blob: df5b68433f3464ab4a03f4ee5453864946364275 [file] [log] [blame]
Doug Thompson2bc65412009-05-04 20:11:14 +02001#include "amd64_edac.h"
Doug Thompson7d6034d2009-04-27 20:01:01 +02002#include <asm/k8.h>
Doug Thompson2bc65412009-05-04 20:11:14 +02003
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
Borislav Petkov50542252009-12-11 18:14:40 +010016static struct msr *msrs;
17
Doug Thompson2bc65412009-05-04 20:11:14 +020018/* Lookup table for all possible MC control instances */
19struct amd64_pvt;
Borislav Petkov3011b202009-09-21 13:23:34 +020020static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
Doug Thompson2bc65412009-05-04 20:11:14 +020022
23/*
Borislav Petkov1433eb92009-10-21 13:44:36 +020024 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
Borislav Petkovb70ef012009-06-25 19:32:38 +020026 */
Borislav Petkov1433eb92009-10-21 13:44:36 +020027static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
35};
36
37static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
47};
48
49static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
56};
57
58static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
65 [11] = 8192,
Borislav Petkovb70ef012009-06-25 19:32:38 +020066};
67
68/*
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
72 *
73 *FIXME: Produce a better mapping/linearisation.
74 */
75
76struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
100};
101
102/*
Doug Thompson2bc65412009-05-04 20:11:14 +0200103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
107 *
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
111 *
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
114 */
115
116/*
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
119 */
120static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
121 u32 min_scrubrate)
122{
123 u32 scrubval;
124 int i;
125
126 /*
127 * map the configured rate (new_bw) to a value specific to the AMD64
128 * memory controller and apply to register. Search for the first
129 * bandwidth entry that is greater or equal than the setting requested
130 * and program that. If at last entry, turn off DRAM scrubbing.
131 */
132 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
133 /*
134 * skip scrub rates which aren't recommended
135 * (see F10 BKDG, F3x58)
136 */
137 if (scrubrates[i].scrubval < min_scrubrate)
138 continue;
139
140 if (scrubrates[i].bandwidth <= new_bw)
141 break;
142
143 /*
144 * if no suitable bandwidth found, turn off DRAM scrubbing
145 * entirely by falling back to the last element in the
146 * scrubrates array.
147 */
148 }
149
150 scrubval = scrubrates[i].scrubval;
151 if (scrubval)
152 edac_printk(KERN_DEBUG, EDAC_MC,
153 "Setting scrub rate bandwidth: %u\n",
154 scrubrates[i].bandwidth);
155 else
156 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
157
158 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
159
160 return 0;
161}
162
163static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
164{
165 struct amd64_pvt *pvt = mci->pvt_info;
166 u32 min_scrubrate = 0x0;
167
168 switch (boot_cpu_data.x86) {
169 case 0xf:
170 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
171 break;
172 case 0x10:
173 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
174 break;
175 case 0x11:
176 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
177 break;
178
179 default:
180 amd64_printk(KERN_ERR, "Unsupported family!\n");
181 break;
182 }
183 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
184 min_scrubrate);
185}
186
187static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
188{
189 struct amd64_pvt *pvt = mci->pvt_info;
190 u32 scrubval = 0;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200191 int status = -1, i;
Doug Thompson2bc65412009-05-04 20:11:14 +0200192
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200193 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
Doug Thompson2bc65412009-05-04 20:11:14 +0200194
195 scrubval = scrubval & 0x001F;
196
197 edac_printk(KERN_DEBUG, EDAC_MC,
198 "pci-read, sdram scrub control value: %d \n", scrubval);
199
200 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
201 if (scrubrates[i].scrubval == scrubval) {
202 *bw = scrubrates[i].bandwidth;
203 status = 0;
204 break;
205 }
206 }
207
208 return status;
209}
210
Doug Thompson67757632009-04-27 15:53:22 +0200211/* Map from a CSROW entry to the mask entry that operates on it */
212static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
213{
Borislav Petkov1433eb92009-10-21 13:44:36 +0200214 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200215 return csrow;
216 else
217 return csrow >> 1;
Doug Thompson67757632009-04-27 15:53:22 +0200218}
219
220/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
221static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
222{
223 if (dct == 0)
224 return pvt->dcsb0[csrow];
225 else
226 return pvt->dcsb1[csrow];
227}
228
229/*
230 * Return the 'mask' address the i'th CS entry. This function is needed because
231 * there number of DCSM registers on Rev E and prior vs Rev F and later is
232 * different.
233 */
234static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
235{
236 if (dct == 0)
237 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
238 else
239 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
240}
241
242
243/*
244 * In *base and *limit, pass back the full 40-bit base and limit physical
245 * addresses for the node given by node_id. This information is obtained from
246 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
247 * base and limit addresses are of type SysAddr, as defined at the start of
248 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
249 * in the address range they represent.
