for RF5110
848 */
849static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
850{
851 u32 athchan;
852
853 /*
854 * Convert IEEE channel/MHz to an internal channel value used
855 * by the AR5210 chipset. This has not been verified with
856 * newer chipsets like the AR5212A who have a completely
857 * different RF/PHY part.
858 */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500859 athchan = (ath5k_hw_bitswap(
860 (ieee80211_frequency_to_channel(
861 channel->center_freq) - 24) / 2, 5)
862 << 1) | (1 << 6) | 0x1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200863 return athchan;
864}
865
866/*
867 * Set channel on RF5110
868 */
869static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
870 struct ieee80211_channel *channel)
871{
872 u32 data;
873
874 /*
875 * Set the channel and wait
876 */
877 data = ath5k_hw_rf5110_chan2athchan(channel);
878 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
879 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
880 mdelay(1);
881
882 return 0;
883}
884
885/*
886 * Convertion needed for 5111
887 */
888static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
889 struct ath5k_athchan_2ghz *athchan)
890{
891 int channel;
892
893 /* Cast this value to catch negative channel numbers (>= -19) */
894 channel = (int)ieee;
895
896 /*
897 * Map 2GHz IEEE channel to 5GHz Atheros channel
898 */
899 if (channel <= 13) {
900 athchan->a2_athchan = 115 + channel;
901 athchan->a2_flags = 0x46;
902 } else if (channel == 14) {
903 athchan->a2_athchan = 124;
904 athchan->a2_flags = 0x44;
905 } else if (channel >= 15 && channel <= 26) {
906 athchan->a2_athchan = ((channel - 14) * 4) + 132;
907 athchan->a2_flags = 0x46;
908 } else
909 return -EINVAL;
910
911 return 0;
912}
913
914/*
915 * Set channel on 5111
916 */
917static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
918 struct ieee80211_channel *channel)
919{
920 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500921 unsigned int ath5k_channel =
922 ieee80211_frequency_to_channel(channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200923 u32 data0, data1, clock;
924 int ret;
925
926 /*
927 * Set the channel on the RF5111 radio
928 */
929 data0 = data1 = 0;
930
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500931 if (channel->hw_value & CHANNEL_2GHZ) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200932 /* Map 2GHz channel to 5GHz Atheros channel ID */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500933 ret = ath5k_hw_rf5111_chan2athchan(
934 ieee80211_frequency_to_channel(channel->center_freq),
935 &ath5k_channel_2ghz);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200936 if (ret)
937 return ret;
938
939 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
940 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
941 << 5) | (1 << 4);
942 }
943
944 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
945 clock = 1;
946 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
947 (clock << 1) | (1 << 10) | 1;
948 } else {
949 clock = 0;
950 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
951 << 2) | (clock << 1) | (1 << 10) | 1;
952 }
953
954 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
955 AR5K_RF_BUFFER);
956 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
957 AR5K_RF_BUFFER_CONTROL_3);
958
959 return 0;
960}
961
962/*
963 * Set channel on 5112 and newer
964 */
965static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
966 struct ieee80211_channel *channel)
967{
968 u32 data, data0, data1, data2;
969 u16 c;
970
971 data = data0 = data1 = data2 = 0;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500972 c = channel->center_freq;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200973
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200974 if (c < 4800) {
975 if (!((c - 2224) % 5)) {
976 data0 = ((2 * (c - 704)) - 3040) / 10;
977 data1 = 1;
978 } else if (!((c - 2192) % 5)) {
979 data0 = ((2 * (c - 672)) - 3040) / 10;
980 data1 = 0;
981 } else
982 return -EINVAL;
983
984 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +0300985 } else if ((c - (c % 5)) != 2 || c > 5435) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200986 if (!(c % 20) && c >= 5120) {
987 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
988 data2 = ath5k_hw_bitswap(3, 2);
989 } else if (!(c % 10)) {
990 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
991 data2 = ath5k_hw_bitswap(2, 2);
992 } else if (!(c % 5)) {
993 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
994 data2 = ath5k_hw_bitswap(1, 2);
995 } else
996 return -EINVAL;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +0300997 } else {
998 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
999 data2 = ath5k_hw_bitswap(0, 2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001000 }
1001
1002 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1003
1004 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1005 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1006
1007 return 0;
1008}
1009
1010/*
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001011 * Set the channel on the RF2425
1012 */
1013static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1014 struct ieee80211_channel *channel)
1015{
1016 u32 data, data0, data2;
1017 u16 c;
1018
1019 data = data0 = data2 = 0;
1020 c = channel->center_freq;
1021
1022 if (c < 4800) {
1023 data0 = ath5k_hw_bitswap((c - 2272), 8);
1024 data2 = 0;
1025 /* ? 5GHz ? */
1026 } else if ((c - (c % 5)) != 2 || c > 5435) {
1027 if (!(c % 20) && c < 5120)
1028 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1029 else if (!(c % 10))
1030 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1031 else if (!(c % 5))
1032 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1033 else
1034 return -EINVAL;
1035 data2 = ath5k_hw_bitswap(1, 2);
1036 } else {
1037 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1038 data2 = ath5k_hw_bitswap(0, 2);
1039 }
1040
1041 data = (data0 << 4) | data2 << 2 | 0x1001;
1042
1043 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1044 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1045
1046 return 0;
1047}
1048
1049/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001050 * Set a channel on the radio chip
1051 */
1052int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1053{
1054 int ret;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001055 /*
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001056 * Check bounds supported by the PHY (we don't care about regultory
1057 * restrictions at this point). Note: hw_value already has the band
1058 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1059 * of the band by that */
1060 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001061 ATH5K_ERR(ah->ah_sc,
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001062 "channel frequency (%u MHz) out of supported "
1063 "band range\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001064 channel->center_freq);
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001065 return -EINVAL;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001066 }
1067
1068 /*
1069 * Set the channel and wait
1070 */
1071 switch (ah->ah_radio) {
1072 case AR5K_RF5110:
1073 ret = ath5k_hw_rf5110_channel(ah, channel);
1074 break;
1075 case AR5K_RF5111:
1076 ret = ath5k_hw_rf5111_channel(ah, channel);
1077 break;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001078 case AR5K_RF2425:
1079 ret = ath5k_hw_rf2425_channel(ah, channel);
1080 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001081 default:
1082 ret = ath5k_hw_rf5112_channel(ah, channel);
1083 break;
1084 }
1085
1086 if (ret)
1087 return ret;
1088
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001089 /* Set JAPAN setting for channel 14 */
1090 if (channel->center_freq == 2484) {
1091 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1092 AR5K_PHY_CCKTXCTL_JAPAN);
1093 } else {
1094 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1095 AR5K_PHY_CCKTXCTL_WORLD);
1096 }
1097
Bob Copeland46026e82009-06-10 22:22:20 -04001098 ah->ah_current_channel = channel;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001099 ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001100
1101 return 0;
1102}
1103
1104/*****************\
1105 PHY calibration
1106\*****************/
1107
Nick Kossifidis6e2206622009-08-10 03:31:31 +03001108void
1109ath5k_hw_calibration_poll(struct ath5k_hw *ah)
1110{
1111 /* Calibration interval in jiffies */
1112 unsigned long cal_intval;
1113
1114 cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
1115
1116 /* Initialize timestamp if needed */
1117 if (!ah->ah_cal_tstamp)
1118 ah->ah_cal_tstamp = jiffies;
1119
1120 /* For now we always do full calibration
1121 * Mark software interrupt mask and fire software
1122 * interrupt (bit gets auto-cleared) */
1123 if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
1124 ah->ah_cal_tstamp = jiffies;
1125 ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
1126 AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
1127 }
Nick Kossifidis6e2206622009-08-10 03:31:31 +03001128}
1129
Bob Copelande5e26472009-10-14 14:16:30 -04001130static int sign_extend(int val, const int nbits)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001131{
Bob Copelande5e26472009-10-14 14:16:30 -04001132 int order = BIT(nbits-1);
1133 return (val ^ order) - order;
1134}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001135
Bob Copelande5e26472009-10-14 14:16:30 -04001136static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1137{
1138 s32 val;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001139
Bob Copelande5e26472009-10-14 14:16:30 -04001140 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1141 return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1142}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001143
Bob Copelande5e26472009-10-14 14:16:30 -04001144void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1145{
1146 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001147
Bob Copelande5e26472009-10-14 14:16:30 -04001148 ah->ah_nfcal_hist.index = 0;
1149 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1150 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1151}
1152
1153static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1154{
1155 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1156 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1157 hist->nfval[hist->index] = noise_floor;
1158}
1159
1160static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1161{
1162 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1163 s16 tmp;
1164 int i, j;
1165
1166 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1167 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1168 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1169 if (sort[j] > sort[j-1]) {
1170 tmp = sort[j];
1171 sort[j] = sort[j-1];
1172 sort[j-1] = tmp;
1173 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001174 }
1175 }
Bob Copelande5e26472009-10-14 14:16:30 -04001176 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1177 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1178 "cal %d:%d\n", i, sort[i]);
1179 }
1180 return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1181}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001182
Bob Copelande5e26472009-10-14 14:16:30 -04001183/*
1184 * When we tell the hardware to perform a noise floor calibration
1185 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1186 * sample-and-hold the minimum noise level seen at the antennas.