250 */
251static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
252 u64 *base, u64 *limit)
253{
254 *base = pvt->dram_base[node_id];
255 *limit = pvt->dram_limit[node_id];
256}
257
258/*
259 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
260 * with node_id
261 */
262static int amd64_base_limit_match(struct amd64_pvt *pvt,
263 u64 sys_addr, int node_id)
264{
265 u64 base, limit, addr;
266
267 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
268
269 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
270 * all ones if the most significant implemented address bit is 1.
271 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
272 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
273 * Application Programming.
274 */
275 addr = sys_addr & 0x000000ffffffffffull;
276
277 return (addr >= base) && (addr <= limit);
278}
279
280/*
281 * Attempt to map a SysAddr to a node. On success, return a pointer to the
282 * mem_ctl_info structure for the node that the SysAddr maps to.
283 *
284 * On failure, return NULL.
285 */
286static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
287 u64 sys_addr)
288{
289 struct amd64_pvt *pvt;
290 int node_id;
291 u32 intlv_en, bits;
292
293 /*
294 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
295 * 3.4.4.2) registers to map the SysAddr to a node ID.
296 */
297 pvt = mci->pvt_info;
298
299 /*
300 * The value of this field should be the same for all DRAM Base
301 * registers. Therefore we arbitrarily choose to read it from the
302 * register for node 0.
303 */
304 intlv_en = pvt->dram_IntlvEn[0];
305
306 if (intlv_en == 0) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200307 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
Doug Thompson67757632009-04-27 15:53:22 +0200308 if (amd64_base_limit_match(pvt, sys_addr, node_id))
Borislav Petkov8edc5442009-09-18 12:39:19 +0200309 goto found;
Doug Thompson67757632009-04-27 15:53:22 +0200310 }
Borislav Petkov8edc5442009-09-18 12:39:19 +0200311 goto err_no_match;
Doug Thompson67757632009-04-27 15:53:22 +0200312 }
313
Borislav Petkov72f158f2009-09-18 12:27:27 +0200314 if (unlikely((intlv_en != 0x01) &&
315 (intlv_en != 0x03) &&
316 (intlv_en != 0x07))) {
Doug Thompson67757632009-04-27 15:53:22 +0200317 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
318 "IntlvEn field of DRAM Base Register for node 0: "
Borislav Petkov72f158f2009-09-18 12:27:27 +0200319 "this probably indicates a BIOS bug.\n", intlv_en);
Doug Thompson67757632009-04-27 15:53:22 +0200320 return NULL;
321 }
322
323 bits = (((u32) sys_addr) >> 12) & intlv_en;
324
325 for (node_id = 0; ; ) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200326 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
Doug Thompson67757632009-04-27 15:53:22 +0200327 break; /* intlv_sel field matches */
328
329 if (++node_id >= DRAM_REG_COUNT)
330 goto err_no_match;
331 }
332
333 /* sanity test for sys_addr */
334 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
335 amd64_printk(KERN_WARNING,
Borislav Petkov8edc5442009-09-18 12:39:19 +0200336 "%s(): sys_addr 0x%llx falls outside base/limit "
337 "address range for node %d with node interleaving "
338 "enabled.\n",
339 __func__, sys_addr, node_id);
Doug Thompson67757632009-04-27 15:53:22 +0200340 return NULL;
341 }
342
343found:
344 return edac_mc_find(node_id);
345
346err_no_match:
347 debugf2("sys_addr 0x%lx doesn't match any node\n",
348 (unsigned long)sys_addr);
349
350 return NULL;
351}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200352
353/*
354 * Extract the DRAM CS base address from selected csrow register.
355 */
356static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
357{
358 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
359 pvt->dcs_shift;
360}
361
362/*
363 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
364 */
365static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
366{
367 u64 dcsm_bits, other_bits;
368 u64 mask;
369
370 /* Extract bits from DRAM CS Mask. */
371 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
372
373 other_bits = pvt->dcsm_mask;
374 other_bits = ~(other_bits << pvt->dcs_shift);
375
376 /*
377 * The extracted bits from DCSM belong in the spaces represented by
378 * the cleared bits in other_bits.
379 */
380 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
381
382 return mask;
383}
384
385/*
386 * @input_addr is an InputAddr associated with the node given by mci. Return the
387 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
388 */
389static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
390{
391 struct amd64_pvt *pvt;
392 int csrow;
393 u64 base, mask;
394
395 pvt = mci->pvt_info;
396
397 /*
398 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
399 * base/mask register pair, test the condition shown near the start of
400 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
401 */
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200402 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200403
404 /* This DRAM chip select is disabled on this node */
405 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
406 continue;
407
408 base = base_from_dct_base(pvt, csrow);
409 mask = ~mask_from_dct_mask(pvt, csrow);
410
411 if ((input_addr & mask) == (base & mask)) {
412 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
413 (unsigned long)input_addr, csrow,
414 pvt->mc_node_id);
415
416 return csrow;
417 }
418 }
419
420 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
421 (unsigned long)input_addr, pvt->mc_node_id);
422
423 return -1;
424}
425
426/*
427 * Return the base value defined by the DRAM Base register for the node
428 * represented by mci. This function returns the full 40-bit value despite the
429 * fact that the register only stores bits 39-24 of the value. See section
430 * 3.4.4.1 (BKDG #26094, K8, revA-E)
431 */
432static inline u64 get_dram_base(struct mem_ctl_info *mci)
433{
434 struct amd64_pvt *pvt = mci->pvt_info;
435
436 return pvt->dram_base[pvt->mc_node_id];
437}
438
439/*
440 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
441 * for the node represented by mci. Info is passed back in *hole_base,
442 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
443 * info is invalid. Info may be invalid for either of the following reasons:
444 *
445 * - The revision of the node is not E or greater. In this case, the DRAM Hole
446 * Address Register does not exist.