1187 * This value is then stored in a ring buffer of recently measured
1188 * noise floor values so we have a moving window of the last few
1189 * samples.
1190 *
1191 * The median of the values in the history is then loaded into the
1192 * hardware for its own use for RSSI and CCA measurements.
1193 */
1194void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1195{
1196 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1197 u32 val;
1198 s16 nf, threshold;
1199 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001200
Bob Copelande5e26472009-10-14 14:16:30 -04001201 /* keep last value if calibration hasn't completed */
1202 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1203 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1204 "NF did not complete in calibration window\n");
1205
1206 return;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001207 }
1208
Bob Copelande5e26472009-10-14 14:16:30 -04001209 switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1210 case CHANNEL_A:
1211 case CHANNEL_T:
1212 case CHANNEL_XR:
1213 ee_mode = AR5K_EEPROM_MODE_11A;
1214 break;
1215 case CHANNEL_G:
1216 case CHANNEL_TG:
1217 ee_mode = AR5K_EEPROM_MODE_11G;
1218 break;
1219 default:
1220 case CHANNEL_B:
1221 ee_mode = AR5K_EEPROM_MODE_11B;
1222 break;
1223 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001224
Bob Copelande5e26472009-10-14 14:16:30 -04001225
1226 /* completed NF calibration, test threshold */
1227 nf = ath5k_hw_read_measured_noise_floor(ah);
1228 threshold = ee->ee_noise_floor_thr[ee_mode];
1229
1230 if (nf > threshold) {
1231 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1232 "noise floor failure detected; "
1233 "read %d, threshold %d\n",
1234 nf, threshold);
1235
1236 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1237 }
1238
1239 ath5k_hw_update_nfcal_hist(ah, nf);
1240 nf = ath5k_hw_get_median_noise_floor(ah);
1241
1242 /* load noise floor (in .5 dBm) so the hardware will use it */
1243 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1244 val |= (nf * 2) & AR5K_PHY_NF_M;
1245 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1246
1247 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1248 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1249
1250 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1251 0, false);
1252
1253 /*
1254 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1255 * so that we're not capped by the median we just loaded.
1256 * This will be used as the initial value for the next noise
1257 * floor calibration.
1258 */
1259 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1260 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1261 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1262 AR5K_PHY_AGCCTL_NF_EN |
1263 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1264 AR5K_PHY_AGCCTL_NF);
1265
1266 ah->ah_noise_floor = nf;
1267
1268 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1269 "noise floor calibrated: %d\n", nf);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001270}
1271
1272/*
1273 * Perform a PHY calibration on RF5110
1274 * -Fix BPSK/QAM Constellation (I/Q correction)
1275 * -Calculate Noise Floor
1276 */
1277static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1278 struct ieee80211_channel *channel)
1279{
1280 u32 phy_sig, phy_agc, phy_sat, beacon;
1281 int ret;
1282
1283 /*
1284 * Disable beacons and RX/TX queues, wait
1285 */
1286 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1287 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1288 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1289 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1290
Nick Kossifidis84e463f2008-09-17 03:33:19 +03001291 mdelay(2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001292
1293 /*
1294 * Set the channel (with AGC turned off)
1295 */
1296 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1297 udelay(10);
1298 ret = ath5k_hw_channel(ah, channel);
1299
1300 /*
1301 * Activate PHY and wait
1302 */
1303 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1304 mdelay(1);
1305
1306 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1307
1308 if (ret)
1309 return ret;
1310
1311 /*
1312 * Calibrate the radio chip
1313 */
1314
1315 /* Remember normal state */
1316 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1317 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1318 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1319
1320 /* Update radio registers */
1321 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1322 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1323
1324 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1325 AR5K_PHY_AGCCOARSE_LO)) |
1326 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1327 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1328
1329 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1330 AR5K_PHY_ADCSAT_THR)) |
1331 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1332 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1333
1334 udelay(20);
1335
1336 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1337 udelay(10);
1338 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1339 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1340
1341 mdelay(1);
1342
1343 /*
1344 * Enable calibration and wait until completion
1345 */
1346 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1347
1348 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1349 AR5K_PHY_AGCCTL_CAL, 0, false);
1350
1351 /* Reset to normal state */
1352 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1353 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1354 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1355
1356 if (ret) {
1357 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001358 channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001359 return ret;
1360 }
1361
Bob Copelande5e26472009-10-14 14:16:30 -04001362 ath5k_hw_update_noise_floor(ah);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001363
1364 /*
1365 * Re-enable RX/TX and beacons
1366 */
1367 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1368 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1369 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1370
1371 return 0;
1372}
1373
1374/*
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001375 * Perform a PHY calibration on RF5111/5112 and newer chips
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001376 */
1377static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1378 struct ieee80211_channel *channel)
1379{
1380 u32 i_pwr, q_pwr;
1381 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001382 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001383 ATH5K_TRACE(ah->ah_sc);
1384
Joe Perchese9010e22008-03-07 14:21:16 -08001385 if (!ah->ah_calibration ||
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001386 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001387 goto done;
1388
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001389 /* Calibration has finished, get the results and re-run */
Bruno Randolf86415d42010-03-09 16:56:05 +09001390
1391 /* work around empty results which can apparently happen on 5212 */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001392 for (i = 0; i <= 10; i++) {
1393 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1394 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1395 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
Bruno Randolf86415d42010-03-09 16:56:05 +09001396 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1397 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1398 if (i_pwr && q_pwr)
1399 break;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001400 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001401
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001402 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001403 q_coffd = q_pwr >> 7;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001404
Bruno Randolf86415d42010-03-09 16:56:05 +09001405 /* protect against divide by 0 and loss of sign bits */
1406 if (i_coffd == 0 || q_coffd < 2)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001407 goto done;
1408
Bruno Randolf86415d42010-03-09 16:56:05 +09001409 i_coff = (-iq_corr) / i_coffd;
1410 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001411
Bruno Randolf86415d42010-03-09 16:56:05 +09001412 q_coff = (i_pwr / q_coffd) - 128;
1413 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001414
Bruno Randolf86415d42010-03-09 16:56:05 +09001415 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1416 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1417 i_coff, q_coff, i_coffd, q_coffd);
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001418
Bruno Randolf86415d42010-03-09 16:56:05 +09001419 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1420 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1421 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1422 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001423
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001424 /* Re-enable calibration -if we don't we'll commit
1425 * the same values again and again */
1426 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1427 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1428 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1429
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001430done:
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001431
1432 /* TODO: Separate noise floor calibration from I/Q calibration
1433 * since noise floor calibration interrupts rx path while I/Q
1434 * calibration doesn't. We don't need to run noise floor calibration
1435 * as often as I/Q calibration.*/
Bob Copelande5e26472009-10-14 14:16:30 -04001436 ath5k_hw_update_noise_floor(ah);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001437
Nick Kossifidis6f3b4142009-02-09 06:03:41 +02001438 /* Initiate a gain_F calibration */
1439 ath5k_hw_request_rfgain_probe(ah);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001440
1441 return 0;
1442}
1443
1444/*
1445 * Perform a PHY calibration
1446 */
1447int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1448 struct ieee80211_channel *channel)
1449{
1450 int ret;
1451
1452 if (ah->ah_radio == AR5K_RF5110)
1453 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1454 else
1455 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1456
1457 return ret;
1458}
1459
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001460/***************************\
1461* Spur mitigation functions *
1462\***************************/
1463
1464bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1465 struct ieee80211_channel *channel)
1466{
1467 u8 refclk_freq;
1468
1469 if ((ah->ah_radio == AR5K_RF5112) ||
1470 (ah->ah_radio == AR5K_RF5413) ||
1471 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1472 refclk_freq = 40;
1473 else
1474 refclk_freq = 32;
1475
1476 if ((channel->center_freq % refclk_freq != 0) &&
1477 ((channel->center_freq % refclk_freq < 10) ||
1478 (channel->center_freq % refclk_freq > 22)))
1479 return true;
1480 else
1481 return false;
1482}
1483
1484void
1485ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1486 struct ieee80211_channel *channel)
1487{
1488 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1489 u32 mag_mask[4] = {0, 0, 0, 0};
1490 u32 pilot_mask[2] = {0, 0};
1491 /* Note: fbin values are scaled up by 2 */
1492 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1493 s32 spur_delta_phase, spur_freq_sigma_delta;
1494 s32 spur_offset, num_symbols_x16;
1495 u8 num_symbol_offsets, i, freq_band;
1496
1497 /* Convert current frequency to fbin value (the same way channels
1498 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1499 * up by 2 so we can compare it later */
1500 if (channel->hw_value & CHANNEL_2GHZ) {
1501 chan_fbin = (channel->center_freq - 2300) * 10;
1502 freq_band = AR5K_EEPROM_BAND_2GHZ;
1503 } else {
1504 chan_fbin = (channel->center_freq - 4900) * 10;
1505 freq_band = AR5K_EEPROM_BAND_5GHZ;
1506 }
1507
1508 /* Check if any spur_chan_fbin from EEPROM is
1509 * within our current channel's spur detection range */
1510 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1511 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1512 /* XXX: Half/Quarter channels ?*/
1513 if (channel->hw_value & CHANNEL_TURBO)
1514 spur_detection_window *= 2;
1515
1516 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1517 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1518
1519 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1520 * so it's zero if we got nothing from EEPROM */
1521 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1522 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1523 break;
1524 }
1525
1526 if ((chan_fbin - spur_detection_window <=
1527 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1528 (chan_fbin + spur_detection_window >=
1529 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1530 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1531 break;
1532 }
1533 }
1534
1535 /* We need to enable spur filter for this channel */
1536 if (spur_chan_fbin) {
1537 spur_offset = spur_chan_fbin - chan_fbin;
1538 /*
1539 * Calculate deltas:
1540 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1541 * spur_delta_phase -> spur_offset / chip_freq << 11
1542 * Note: Both values have 100KHz resolution
1543 */
1544 /* XXX: Half/Quarter rate channels ? */
1545 switch (channel->hw_value) {
1546 case CHANNEL_A:
1547 /* Both sample_freq and chip_freq are 40MHz */
1548 spur_delta_phase = (spur_offset << 17) / 25;
1549 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1550 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1551 break;
1552 case CHANNEL_G:
1553 /* sample_freq -> 40MHz chip_freq -> 44MHz
1554 * (for b compatibility) */
1555 spur_freq_sigma_delta = (spur_offset << 8) / 55;
1556 spur_delta_phase = (spur_offset << 17) / 25;
1557 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1558 break;
1559 case CHANNEL_T:
1560 case CHANNEL_TG:
1561 /* Both sample_freq and chip_freq are 80MHz */
1562 spur_delta_phase = (spur_offset << 16) / 25;
1563 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1564 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1565 break;
1566 default:
1567 return;
1568 }
1569
1570 /* Calculate pilot and magnitude masks */
1571
1572 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1573 * and divide by symbol_width to find how many symbols we have
1574 * Note: number of symbols is scaled up by 16 */
1575 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1576
1577 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1578 if (!(num_symbols_x16 & 0xF))
1579 /* _X_ */
1580 num_symbol_offsets = 3;
1581 else
1582 /* _xx_ */
1583 num_symbol_offsets = 4;
1584
1585 for (i = 0; i < num_symbol_offsets; i++) {
1586
1587 /* Calculate pilot mask */
1588 s32 curr_sym_off =
1589 (num_symbols_x16 / 16) + i + 25;
1590
1591 /* Pilot magnitude mask seems to be a way to
1592 * declare the boundaries for our detection
1593 * window or something, it's 2 for the middle
1594 * value(s) where the symbol is expected to be
1595 * and 1 on the boundary values */
1596 u8 plt_mag_map =
1597 (i == 0 || i == (num_symbol_offsets - 1))
1598 ? 1 : 2;
1599
1600 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1601 if (curr_sym_off <= 25)
1602 pilot_mask[0] |= 1 << curr_sym_off;
1603 else if (curr_sym_off >= 27)
1604 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1605 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1606 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1607
1608 /* Calculate magnitude mask (for viterbi decoder) */
1609 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1610 mag_mask[0] |=
1611 plt_mag_map << (curr_sym_off + 1) * 2;
1612 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1613 mag_mask[1] |=
1614 plt_mag_map << (curr_sym_off - 15) * 2;
1615 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1616 mag_mask[2] |=
1617 plt_mag_map << (curr_sym_off - 31) * 2;
1618 else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1619 mag_mask[3] |=
1620 plt_mag_map << (curr_sym_off - 47) * 2;
1621
1622 }
1623
1624 /* Write settings on hw to enable spur filter */
1625 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1626 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1627 /* XXX: Self correlator also ? */
1628 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1629 AR5K_PHY_IQ_PILOT_MASK_EN |
1630 AR5K_PHY_IQ_CHAN_MASK_EN |
1631 AR5K_PHY_IQ_SPUR_FILT_EN);
1632
1633 /* Set delta phase and freq sigma delta */
1634 ath5k_hw_reg_write(ah,
1635 AR5K_REG_SM(spur_delta_phase,
1636 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1637 AR5K_REG_SM(spur_freq_sigma_delta,
1638 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1639 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1640 AR5K_PHY_TIMING_11);
1641
1642 /* Write pilot masks */
1643 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1644 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1645 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1646 pilot_mask[1]);
1647
1648 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1649 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1650 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1651 pilot_mask[1]);
1652
1653 /* Write magnitude masks */
1654 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1655 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1656 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1657 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1658 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1659 mag_mask[3]);
1660
1661 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1662 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1663 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1664 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1665 AR5K_PHY_BIN_MASK2_4_MASK_4,
1666 mag_mask[3]);
1667
1668 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1669 AR5K_PHY_IQ_SPUR_FILT_EN) {
1670 /* Clean up spur mitigation settings and disable fliter */
1671 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1672 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1673 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1674 AR5K_PHY_IQ_PILOT_MASK_EN |
1675 AR5K_PHY_IQ_CHAN_MASK_EN |
1676 AR5K_PHY_IQ_SPUR_FILT_EN);
1677 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1678
1679 /* Clear pilot masks */
1680 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1681 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1682 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1683 0);
1684
1685 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1686 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1687 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1688 0);
1689
1690 /* Clear magnitude masks */
1691 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1692 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1693 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1694 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1695 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1696 0);
1697
1698 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1699 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1700 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1701 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1702 AR5K_PHY_BIN_MASK2_4_MASK_4,
1703 0);
1704 }
1705}
1706
1707/********************\
1708 Misc PHY functions
1709\********************/
1710
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001711int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1712{
1713 ATH5K_TRACE(ah->ah_sc);
1714 /*Just a try M.F.*/
1715 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1716
1717 return 0;
1718}
1719
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001720/*
1721 * Get the PHY Chip revision
1722 */
1723u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1724{
1725 unsigned int i;
1726 u32 srev;
1727 u16 ret;
1728
1729 ATH5K_TRACE(ah->ah_sc);
1730
1731 /*
1732 * Set the radio chip access register
1733 */
1734 switch (chan) {
1735 case CHANNEL_2GHZ:
1736 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1737 break;
1738 case CHANNEL_5GHZ:
1739 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1740 break;
1741 default:
1742 return 0;
1743 }
1744
1745 mdelay(2);
1746
1747 /* ...wait until PHY is ready and read the selected radio revision */
1748 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1749
1750 for (i = 0; i < 8; i++)
1751 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1752
1753 if (ah->ah_version == AR5K_AR5210) {
1754 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1755 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1756 } else {
1757 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1758 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1759 ((srev & 0x0f) << 4), 8);