447 *
448 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
449 * indicating that its contents are not valid.
450 *
451 * The values passed back in *hole_base, *hole_offset, and *hole_size are
452 * complete 32-bit values despite the fact that the bitfields in the DHAR
453 * only represent bits 31-24 of the base and offset values.
454 */
455int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
456 u64 *hole_offset, u64 *hole_size)
457{
458 struct amd64_pvt *pvt = mci->pvt_info;
459 u64 base;
460
461 /* only revE and later have the DRAM Hole Address Register */
Borislav Petkov1433eb92009-10-21 13:44:36 +0200462 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200463 debugf1(" revision %d for node %d does not support DHAR\n",
464 pvt->ext_model, pvt->mc_node_id);
465 return 1;
466 }
467
468 /* only valid for Fam10h */
469 if (boot_cpu_data.x86 == 0x10 &&
470 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
471 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
472 return 1;
473 }
474
475 if ((pvt->dhar & DHAR_VALID) == 0) {
476 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
477 pvt->mc_node_id);
478 return 1;
479 }
480
481 /* This node has Memory Hoisting */
482
483 /* +------------------+--------------------+--------------------+-----
484 * | memory | DRAM hole | relocated |
485 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
486 * | | | DRAM hole |
487 * | | | [0x100000000, |
488 * | | | (0x100000000+ |
489 * | | | (0xffffffff-x))] |
490 * +------------------+--------------------+--------------------+-----
491 *
492 * Above is a diagram of physical memory showing the DRAM hole and the
493 * relocated addresses from the DRAM hole. As shown, the DRAM hole
494 * starts at address x (the base address) and extends through address
495 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
496 * addresses in the hole so that they start at 0x100000000.
497 */
498
499 base = dhar_base(pvt->dhar);
500
501 *hole_base = base;
502 *hole_size = (0x1ull << 32) - base;
503
504 if (boot_cpu_data.x86 > 0xf)
505 *hole_offset = f10_dhar_offset(pvt->dhar);
506 else
507 *hole_offset = k8_dhar_offset(pvt->dhar);
508
509 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
510 pvt->mc_node_id, (unsigned long)*hole_base,
511 (unsigned long)*hole_offset, (unsigned long)*hole_size);
512
513 return 0;
514}
515EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
516
Doug Thompson93c2df52009-05-04 20:46:50 +0200517/*
518 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
519 * assumed that sys_addr maps to the node given by mci.
520 *
521 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
522 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
523 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
524 * then it is also involved in translating a SysAddr to a DramAddr. Sections
525 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
526 * These parts of the documentation are unclear. I interpret them as follows:
527 *
528 * When node n receives a SysAddr, it processes the SysAddr as follows:
529 *
530 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
531 * Limit registers for node n. If the SysAddr is not within the range
532 * specified by the base and limit values, then node n ignores the Sysaddr
533 * (since it does not map to node n). Otherwise continue to step 2 below.
534 *
535 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
536 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
537 * the range of relocated addresses (starting at 0x100000000) from the DRAM
538 * hole. If not, skip to step 3 below. Else get the value of the
539 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
540 * offset defined by this value from the SysAddr.
541 *
542 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
543 * Base register for node n. To obtain the DramAddr, subtract the base
544 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
545 */
546static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
547{
548 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
549 int ret = 0;
550
551 dram_base = get_dram_base(mci);
552
553 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
554 &hole_size);
555 if (!ret) {
556 if ((sys_addr >= (1ull << 32)) &&
557 (sys_addr < ((1ull << 32) + hole_size))) {
558 /* use DHAR to translate SysAddr to DramAddr */
559 dram_addr = sys_addr - hole_offset;
560
561 debugf2("using DHAR to translate SysAddr 0x%lx to "
562 "DramAddr 0x%lx\n",
563 (unsigned long)sys_addr,
564 (unsigned long)dram_addr);
565
566 return dram_addr;
567 }
568 }
569
570 /*
571 * Translate the SysAddr to a DramAddr as shown near the start of
572 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
573 * only deals with 40-bit values. Therefore we discard bits 63-40 of
574 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
575 * discard are all 1s. Otherwise the bits we discard are all 0s. See
576 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
577 * Programmer's Manual Volume 1 Application Programming.
578 */
579 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
580
581 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
582 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
583 (unsigned long)dram_addr);
584 return dram_addr;
585}
586
587/*
588 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
589 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
590 * for node interleaving.
591 */
592static int num_node_interleave_bits(unsigned intlv_en)
593{
594 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
595 int n;
596
597 BUG_ON(intlv_en > 7);
598 n = intlv_shift_table[intlv_en];
599 return n;
600}
601
602/* Translate the DramAddr given by @dram_addr to an InputAddr. */
603static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
604{
605 struct amd64_pvt *pvt;
606 int intlv_shift;
607 u64 input_addr;
608
609 pvt = mci->pvt_info;
610
611 /*
612 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
613 * concerning translating a DramAddr to an InputAddr.
614 */
615 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
616 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
617 (dram_addr & 0xfff);
618
619 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
620 intlv_shift, (unsigned long)dram_addr,
621 (unsigned long)input_addr);
622
623 return input_addr;
624}
625
626/*
627 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
628 * assumed that @sys_addr maps to the node given by mci.
629 */
630static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
631{
632 u64 input_addr;
633
634 input_addr =
635 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
636
637 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
638 (unsigned long)sys_addr, (unsigned long)input_addr);
639
640 return input_addr;
641}
642
643
644/*
645 * @input_addr is an InputAddr associated with the node represented by mci.
646 * Translate @input_addr to a DramAddr and return the result.
647 */
648static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
649{
650 struct amd64_pvt *pvt;
651 int node_id, intlv_shift;
652 u64 bits, dram_addr;
653 u32 intlv_sel;
654
655 /*
656 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
657 * shows how to translate a DramAddr to an InputAddr. Here we reverse
658 * this procedure. When translating from a DramAddr to an InputAddr, the
659 * bits used for node interleaving are discarded. Here we recover these
660 * bits from the IntlvSel field of the DRAM Limit register (section
661 * 3.4.4.2) for the node that input_addr is associated with.
662 */
663 pvt = mci->pvt_info;
664 node_id = pvt->mc_node_id;
665 BUG_ON((node_id < 0) || (node_id > 7));
666
667 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
668
669 if (intlv_shift == 0) {
670 debugf1(" InputAddr 0x%lx translates to DramAddr of "
671 "same value\n", (unsigned long)input_addr);
672
673 return input_addr;
674 }
675
676 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
677 (input_addr & 0xfff);
678
679 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
680 dram_addr = bits + (intlv_sel << 12);
681
682 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
683 "(%d node interleave bits)\n", (unsigned long)input_addr,
684 (unsigned long)dram_addr, intlv_shift);
685
686 return dram_addr;
687}
688
689/*
690 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
691 * @dram_addr to a SysAddr.
692 */
693static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
694{
695 struct amd64_pvt *pvt = mci->pvt_info;
696 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
697 int ret = 0;
698
699 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
700 &hole_size);
701 if (!ret) {
702 if ((dram_addr >= hole_base) &&
703 (dram_addr < (hole_base + hole_size))) {
704 sys_addr = dram_addr + hole_offset;
705
706 debugf1("using DHAR to translate DramAddr 0x%lx to "
707 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
708 (unsigned long)sys_addr);
709
710 return sys_addr;
711 }
712 }
713
714 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
715 sys_addr = dram_addr + base;
716
717 /*
718 * The sys_addr we have computed up to this point is a 40-bit value
719 * because the k8 deals with 40-bit values. However, the value we are
720 * supposed to return is a full 64-bit physical address. The AMD
721 * x86-64 architecture specifies that the most significant implemented
722 * address bit through bit 63 of a physical address must be either all
723 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
724 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
725 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
726 * Programming.
727 */
728 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
729
730 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
731 pvt->mc_node_id, (unsigned long)dram_addr,
732 (unsigned long)sys_addr);
733
734 return sys_addr;
735}
736
737/*
738 * @input_addr is an InputAddr associated with the node given by mci. Translate
739 * @input_addr to a SysAddr.
740 */
741static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
742 u64 input_addr)
743{
744 return dram_addr_to_sys_addr(mci,
745 input_addr_to_dram_addr(mci, input_addr));
746}
747
748/*
749 * Find the minimum and maximum InputAddr values that map to the given @csrow.
750 * Pass back these values in *input_addr_min and *input_addr_max.