1760 }
1761
1762 /* Reset to the 5GHz mode */
1763 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1764
1765 return ret;
1766}
1767
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001768/*****************\
1769* Antenna control *
1770\*****************/
1771
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001772void /*TODO:Boundary check*/
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001773ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001774{
1775 ATH5K_TRACE(ah->ah_sc);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001776
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001777 if (ah->ah_version != AR5K_AR5210)
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001778 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001779}
1780
1781unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1782{
1783 ATH5K_TRACE(ah->ah_sc);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001784
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001785 if (ah->ah_version != AR5K_AR5210)
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001786 return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001787
1788 return false; /*XXX: What do we return for 5210 ?*/
1789}
1790
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001791/*
1792 * Enable/disable fast rx antenna diversity
1793 */
1794static void
1795ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1796{
1797 switch (ee_mode) {
1798 case AR5K_EEPROM_MODE_11G:
1799 /* XXX: This is set to
1800 * disabled on initvals !!! */
1801 case AR5K_EEPROM_MODE_11A:
1802 if (enable)
1803 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1804 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1805 else
1806 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1807 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1808 break;
1809 case AR5K_EEPROM_MODE_11B:
1810 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1811 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1812 break;
1813 default:
1814 return;
1815 }
1816
1817 if (enable) {
1818 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1819 AR5K_PHY_RESTART_DIV_GC, 0xc);
1820
1821 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1822 AR5K_PHY_FAST_ANT_DIV_EN);
1823 } else {
1824 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1825 AR5K_PHY_RESTART_DIV_GC, 0x8);
1826
1827 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1828 AR5K_PHY_FAST_ANT_DIV_EN);
1829 }
1830}
1831
1832/*
1833 * Set antenna operating mode
1834 */
1835void
1836ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1837{
Bob Copeland46026e82009-06-10 22:22:20 -04001838 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001839 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1840 bool use_def_for_sg;
1841 u8 def_ant, tx_ant, ee_mode;
1842 u32 sta_id1 = 0;
1843
1844 def_ant = ah->ah_def_ant;
1845
1846 ATH5K_TRACE(ah->ah_sc);
1847
1848 switch (channel->hw_value & CHANNEL_MODES) {
1849 case CHANNEL_A:
1850 case CHANNEL_T:
1851 case CHANNEL_XR:
1852 ee_mode = AR5K_EEPROM_MODE_11A;
1853 break;
1854 case CHANNEL_G:
1855 case CHANNEL_TG:
1856 ee_mode = AR5K_EEPROM_MODE_11G;
1857 break;
1858 case CHANNEL_B:
1859 ee_mode = AR5K_EEPROM_MODE_11B;
1860 break;
1861 default:
1862 ATH5K_ERR(ah->ah_sc,
1863 "invalid channel: %d\n", channel->center_freq);
1864 return;
1865 }
1866
1867 switch (ant_mode) {
1868 case AR5K_ANTMODE_DEFAULT:
1869 tx_ant = 0;
1870 use_def_for_tx = false;
1871 update_def_on_tx = false;
1872 use_def_for_rts = false;
1873 use_def_for_sg = false;
1874 fast_div = true;
1875 break;
1876 case AR5K_ANTMODE_FIXED_A:
1877 def_ant = 1;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001878 tx_ant = 1;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001879 use_def_for_tx = true;
1880 update_def_on_tx = false;
1881 use_def_for_rts = true;
1882 use_def_for_sg = true;
1883 fast_div = false;
1884 break;
1885 case AR5K_ANTMODE_FIXED_B:
1886 def_ant = 2;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001887 tx_ant = 2;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001888 use_def_for_tx = true;
1889 update_def_on_tx = false;
1890 use_def_for_rts = true;
1891 use_def_for_sg = true;
1892 fast_div = false;
1893 break;
1894 case AR5K_ANTMODE_SINGLE_AP:
1895 def_ant = 1; /* updated on tx */
1896 tx_ant = 0;
1897 use_def_for_tx = true;
1898 update_def_on_tx = true;
1899 use_def_for_rts = true;
1900 use_def_for_sg = true;
1901 fast_div = true;
1902 break;
1903 case AR5K_ANTMODE_SECTOR_AP:
1904 tx_ant = 1; /* variable */
1905 use_def_for_tx = false;
1906 update_def_on_tx = false;
1907 use_def_for_rts = true;
1908 use_def_for_sg = false;
1909 fast_div = false;
1910 break;
1911 case AR5K_ANTMODE_SECTOR_STA:
1912 tx_ant = 1; /* variable */
1913 use_def_for_tx = true;
1914 update_def_on_tx = false;
1915 use_def_for_rts = true;
1916 use_def_for_sg = false;
1917 fast_div = true;
1918 break;
1919 case AR5K_ANTMODE_DEBUG:
1920 def_ant = 1;
1921 tx_ant = 2;
1922 use_def_for_tx = false;
1923 update_def_on_tx = false;
1924 use_def_for_rts = false;
1925 use_def_for_sg = false;
1926 fast_div = false;
1927 break;
1928 default:
1929 return;
1930 }
1931
1932 ah->ah_tx_ant = tx_ant;
1933 ah->ah_ant_mode = ant_mode;
1934
1935 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1936 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1937 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1938 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1939
1940 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1941
1942 if (sta_id1)
1943 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1944
1945 /* Note: set diversity before default antenna
1946 * because it won't work correctly */
1947 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1948 ath5k_hw_set_def_antenna(ah, def_ant);
1949}
1950
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001951
1952/****************\
1953* TX power setup *
1954\****************/
1955
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001956/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001957 * Helper functions
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001958 */
1959
1960/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001961 * Do linear interpolation between two given (x, y) points
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001962 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001963static s16
1964ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1965 s16 y_left, s16 y_right)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001966{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001967 s16 ratio, result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001968
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001969 /* Avoid divide by zero and skip interpolation
1970 * if we have the same point */
1971 if ((x_left == x_right) || (y_left == y_right))
1972 return y_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001973
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001974 /*
1975 * Since we use ints and not fps, we need to scale up in
1976 * order to get a sane ratio value (or else we 'll eg. get
1977 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1978 * to have some accuracy both for 0.5 and 0.25 steps.
1979 */
1980 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001981
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001982 /* Now scale down to be in range */
1983 result = y_left + (ratio * (target - x_left) / 100);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001984
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001985 return result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001986}
1987
1988/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001989 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1990 *
1991 * Since we have the top of the curve and we draw the line below
1992 * until we reach 1 (1 pcdac step) we need to know which point
1993 * (x value) that is so that we don't go below y axis and have negative
1994 * pcdac values when creating the curve, or fill the table with zeroes.
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001995 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02001996static s16
1997ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1998 const s16 *pwrL, const s16 *pwrR)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001999{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002000 s8 tmp;
2001 s16 min_pwrL, min_pwrR;
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002002 s16 pwr_i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002003
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +03002004 /* Some vendors write the same pcdac value twice !!! */
2005 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2006 return max(pwrL[0], pwrR[0]);
Bob Copeland9c8b3ed2009-05-19 23:37:31 -04002007
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002008 if (pwrL[0] == pwrL[1])
2009 min_pwrL = pwrL[0];
2010 else {
2011 pwr_i = pwrL[0];
2012 do {
2013 pwr_i--;
2014 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2015 pwrL[0], pwrL[1],
2016 stepL[0], stepL[1]);
2017 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002018
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002019 min_pwrL = pwr_i;
2020 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002021
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002022 if (pwrR[0] == pwrR[1])
2023 min_pwrR = pwrR[0];
2024 else {
2025 pwr_i = pwrR[0];
2026 do {
2027 pwr_i--;
2028 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2029 pwrR[0], pwrR[1],
2030 stepR[0], stepR[1]);
2031 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002032
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002033 min_pwrR = pwr_i;
2034 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002035
2036 /* Keep the right boundary so that it works for both curves */
2037 return max(min_pwrL, min_pwrR);
2038}
2039
2040/*
2041 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2042 * Power to PCDAC curve.
2043 *
2044 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2045 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2046 * PCDAC/PDADC step for each curve is 64 but we can write more than
2047 * one curves on hw so we can go up to 128 (which is the max step we
2048 * can write on the final table).
2049 *
2050 * We write y values (PCDAC/PDADC steps) on hw.