751 */
752static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
753 u64 *input_addr_min, u64 *input_addr_max)
754{
755 struct amd64_pvt *pvt;
756 u64 base, mask;
757
758 pvt = mci->pvt_info;
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200759 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
Doug Thompson93c2df52009-05-04 20:46:50 +0200760
761 base = base_from_dct_base(pvt, csrow);
762 mask = mask_from_dct_mask(pvt, csrow);
763
764 *input_addr_min = base & ~mask;
765 *input_addr_max = base | mask | pvt->dcs_mask_notused;
766}
767
Doug Thompson93c2df52009-05-04 20:46:50 +0200768/* Map the Error address to a PAGE and PAGE OFFSET. */
769static inline void error_address_to_page_and_offset(u64 error_address,
770 u32 *page, u32 *offset)
771{
772 *page = (u32) (error_address >> PAGE_SHIFT);
773 *offset = ((u32) error_address) & ~PAGE_MASK;
774}
775
776/*
777 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
778 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
779 * of a node that detected an ECC memory error. mci represents the node that
780 * the error address maps to (possibly different from the node that detected
781 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
782 * error.
783 */
784static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
785{
786 int csrow;
787
788 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
789
790 if (csrow == -1)
791 amd64_mc_printk(mci, KERN_ERR,
792 "Failed to translate InputAddr to csrow for "
793 "address 0x%lx\n", (unsigned long)sys_addr);
794 return csrow;
795}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200796
Borislav Petkovbfc04ae2009-11-12 19:05:07 +0100797static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
Doug Thompson2da11652009-04-27 16:09:09 +0200798
799static void amd64_cpu_display_info(struct amd64_pvt *pvt)
800{
801 if (boot_cpu_data.x86 == 0x11)
802 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
803 else if (boot_cpu_data.x86 == 0x10)
804 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
805 else if (boot_cpu_data.x86 == 0xf)
806 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
Borislav Petkov1433eb92009-10-21 13:44:36 +0200807 (pvt->ext_model >= K8_REV_F) ?
Doug Thompson2da11652009-04-27 16:09:09 +0200808 "Rev F or later" : "Rev E or earlier");
809 else
810 /* we'll hardly ever ever get here */
811 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
812}
813
814/*
815 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
816 * are ECC capable.
817 */
818static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
819{
820 int bit;
Borislav Petkov584fcff2009-06-10 18:29:54 +0200821 enum dev_type edac_cap = EDAC_FLAG_NONE;
Doug Thompson2da11652009-04-27 16:09:09 +0200822
Borislav Petkov1433eb92009-10-21 13:44:36 +0200823 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
Doug Thompson2da11652009-04-27 16:09:09 +0200824 ? 19
825 : 17;
826
Borislav Petkov584fcff2009-06-10 18:29:54 +0200827 if (pvt->dclr0 & BIT(bit))
Doug Thompson2da11652009-04-27 16:09:09 +0200828 edac_cap = EDAC_FLAG_SECDED;
829
830 return edac_cap;
831}
832
833
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200834static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200835
Borislav Petkov68798e12009-11-03 16:18:33 +0100836static void amd64_dump_dramcfg_low(u32 dclr, int chan)
837{
838 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
839
840 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
841 (dclr & BIT(16)) ? "un" : "",
842 (dclr & BIT(19)) ? "yes" : "no");
843
844 debugf1(" PAR/ERR parity: %s\n",
845 (dclr & BIT(8)) ? "enabled" : "disabled");
846
847 debugf1(" DCT 128bit mode width: %s\n",
848 (dclr & BIT(11)) ? "128b" : "64b");
849
850 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
851 (dclr & BIT(12)) ? "yes" : "no",
852 (dclr & BIT(13)) ? "yes" : "no",
853 (dclr & BIT(14)) ? "yes" : "no",
854 (dclr & BIT(15)) ? "yes" : "no");
855}
856
Doug Thompson2da11652009-04-27 16:09:09 +0200857/* Display and decode various NB registers for debug purposes. */
858static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
859{
860 int ganged;
861
Borislav Petkov68798e12009-11-03 16:18:33 +0100862 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
Doug Thompson2da11652009-04-27 16:09:09 +0200863
Borislav Petkov68798e12009-11-03 16:18:33 +0100864 debugf1(" NB two channel DRAM capable: %s\n",
865 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
866
867 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
868 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
869 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
870
871 amd64_dump_dramcfg_low(pvt->dclr0, 0);
Doug Thompson2da11652009-04-27 16:09:09 +0200872
Borislav Petkov8de1d912009-10-16 13:39:30 +0200873 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
Doug Thompson2da11652009-04-27 16:09:09 +0200874
Borislav Petkov8de1d912009-10-16 13:39:30 +0200875 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
876 "offset: 0x%08x\n",
877 pvt->dhar,
878 dhar_base(pvt->dhar),
879 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
880 : f10_dhar_offset(pvt->dhar));
Doug Thompson2da11652009-04-27 16:09:09 +0200881
Borislav Petkov8de1d912009-10-16 13:39:30 +0200882 debugf1(" DramHoleValid: %s\n",
883 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
Doug Thompson2da11652009-04-27 16:09:09 +0200884
Borislav Petkov8de1d912009-10-16 13:39:30 +0200885 /* everything below this point is Fam10h and above */
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200886 if (boot_cpu_data.x86 == 0xf) {
887 amd64_debug_display_dimm_sizes(0, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200888 return;
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200889 }
Doug Thompson2da11652009-04-27 16:09:09 +0200890
Borislav Petkov8de1d912009-10-16 13:39:30 +0200891 /* Only if NOT ganged does dclr1 have valid info */
Borislav Petkov68798e12009-11-03 16:18:33 +0100892 if (!dct_ganging_enabled(pvt))
893 amd64_dump_dramcfg_low(pvt->dclr1, 1);
Doug Thompson2da11652009-04-27 16:09:09 +0200894
895 /*
896 * Determine if ganged and then dump memory sizes for first controller,
897 * and if NOT ganged dump info for 2nd controller.
898 */
899 ganged = dct_ganging_enabled(pvt);
900
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200901 amd64_debug_display_dimm_sizes(0, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200902
903 if (!ganged)
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200904 amd64_debug_display_dimm_sizes(1, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200905}
906
907/* Read in both of DBAM registers */
908static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
909{
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200910 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
Doug Thompson2da11652009-04-27 16:09:09 +0200911
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200912 if (boot_cpu_data.x86 >= 0x10)
913 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
Doug Thompson2da11652009-04-27 16:09:09 +0200914}
915
Doug Thompson94be4bf2009-04-27 16:12:00 +0200916/*
917 * NOTE: CPU Revision Dependent code: Rev E and Rev F
918 *
919 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
920 * set the shift factor for the DCSB and DCSM values.
921 *
922 * ->dcs_mask_notused, RevE:
923 *
924 * To find the max InputAddr for the csrow, start with the base address and set
925 * all bits that are "don't care" bits in the test at the start of section
926 * 3.5.4 (p. 84).
927 *
928 * The "don't care" bits are all set bits in the mask and all bits in the gaps
929 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
930 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
931 * gaps.
932 *
933 * ->dcs_mask_notused, RevF and later:
934 *
935 * To find the max InputAddr for the csrow, start with the base address and set
936 * all bits that are "don't care" bits in the test at the start of NPT section
937 * 4.5.4 (p. 87).
938 *
939 * The "don't care" bits are all set bits in the mask and all bits in the gaps
940 * between bit ranges [36:27] and [21:13].
941 *
942 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
943 * which are all bits in the above-mentioned gaps.
944 */
945static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
946{
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200947
Borislav Petkov1433eb92009-10-21 13:44:36 +0200948 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200949 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
950 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
951 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
952 pvt->dcs_shift = REV_E_DCS_SHIFT;
953 pvt->cs_count = 8;
954 pvt->num_dcsm = 8;
955 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200956 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
957 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
958 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
959 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
960
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200961 if (boot_cpu_data.x86 == 0x11) {
962 pvt->cs_count = 4;
963 pvt->num_dcsm = 2;
964 } else {
965 pvt->cs_count = 8;
966 pvt->num_dcsm = 4;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200967 }
Doug Thompson94be4bf2009-04-27 16:12:00 +0200968 }
969}
970
971/*
972 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
973 */
974static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
975{
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200976 int cs, reg;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200977
978 amd64_set_dct_base_and_mask(pvt);
979
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200980 for (cs = 0; cs < pvt->cs_count; cs++) {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200981 reg = K8_DCSB0 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200982 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200983 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
984 cs, pvt->dcsb0[cs], reg);
985
986 /* If DCT are NOT ganged, then read in DCT1's base */
987 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
988 reg = F10_DCSB1 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200989 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
990 &pvt->dcsb1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200991 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
992 cs, pvt->dcsb1[cs], reg);
993 } else {
994 pvt->dcsb1[cs] = 0;
995 }
996 }
997
998 for (cs = 0; cs < pvt->num_dcsm; cs++) {
Wan Wei4afcd2d2009-07-27 14:34:15 +0200999 reg = K8_DCSM0 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001000 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +02001001 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1002 cs, pvt->dcsm0[cs], reg);
1003
1004 /* If DCT are NOT ganged, then read in DCT1's mask */
1005 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1006 reg = F10_DCSM1 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001007 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1008 &pvt->dcsm1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +02001009 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1010 cs, pvt->dcsm1[cs], reg);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001011 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +02001012 pvt->dcsm1[cs] = 0;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001013 }