2051 */
2052static void
2053ath5k_create_power_curve(s16 pmin, s16 pmax,
2054 const s16 *pwr, const u8 *vpd,
2055 u8 num_points,
2056 u8 *vpd_table, u8 type)
2057{
2058 u8 idx[2] = { 0, 1 };
2059 s16 pwr_i = 2*pmin;
2060 int i;
2061
2062 if (num_points < 2)
2063 return;
2064
2065 /* We want the whole line, so adjust boundaries
2066 * to cover the entire power range. Note that
2067 * power values are already 0.25dB so no need
2068 * to multiply pwr_i by 2 */
2069 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2070 pwr_i = pmin;
2071 pmin = 0;
2072 pmax = 63;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002073 }
2074
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002075 /* Find surrounding turning points (TPs)
2076 * and interpolate between them */
2077 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2078 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2079
2080 /* We passed the right TP, move to the next set of TPs
2081 * if we pass the last TP, extrapolate above using the last
2082 * two TPs for ratio */
2083 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2084 idx[0]++;
2085 idx[1]++;
2086 }
2087
2088 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2089 pwr[idx[0]], pwr[idx[1]],
2090 vpd[idx[0]], vpd[idx[1]]);
2091
2092 /* Increase by 0.5dB
2093 * (0.25 dB units) */
2094 pwr_i += 2;
2095 }
2096}
2097
2098/*
2099 * Get the surrounding per-channel power calibration piers
2100 * for a given frequency so that we can interpolate between
2101 * them and come up with an apropriate dataset for our current
2102 * channel.
2103 */
2104static void
2105ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2106 struct ieee80211_channel *channel,
2107 struct ath5k_chan_pcal_info **pcinfo_l,
2108 struct ath5k_chan_pcal_info **pcinfo_r)
2109{
2110 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2111 struct ath5k_chan_pcal_info *pcinfo;
2112 u8 idx_l, idx_r;
2113 u8 mode, max, i;
2114 u32 target = channel->center_freq;
2115
2116 idx_l = 0;
2117 idx_r = 0;
2118
2119 if (!(channel->hw_value & CHANNEL_OFDM)) {
2120 pcinfo = ee->ee_pwr_cal_b;
2121 mode = AR5K_EEPROM_MODE_11B;
2122 } else if (channel->hw_value & CHANNEL_2GHZ) {
2123 pcinfo = ee->ee_pwr_cal_g;
2124 mode = AR5K_EEPROM_MODE_11G;
2125 } else {
2126 pcinfo = ee->ee_pwr_cal_a;
2127 mode = AR5K_EEPROM_MODE_11A;
2128 }
2129 max = ee->ee_n_piers[mode] - 1;
2130
2131 /* Frequency is below our calibrated
2132 * range. Use the lowest power curve
2133 * we have */
2134 if (target < pcinfo[0].freq) {
2135 idx_l = idx_r = 0;
2136 goto done;
2137 }
2138
2139 /* Frequency is above our calibrated
2140 * range. Use the highest power curve
2141 * we have */
2142 if (target > pcinfo[max].freq) {
2143 idx_l = idx_r = max;
2144 goto done;
2145 }
2146
2147 /* Frequency is inside our calibrated
2148 * channel range. Pick the surrounding
2149 * calibration piers so that we can
2150 * interpolate */
2151 for (i = 0; i <= max; i++) {
2152
2153 /* Frequency matches one of our calibration
2154 * piers, no need to interpolate, just use
2155 * that calibration pier */
2156 if (pcinfo[i].freq == target) {
2157 idx_l = idx_r = i;
2158 goto done;
2159 }
2160
2161 /* We found a calibration pier that's above
2162 * frequency, use this pier and the previous
2163 * one to interpolate */
2164 if (target < pcinfo[i].freq) {
2165 idx_r = i;
2166 idx_l = idx_r - 1;
2167 goto done;
2168 }
2169 }
2170
2171done:
2172 *pcinfo_l = &pcinfo[idx_l];
2173 *pcinfo_r = &pcinfo[idx_r];
2174
2175 return;
2176}
2177
2178/*
2179 * Get the surrounding per-rate power calibration data
2180 * for a given frequency and interpolate between power
2181 * values to set max target power supported by hw for
2182 * each rate.
2183 */
2184static void
2185ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2186 struct ieee80211_channel *channel,
2187 struct ath5k_rate_pcal_info *rates)
2188{
2189 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2190 struct ath5k_rate_pcal_info *rpinfo;
2191 u8 idx_l, idx_r;
2192 u8 mode, max, i;
2193 u32 target = channel->center_freq;
2194
2195 idx_l = 0;
2196 idx_r = 0;
2197
2198 if (!(channel->hw_value & CHANNEL_OFDM)) {
2199 rpinfo = ee->ee_rate_tpwr_b;
2200 mode = AR5K_EEPROM_MODE_11B;
2201 } else if (channel->hw_value & CHANNEL_2GHZ) {
2202 rpinfo = ee->ee_rate_tpwr_g;
2203 mode = AR5K_EEPROM_MODE_11G;
2204 } else {
2205 rpinfo = ee->ee_rate_tpwr_a;
2206 mode = AR5K_EEPROM_MODE_11A;
2207 }
2208 max = ee->ee_rate_target_pwr_num[mode] - 1;
2209
2210 /* Get the surrounding calibration
2211 * piers - same as above */
2212 if (target < rpinfo[0].freq) {
2213 idx_l = idx_r = 0;
2214 goto done;
2215 }
2216
2217 if (target > rpinfo[max].freq) {
2218 idx_l = idx_r = max;
2219 goto done;
2220 }
2221
2222 for (i = 0; i <= max; i++) {
2223
2224 if (rpinfo[i].freq == target) {
2225 idx_l = idx_r = i;
2226 goto done;
2227 }
2228
2229 if (target < rpinfo[i].freq) {
2230 idx_r = i;
2231 idx_l = idx_r - 1;
2232 goto done;
2233 }
2234 }
2235
2236done:
2237 /* Now interpolate power value, based on the frequency */
2238 rates->freq = target;
2239
2240 rates->target_power_6to24 =
2241 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2242 rpinfo[idx_r].freq,
2243 rpinfo[idx_l].target_power_6to24,
2244 rpinfo[idx_r].target_power_6to24);
2245
2246 rates->target_power_36 =
2247 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2248 rpinfo[idx_r].freq,
2249 rpinfo[idx_l].target_power_36,
2250 rpinfo[idx_r].target_power_36);
2251
2252 rates->target_power_48 =
2253 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2254 rpinfo[idx_r].freq,
2255 rpinfo[idx_l].target_power_48,
2256 rpinfo[idx_r].target_power_48);
2257
2258 rates->target_power_54 =
2259 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2260 rpinfo[idx_r].freq,
2261 rpinfo[idx_l].target_power_54,
2262 rpinfo[idx_r].target_power_54);
2263}
2264
2265/*
2266 * Get the max edge power for this channel if
2267 * we have such data from EEPROM's Conformance Test
2268 * Limits (CTL), and limit max power if needed.
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002269 */
2270static void
2271ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2272 struct ieee80211_channel *channel)
2273{
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002274 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002275 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2276 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2277 u8 *ctl_val = ee->ee_ctl;
2278 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2279 s16 edge_pwr = 0;
2280 u8 rep_idx;
2281 u8 i, ctl_mode;
2282 u8 ctl_idx = 0xFF;
2283 u32 target = channel->center_freq;
2284
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002285 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
Bob Copeland6752ee92009-04-30 15:55:51 -04002286
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002287 switch (channel->hw_value & CHANNEL_MODES) {
2288 case CHANNEL_A:
Bob Copeland6752ee92009-04-30 15:55:51 -04002289 ctl_mode |= AR5K_CTL_11A;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002290 break;
2291 case CHANNEL_G:
Bob Copeland6752ee92009-04-30 15:55:51 -04002292 ctl_mode |= AR5K_CTL_11G;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002293 break;
2294 case CHANNEL_B:
Bob Copeland6752ee92009-04-30 15:55:51 -04002295 ctl_mode |= AR5K_CTL_11B;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002296 break;
2297 case CHANNEL_T:
Bob Copeland6752ee92009-04-30 15:55:51 -04002298 ctl_mode |= AR5K_CTL_TURBO;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002299 break;
2300 case CHANNEL_TG:
Bob Copeland6752ee92009-04-30 15:55:51 -04002301 ctl_mode |= AR5K_CTL_TURBOG;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002302 break;
2303 case CHANNEL_XR:
2304 /* Fall through */
2305 default:
2306 return;
2307 }
Nick Kossifidis903b4742008-02-28 14:50:50 -05002308
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002309 for (i = 0; i < ee->ee_ctls; i++) {
2310 if (ctl_val[i] == ctl_mode) {
2311 ctl_idx = i;
2312 break;
2313 }
2314 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002315
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002316 /* If we have a CTL dataset available grab it and find the
2317 * edge power for our frequency */
2318 if (ctl_idx == 0xFF)
2319 return;
2320
2321 /* Edge powers are sorted by frequency from lower
2322 * to higher. Each CTL corresponds to 8 edge power
2323 * measurements. */
2324 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2325
2326 /* Don't do boundaries check because we
2327 * might have more that one bands defined
2328 * for this mode */
2329
2330 /* Get the edge power that's closer to our
2331 * frequency */
2332 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2333 rep_idx += i;
2334 if (target <= rep[rep_idx].freq)
2335 edge_pwr = (s16) rep[rep_idx].edge;
2336 }
2337
2338 if (edge_pwr)
2339 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2340}
2341
2342
2343/*
2344 * Power to PCDAC table functions
2345 */
2346
2347/*
2348 * Fill Power to PCDAC table on RF5111
2349 *
2350 * No further processing is needed for RF5111, the only thing we have to
2351 * do is fill the values below and above calibration range since eeprom data
2352 * may not cover the entire PCDAC table.