Doug Thompson94be4bf2009-04-27 16:12:00 +02001014 }
1015}
1016
1017static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1018{
1019 enum mem_type type;
1020
Borislav Petkov1433eb92009-10-21 13:44:36 +02001021 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
Borislav Petkov6b4c0bd2009-11-12 15:37:57 +01001022 if (pvt->dchr0 & DDR3_MODE)
1023 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1024 else
1025 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
Doug Thompson94be4bf2009-04-27 16:12:00 +02001026 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +02001027 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1028 }
1029
Borislav Petkov239642f2009-11-12 15:33:16 +01001030 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
Doug Thompson94be4bf2009-04-27 16:12:00 +02001031
1032 return type;
1033}
1034
Doug Thompsonddff8762009-04-27 16:14:52 +02001035/*
1036 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1037 * and the later RevF memory controllers (DDR vs DDR2)
1038 *
1039 * Return:
1040 * number of memory channels in operation
1041 * Pass back:
1042 * contents of the DCL0_LOW register
1043 */
1044static int k8_early_channel_count(struct amd64_pvt *pvt)
1045{
1046 int flag, err = 0;
1047
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001048 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001049 if (err)
1050 return err;
1051
Borislav Petkov1433eb92009-10-21 13:44:36 +02001052 if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
Doug Thompsonddff8762009-04-27 16:14:52 +02001053 /* RevF (NPT) and later */
1054 flag = pvt->dclr0 & F10_WIDTH_128;
1055 } else {
1056 /* RevE and earlier */
1057 flag = pvt->dclr0 & REVE_WIDTH_128;
1058 }
1059
1060 /* not used */
1061 pvt->dclr1 = 0;
1062
1063 return (flag) ? 2 : 1;
1064}
1065
1066/* extract the ERROR ADDRESS for the K8 CPUs */
1067static u64 k8_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001068 struct err_regs *info)
Doug Thompsonddff8762009-04-27 16:14:52 +02001069{
1070 return (((u64) (info->nbeah & 0xff)) << 32) +
1071 (info->nbeal & ~0x03);
1072}
1073
1074/*
1075 * Read the Base and Limit registers for K8 based Memory controllers; extract
1076 * fields from the 'raw' reg into separate data fields
1077 *
1078 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1079 */
1080static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1081{
1082 u32 low;
1083 u32 off = dram << 3; /* 8 bytes between DRAM entries */
Doug Thompsonddff8762009-04-27 16:14:52 +02001084
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001085 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001086
1087 /* Extract parts into separate data entries */
Borislav Petkov49978112009-10-12 17:23:03 +02001088 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
Doug Thompsonddff8762009-04-27 16:14:52 +02001089 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1090 pvt->dram_rw_en[dram] = (low & 0x3);
1091
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001092 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001093
1094 /*
1095 * Extract parts into separate data entries. Limit is the HIGHEST memory
1096 * location of the region, so lower 24 bits need to be all ones
1097 */
Borislav Petkov49978112009-10-12 17:23:03 +02001098 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
Doug Thompsonddff8762009-04-27 16:14:52 +02001099 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1100 pvt->dram_DstNode[dram] = (low & 0x7);
1101}
1102
1103static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001104 struct err_regs *info,
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001105 u64 sys_addr)
Doug Thompsonddff8762009-04-27 16:14:52 +02001106{
1107 struct mem_ctl_info *src_mci;
1108 unsigned short syndrome;
1109 int channel, csrow;
1110 u32 page, offset;
1111
1112 /* Extract the syndrome parts and form a 16-bit syndrome */
Borislav Petkovb70ef012009-06-25 19:32:38 +02001113 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1114 syndrome |= LOW_SYNDROME(info->nbsh);
Doug Thompsonddff8762009-04-27 16:14:52 +02001115
1116 /* CHIPKILL enabled */
1117 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001118 channel = get_channel_from_ecc_syndrome(mci, syndrome);
Doug Thompsonddff8762009-04-27 16:14:52 +02001119 if (channel < 0) {
1120 /*
1121 * Syndrome didn't map, so we don't know which of the
1122 * 2 DIMMs is in error. So we need to ID 'both' of them
1123 * as suspect.
1124 */
1125 amd64_mc_printk(mci, KERN_WARNING,
1126 "unknown syndrome 0x%x - possible error "
1127 "reporting race\n", syndrome);
1128 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1129 return;
1130 }
1131 } else {
1132 /*
1133 * non-chipkill ecc mode
1134 *
1135 * The k8 documentation is unclear about how to determine the
1136 * channel number when using non-chipkill memory. This method
1137 * was obtained from email communication with someone at AMD.
1138 * (Wish the email was placed in this comment - norsk)
1139 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001140 channel = ((sys_addr & BIT(3)) != 0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001141 }
1142
1143 /*
1144 * Find out which node the error address belongs to. This may be
1145 * different from the node that detected the error.