2353 */
2354static void
2355ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2356 s16 *table_max)
2357{
2358 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2359 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2360 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2361 s16 min_pwr, max_pwr;
2362
2363 /* Get table boundaries */
2364 min_pwr = table_min[0];
2365 pcdac_0 = pcdac_tmp[0];
2366
2367 max_pwr = table_max[0];
2368 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2369
2370 /* Extrapolate below minimum using pcdac_0 */
2371 pcdac_i = 0;
2372 for (i = 0; i < min_pwr; i++)
2373 pcdac_out[pcdac_i++] = pcdac_0;
2374
2375 /* Copy values from pcdac_tmp */
2376 pwr_idx = min_pwr;
2377 for (i = 0 ; pwr_idx <= max_pwr &&
2378 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2379 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2380 pwr_idx++;
2381 }
2382
2383 /* Extrapolate above maximum */
2384 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2385 pcdac_out[pcdac_i++] = pcdac_n;
2386
2387}
2388
2389/*
2390 * Combine available XPD Curves and fill Linear Power to PCDAC table
2391 * on RF5112
2392 *
2393 * RFX112 can have up to 2 curves (one for low txpower range and one for
2394 * higher txpower range). We need to put them both on pcdac_out and place
2395 * them in the correct location. In case we only have one curve available
2396 * just fit it on pcdac_out (it's supposed to cover the entire range of
2397 * available pwr levels since it's always the higher power curve). Extrapolate
2398 * below and above final table if needed.
2399 */
2400static void
2401ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2402 s16 *table_max, u8 pdcurves)
2403{
2404 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2405 u8 *pcdac_low_pwr;
2406 u8 *pcdac_high_pwr;
2407 u8 *pcdac_tmp;
2408 u8 pwr;
2409 s16 max_pwr_idx;
2410 s16 min_pwr_idx;
2411 s16 mid_pwr_idx = 0;
2412 /* Edge flag turs on the 7nth bit on the PCDAC
2413 * to delcare the higher power curve (force values
2414 * to be greater than 64). If we only have one curve
2415 * we don't need to set this, if we have 2 curves and
2416 * fill the table backwards this can also be used to
2417 * switch from higher power curve to lower power curve */
2418 u8 edge_flag;
2419 int i;
2420
2421 /* When we have only one curve available
2422 * that's the higher power curve. If we have
2423 * two curves the first is the high power curve
2424 * and the next is the low power curve. */
2425 if (pdcurves > 1) {
2426 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2427 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2428 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2429 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2430
2431 /* If table size goes beyond 31.5dB, keep the
2432 * upper 31.5dB range when setting tx power.
2433 * Note: 126 = 31.5 dB in quarter dB steps */
2434 if (table_max[0] - table_min[1] > 126)
2435 min_pwr_idx = table_max[0] - 126;
2436 else
2437 min_pwr_idx = table_min[1];
2438
2439 /* Since we fill table backwards
2440 * start from high power curve */
2441 pcdac_tmp = pcdac_high_pwr;
2442
2443 edge_flag = 0x40;
2444#if 0
2445 /* If both min and max power limits are in lower
2446 * power curve's range, only use the low power curve.
2447 * TODO: min/max levels are related to target
2448 * power values requested from driver/user
2449 * XXX: Is this really needed ? */
2450 if (min_pwr < table_max[1] &&
2451 max_pwr < table_max[1]) {
2452 edge_flag = 0;
2453 pcdac_tmp = pcdac_low_pwr;
2454 max_pwr_idx = (table_max[1] - table_min[1])/2;
2455 }
2456#endif
2457 } else {
2458 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2459 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2460 min_pwr_idx = table_min[0];
2461 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2462 pcdac_tmp = pcdac_high_pwr;
2463 edge_flag = 0;
2464 }
2465
2466 /* This is used when setting tx power*/
2467 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2468
2469 /* Fill Power to PCDAC table backwards */
2470 pwr = max_pwr_idx;
2471 for (i = 63; i >= 0; i--) {
2472 /* Entering lower power range, reset
2473 * edge flag and set pcdac_tmp to lower
2474 * power curve.*/
2475 if (edge_flag == 0x40 &&
2476 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2477 edge_flag = 0x00;
2478 pcdac_tmp = pcdac_low_pwr;
2479 pwr = mid_pwr_idx/2;
2480 }
2481
2482 /* Don't go below 1, extrapolate below if we have
2483 * already swithced to the lower power curve -or
2484 * we only have one curve and edge_flag is zero
2485 * anyway */
2486 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2487 while (i >= 0) {
2488 pcdac_out[i] = pcdac_out[i + 1];
2489 i--;
2490 }
2491 break;
2492 }
2493
2494 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2495
2496 /* Extrapolate above if pcdac is greater than
2497 * 126 -this can happen because we OR pcdac_out
2498 * value with edge_flag on high power curve */
2499 if (pcdac_out[i] > 126)
2500 pcdac_out[i] = 126;
2501
2502 /* Decrease by a 0.5dB step */
2503 pwr--;
2504 }
2505}
2506
2507/* Write PCDAC values on hw */
2508static void
2509ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2510{
2511 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2512 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002513
2514 /*
2515 * Write TX power values
2516 */
2517 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2518 ath5k_hw_reg_write(ah,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002519 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2520 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002521 AR5K_PHY_PCDAC_TXPOWER(i));
2522 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002523}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002524
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002525
2526/*
2527 * Power to PDADC table functions
2528 */
2529
2530/*
2531 * Set the gain boundaries and create final Power to PDADC table
2532 *
2533 * We can have up to 4 pd curves, we need to do a simmilar process
2534 * as we do for RF5112. This time we don't have an edge_flag but we
2535 * set the gain boundaries on a separate register.
2536 */
2537static void
2538ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2539 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2540{
2541 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2542 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2543 u8 *pdadc_tmp;
2544 s16 pdadc_0;
2545 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2546 u8 pd_gain_overlap;
2547
2548 /* Note: Register value is initialized on initvals
2549 * there is no feedback from hw.
2550 * XXX: What about pd_gain_overlap from EEPROM ? */
2551 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2552 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2553
2554 /* Create final PDADC table */
2555 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2556 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2557
2558 if (pdg == pdcurves - 1)
2559 /* 2 dB boundary stretch for last
2560 * (higher power) curve */
2561 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2562 else
2563 /* Set gain boundary in the middle
2564 * between this curve and the next one */
2565 gain_boundaries[pdg] =
2566 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2567
2568 /* Sanity check in case our 2 db stretch got out of
2569 * range. */
2570 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2571 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2572
2573 /* For the first curve (lower power)
2574 * start from 0 dB */
2575 if (pdg == 0)
2576 pdadc_0 = 0;
2577 else
2578 /* For the other curves use the gain overlap */
2579 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2580 pd_gain_overlap;
2581
2582 /* Force each power step to be at least 0.5 dB */
2583 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2584 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2585 else
2586 pwr_step = 1;
2587
2588 /* If pdadc_0 is negative, we need to extrapolate
2589 * below this pdgain by a number of pwr_steps */
2590 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2591 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2592 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2593 pdadc_0++;
2594 }
2595
2596 /* Set last pwr level, using gain boundaries */
2597 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2598 /* Limit it to be inside pwr range */
2599 table_size = pwr_max[pdg] - pwr_min[pdg];
2600 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2601
2602 /* Fill pdadc_out table */
2603 while (pdadc_0 < max_idx)
2604 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2605
2606 /* Need to extrapolate above this pdgain? */
2607 if (pdadc_n <= max_idx)
2608 continue;
2609
2610 /* Force each power step to be at least 0.5 dB */
2611 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2612 pwr_step = pdadc_tmp[table_size - 1] -
2613 pdadc_tmp[table_size - 2];
2614 else
2615 pwr_step = 1;
2616
2617 /* Extrapolate above */
2618 while ((pdadc_0 < (s16) pdadc_n) &&
2619 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2620 s16 tmp = pdadc_tmp[table_size - 1] +
2621 (pdadc_0 - max_idx) * pwr_step;
2622 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2623 pdadc_0++;
2624 }
2625 }
2626
2627 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2628 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2629 pdg++;
2630 }
2631
2632 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2633 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2634 pdadc_i++;
2635 }
2636
2637 /* Set gain boundaries */
2638 ath5k_hw_reg_write(ah,
2639 AR5K_REG_SM(pd_gain_overlap,
2640 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2641 AR5K_REG_SM(gain_boundaries[0],
2642 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2643 AR5K_REG_SM(gain_boundaries[1],
2644 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2645 AR5K_REG_SM(gain_boundaries[2],
2646 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2647 AR5K_REG_SM(gain_boundaries[3],
2648 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2649 AR5K_PHY_TPC_RG5);
2650
2651 /* Used for setting rate power table */
2652 ah->ah_txpower.txp_min_idx = pwr_min[0];
2653
2654}
2655
2656/* Write PDADC values on hw */
2657static void
2658ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2659 u8 pdcurves, u8 *pdg_to_idx)
2660{
2661 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2662 u32 reg;
2663 u8 i;
2664
2665 /* Select the right pdgain curves */
2666
2667 /* Clear current settings */
2668 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2669 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2670 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2671 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2672 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2673
2674 /*
2675 * Use pd_gains curve from eeprom
2676 *
2677 * This overrides the default setting from initvals
2678 * in case some vendors (e.g. Zcomax) don't use the default
2679 * curves. If we don't honor their settings we 'll get a
2680 * 5dB (1 * gain overlap ?) drop.
2681 */
2682 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2683
2684 switch (pdcurves) {
2685 case 3:
2686 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2687 /* Fall through */
2688 case 2:
2689 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2690 /* Fall through */
2691 case 1:
2692 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2693 break;
2694 }
2695 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2696
2697 /*
2698 * Write TX power values
2699 */
2700 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2701 ath5k_hw_reg_write(ah,
2702 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2703 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2704 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2705 ((pdadc_out[4*i + 3] & 0xff) << 24),
2706 AR5K_PHY_PDADC_TXPOWER(i));
2707 }
2708}
2709
2710
2711/*
2712 * Common code for PCDAC/PDADC tables
2713 */
2714
2715/*
2716 * This is the main function that uses all of the above
2717 * to set PCDAC/PDADC table on hw for the current channel.
2718 * This table is used for tx power calibration on the basband,
2719 * without it we get weird tx power levels and in some cases
2720 * distorted spectral mask
2721 */
2722static int
2723ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2724 struct ieee80211_channel *channel,
2725 u8 ee_mode, u8 type)
2726{
2727 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2728 struct ath5k_chan_pcal_info *pcinfo_L;
2729 struct ath5k_chan_pcal_info *pcinfo_R;
2730 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2731 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2732 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2733 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2734 u8 *tmpL;
2735 u8 *tmpR;
2736 u32 target = channel->center_freq;
2737 int pdg, i;
2738
2739 /* Get surounding freq piers for this channel */
2740 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2741 &pcinfo_L,
2742 &pcinfo_R);
2743
2744 /* Loop over pd gain curves on
2745 * surounding freq piers by index */
2746 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2747
2748 /* Fill curves in reverse order
2749 * from lower power (max gain)
2750 * to higher power. Use curve -> idx
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002751 * backmapping we did on eeprom init */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002752 u8 idx = pdg_curve_to_idx[pdg];
2753
2754 /* Grab the needed curves by index */
2755 pdg_L = &pcinfo_L->pd_curves[idx];
2756 pdg_R = &pcinfo_R->pd_curves[idx];
2757
2758 /* Initialize the temp tables */
2759 tmpL = ah->ah_txpower.tmpL[pdg];
2760 tmpR = ah->ah_txpower.tmpR[pdg];
2761
2762 /* Set curve's x boundaries and create
2763 * curves so that they cover the same
2764 * range (if we don't do that one table
2765 * will have values on some range and the
2766 * other one won't have any so interpolation
2767 * will fail) */
2768 table_min[pdg] = min(pdg_L->pd_pwr[0],
2769 pdg_R->pd_pwr[0]) / 2;
2770
2771 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2772 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2773
2774 /* Now create the curves on surrounding channels
2775 * and interpolate if needed to get the final
2776 * curve for this gain on this channel */
2777 switch (type) {
2778 case AR5K_PWRTABLE_LINEAR_PCDAC:
2779 /* Override min/max so that we don't loose
2780 * accuracy (don't divide by 2) */
2781 table_min[pdg] = min(pdg_L->pd_pwr[0],
2782 pdg_R->pd_pwr[0]);
2783
2784 table_max[pdg] =
2785 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2786 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2787
2788 /* Override minimum so that we don't get
2789 * out of bounds while extrapolating
2790 * below. Don't do this when we have 2
2791 * curves and we are on the high power curve
2792 * because table_min is ok in this case */
2793 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2794
2795 table_min[pdg] =
2796 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2797 pdg_R->pd_step,
2798 pdg_L->pd_pwr,
2799 pdg_R->pd_pwr);
2800
2801 /* Don't go too low because we will
2802 * miss the upper part of the curve.
2803 * Note: 126 = 31.5dB (max power supported)
2804 * in 0.25dB units */
2805 if (table_max[pdg] - table_min[pdg] > 126)
2806 table_min[pdg] = table_max[pdg] - 126;
2807 }
2808
2809 /* Fall through */
2810 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2811 case AR5K_PWRTABLE_PWR_TO_PDADC:
2812
2813 ath5k_create_power_curve(table_min[pdg],
2814 table_max[pdg],
2815 pdg_L->pd_pwr,
2816 pdg_L->pd_step,
2817 pdg_L->pd_points, tmpL, type);
2818
2819 /* We are in a calibration
2820 * pier, no need to interpolate
2821 * between freq piers */
2822 if (pcinfo_L == pcinfo_R)
2823 continue;
2824
2825 ath5k_create_power_curve(table_min[pdg],
2826 table_max[pdg],
2827 pdg_R->pd_pwr,
2828 pdg_R->pd_step,
2829 pdg_R->pd_points, tmpR, type);
2830 break;
2831 default:
2832 return -EINVAL;
2833 }
2834
2835 /* Interpolate between curves
2836 * of surounding freq piers to
2837 * get the final curve for this
2838 * pd gain. Re-use tmpL for interpolation
2839 * output */
2840 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2841 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2842 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2843 (s16) pcinfo_L->freq,
2844 (s16) pcinfo_R->freq,
2845 (s16) tmpL[i],
2846 (s16) tmpR[i]);
2847 }
2848 }
2849
2850 /* Now we have a set of curves for this
2851 * channel on tmpL (x range is table_max - table_min
2852 * and y values are tmpL[pdg][]) sorted in the same
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002853 * order as EEPROM (because we've used the backmapping).
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002854 * So for RF5112 it's from higher power to lower power
2855 * and for RF2413 it's from lower power to higher power.
2856 * For RF5111 we only have one curve. */
2857
2858 /* Fill min and max power levels for this
2859 * channel by interpolating the values on
2860 * surounding channels to complete the dataset */
2861 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2862 (s16) pcinfo_L->freq,
2863 (s16) pcinfo_R->freq,
2864 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2865
2866 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2867 (s16) pcinfo_L->freq,
2868 (s16) pcinfo_R->freq,
2869 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2870
2871 /* We are ready to go, fill PCDAC/PDADC
2872 * table and write settings on hardware */
2873 switch (type) {
2874 case AR5K_PWRTABLE_LINEAR_PCDAC:
2875 /* For RF5112 we can have one or two curves
2876 * and each curve covers a certain power lvl
2877 * range so we need to do some more processing */
2878 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2879 ee->ee_pd_gains[ee_mode]);
2880
2881 /* Set txp.offset so that we can
2882 * match max power value with max
2883 * table index */
2884 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2885
2886 /* Write settings on hw */
2887 ath5k_setup_pcdac_table(ah);
2888 break;
2889 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2890 /* We are done for RF5111 since it has only
2891 * one curve, just fit the curve on the table */
2892 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2893
2894 /* No rate powertable adjustment for RF5111 */
2895 ah->ah_txpower.txp_min_idx = 0;
2896 ah->ah_txpower.txp_offset = 0;
2897
2898 /* Write settings on hw */
2899 ath5k_setup_pcdac_table(ah);
2900 break;
2901 case AR5K_PWRTABLE_PWR_TO_PDADC:
2902 /* Set PDADC boundaries and fill
2903 * final PDADC table */
2904 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2905 ee->ee_pd_gains[ee_mode]);
2906
2907 /* Write settings on hw */
2908 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2909
2910 /* Set txp.offset, note that table_min
2911 * can be negative */
2912 ah->ah_txpower.txp_offset = table_min[0];
2913 break;
2914 default:
2915 return -EINVAL;
2916 }
2917
2918 return 0;
2919}
2920
2921
2922/*
2923 * Per-rate tx power setting
2924 *
2925 * This is the code that sets the desired tx power (below
2926 * maximum) on hw for each rate (we also have TPC that sets
2927 * power per packet). We do that by providing an index on the
2928 * PCDAC/PDADC table we set up.
2929 */
2930
2931/*
2932 * Set rate power table
2933 *
2934 * For now we only limit txpower based on maximum tx power
2935 * supported by hw (what's inside rate_info). We need to limit
2936 * this even more, based on regulatory domain etc.
2937 *
2938 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2939 * and is indexed as follows:
2940 * rates[0] - rates[7] -> OFDM rates
2941 * rates[8] - rates[14] -> CCK rates
2942 * rates[15] -> XR rates (they all have the same power)
2943 */
2944static void
2945ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2946 struct ath5k_rate_pcal_info *rate_info,
2947 u8 ee_mode)
2948{
2949 unsigned int i;
2950 u16 *rates;
2951
2952 /* max_pwr is power level we got from driver/user in 0.5dB
2953 * units, switch to 0.25dB units so we can compare */
2954 max_pwr *= 2;
2955 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2956
2957 /* apply rate limits */
2958 rates = ah->ah_txpower.txp_rates_power_table;
2959
2960 /* OFDM rates 6 to 24Mb/s */
2961 for (i = 0; i < 5; i++)
2962 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2963
2964 /* Rest OFDM rates */
2965 rates[5] = min(rates[0], rate_info->target_power_36);
2966 rates[6] = min(rates[0], rate_info->target_power_48);
2967 rates[7] = min(rates[0], rate_info->target_power_54);
2968
2969 /* CCK rates */
2970 /* 1L */
2971 rates[8] = min(rates[0], rate_info->target_power_6to24);
2972 /* 2L */
2973 rates[9] = min(rates[0], rate_info->target_power_36);
2974 /* 2S */
2975 rates[10] = min(rates[0], rate_info->target_power_36);
2976 /* 5L */
2977 rates[11] = min(rates[0], rate_info->target_power_48);
2978 /* 5S */
2979 rates[12] = min(rates[0], rate_info->target_power_48);
2980 /* 11L */
2981 rates[13] = min(rates[0], rate_info->target_power_54);
2982 /* 11S */
2983 rates[14] = min(rates[0], rate_info->target_power_54);
2984
2985 /* XR rates */
2986 rates[15] = min(rates[0], rate_info->target_power_6to24);
2987
2988 /* CCK rates have different peak to average ratio
2989 * so we have to tweak their power so that gainf
2990 * correction works ok. For this we use OFDM to
2991 * CCK delta from eeprom */
2992 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2993 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2994 for (i = 8; i <= 15; i++)
2995 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2996
Nick Kossifidisa0823812009-04-30 15:55:44 -04002997 /* Now that we have all rates setup use table offset to
2998 * match the power range set by user with the power indices
2999 * on PCDAC/PDADC table */
3000 for (i = 0; i < 16; i++) {
3001 rates[i] += ah->ah_txpower.txp_offset;
3002 /* Don't get out of bounds */
3003 if (rates[i] > 63)
3004 rates[i] = 63;
3005 }
3006
3007 /* Min/max in 0.25dB units */
3008 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3009 ah->ah_txpower.txp_max_pwr = 2 * rates[0];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003010 ah->ah_txpower.txp_ofdm = rates[7];
3011}
3012
3013
3014/*
3015 * Set transmition power
3016 */
3017int
3018ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3019 u8 ee_mode, u8 txpower)
3020{
3021 struct ath5k_rate_pcal_info rate_info;
3022 u8 type;
3023 int ret;
3024
3025 ATH5K_TRACE(ah->ah_sc);
3026 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3027 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3028 return -EINVAL;
3029 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003030
3031 /* Reset TX power values */
3032 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3033 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3034 ah->ah_txpower.txp_min_pwr = 0;
3035 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3036
3037 /* Initialize TX power table */
3038 switch (ah->ah_radio) {
3039 case AR5K_RF5111:
3040 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3041 break;
3042 case AR5K_RF5112:
3043 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3044 break;
3045 case AR5K_RF2413:
3046 case AR5K_RF5413:
3047 case AR5K_RF2316:
3048 case AR5K_RF2317:
3049 case AR5K_RF2425:
3050 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3051 break;
3052 default:
3053 return -EINVAL;
3054 }
3055
3056 /* FIXME: Only on channel/mode change */
3057 ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3058 if (ret)
3059 return ret;
3060
3061 /* Limit max power if we have a CTL available */
3062 ath5k_get_max_ctl_power(ah, channel);
3063
3064 /* FIXME: Tx power limit for this regdomain
3065 * XXX: Mac80211/CRDA will do that anyway ? */
3066
3067 /* FIXME: Antenna reduction stuff */
3068
3069 /* FIXME: Limit power on turbo modes */
3070
3071 /* FIXME: TPC scale reduction */
3072
3073 /* Get surounding channels for per-rate power table
3074 * calibration */
3075 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3076
3077 /* Setup rate power table */
3078 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3079
3080 /* Write rate power table on hw */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003081 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3082 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3083 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3084
3085 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3086 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3087 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3088
3089 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3090 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3091 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3092
3093 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3094 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3095 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3096
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003097 /* FIXME: TPC support */
3098 if (ah->ah_txpower.txp_tpc) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003099 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3100 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003101
3102 ath5k_hw_reg_write(ah,
3103 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3104 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3105 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3106 AR5K_TPC);
3107 } else {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003108 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3109 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003110 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003111
3112 return 0;
3113}
3114
Nick Kossifidisa0823812009-04-30 15:55:44 -04003115int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003116{
3117 /*Just a try M.F.*/
Bob Copeland46026e82009-06-10 22:22:20 -04003118 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidisa0823812009-04-30 15:55:44 -04003119 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003120
3121 ATH5K_TRACE(ah->ah_sc);
Nick Kossifidisa0823812009-04-30 15:55:44 -04003122
3123 switch (channel->hw_value & CHANNEL_MODES) {
3124 case CHANNEL_A:
3125 case CHANNEL_T:
3126 case CHANNEL_XR:
3127 ee_mode = AR5K_EEPROM_MODE_11A;
3128 break;
3129 case CHANNEL_G:
3130 case CHANNEL_TG:
3131 ee_mode = AR5K_EEPROM_MODE_11G;
3132 break;
3133 case CHANNEL_B:
3134 ee_mode = AR5K_EEPROM_MODE_11B;
3135 break;
3136 default:
3137 ATH5K_ERR(ah->ah_sc,
3138 "invalid channel: %d\n", channel->center_freq);
3139 return -EINVAL;
3140 }
3141
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003142 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003143 "changing txpower to %d\n", txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003144
Nick Kossifidisa0823812009-04-30 15:55:44 -04003145 return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003146}
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03003147
3148#undef _ATH5K_PHY