1146 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001147 src_mci = find_mc_by_sys_addr(mci, sys_addr);
Keith Mannthey2cff18c2009-09-18 14:35:23 +02001148 if (!src_mci) {
Doug Thompsonddff8762009-04-27 16:14:52 +02001149 amd64_mc_printk(mci, KERN_ERR,
1150 "failed to map error address 0x%lx to a node\n",
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001151 (unsigned long)sys_addr);
Doug Thompsonddff8762009-04-27 16:14:52 +02001152 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1153 return;
1154 }
1155
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001156 /* Now map the sys_addr to a CSROW */
1157 csrow = sys_addr_to_csrow(src_mci, sys_addr);
Doug Thompsonddff8762009-04-27 16:14:52 +02001158 if (csrow < 0) {
1159 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1160 } else {
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001161 error_address_to_page_and_offset(sys_addr, &page, &offset);
Doug Thompsonddff8762009-04-27 16:14:52 +02001162
1163 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1164 channel, EDAC_MOD_STR);
1165 }
1166}
1167
Borislav Petkov1433eb92009-10-21 13:44:36 +02001168static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
Doug Thompsonddff8762009-04-27 16:14:52 +02001169{
Borislav Petkov1433eb92009-10-21 13:44:36 +02001170 int *dbam_map;
Doug Thompsonddff8762009-04-27 16:14:52 +02001171
Borislav Petkov1433eb92009-10-21 13:44:36 +02001172 if (pvt->ext_model >= K8_REV_F)
1173 dbam_map = ddr2_dbam;
1174 else if (pvt->ext_model >= K8_REV_D)
1175 dbam_map = ddr2_dbam_revD;
1176 else
1177 dbam_map = ddr2_dbam_revCG;
Doug Thompsonddff8762009-04-27 16:14:52 +02001178
Borislav Petkov1433eb92009-10-21 13:44:36 +02001179 return dbam_map[cs_mode];
Doug Thompsonddff8762009-04-27 16:14:52 +02001180}
1181
Doug Thompson1afd3c92009-04-27 16:16:50 +02001182/*
1183 * Get the number of DCT channels in use.
1184 *
1185 * Return:
1186 * number of Memory Channels in operation
1187 * Pass back:
1188 * contents of the DCL0_LOW register
1189 */
1190static int f10_early_channel_count(struct amd64_pvt *pvt)
1191{
Wan Wei57a30852009-08-07 17:04:49 +02001192 int dbams[] = { DBAM0, DBAM1 };
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001193 int i, j, channels = 0;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001194 u32 dbam;
Doug Thompsonddff8762009-04-27 16:14:52 +02001195
Doug Thompson1afd3c92009-04-27 16:16:50 +02001196 /* If we are in 128 bit mode, then we are using 2 channels */
1197 if (pvt->dclr0 & F10_WIDTH_128) {
Doug Thompson1afd3c92009-04-27 16:16:50 +02001198 channels = 2;
1199 return channels;
1200 }
1201
1202 /*
Borislav Petkovd16149e2009-10-16 19:55:49 +02001203 * Need to check if in unganged mode: In such, there are 2 channels,
1204 * but they are not in 128 bit mode and thus the above 'dclr0' status
1205 * bit will be OFF.
Doug Thompson1afd3c92009-04-27 16:16:50 +02001206 *
1207 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1208 * their CSEnable bit on. If so, then SINGLE DIMM case.
1209 */
Borislav Petkovd16149e2009-10-16 19:55:49 +02001210 debugf0("Data width is not 128 bits - need more decoding\n");
Doug Thompson1afd3c92009-04-27 16:16:50 +02001211
1212 /*
1213 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1214 * is more than just one DIMM present in unganged mode. Need to check
1215 * both controllers since DIMMs can be placed in either one.
1216 */
Wan Wei57a30852009-08-07 17:04:49 +02001217 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001218 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
Doug Thompson1afd3c92009-04-27 16:16:50 +02001219 goto err_reg;
1220
Wan Wei57a30852009-08-07 17:04:49 +02001221 for (j = 0; j < 4; j++) {
1222 if (DBAM_DIMM(j, dbam) > 0) {
1223 channels++;
1224 break;
1225 }
1226 }
Doug Thompson1afd3c92009-04-27 16:16:50 +02001227 }
1228
Borislav Petkovd16149e2009-10-16 19:55:49 +02001229 if (channels > 2)
1230 channels = 2;
1231
Borislav Petkov37da0452009-06-10 17:36:57 +02001232 debugf0("MCT channel count: %d\n", channels);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001233
1234 return channels;
1235
1236err_reg:
1237 return -1;
1238
1239}
1240
Borislav Petkov1433eb92009-10-21 13:44:36 +02001241static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001242{
Borislav Petkov1433eb92009-10-21 13:44:36 +02001243 int *dbam_map;
1244
1245 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1246 dbam_map = ddr3_dbam;
1247 else
1248 dbam_map = ddr2_dbam;
1249
1250 return dbam_map[cs_mode];
Doug Thompson1afd3c92009-04-27 16:16:50 +02001251}
1252
1253/* Enable extended configuration access via 0xCF8 feature */
1254static void amd64_setup(struct amd64_pvt *pvt)
1255{
1256 u32 reg;
1257
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001258 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001259
1260 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1261 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1262 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1263}
1264
1265/* Restore the extended configuration access via 0xCF8 feature */
1266static void amd64_teardown(struct amd64_pvt *pvt)
1267{
1268 u32 reg;
1269
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001270 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001271
1272 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1273 if (pvt->flags.cf8_extcfg)
1274 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1275 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1276}
1277
1278static u64 f10_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001279 struct err_regs *info)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001280{
1281 return (((u64) (info->nbeah & 0xffff)) << 32) +
1282 (info->nbeal & ~0x01);
1283}
1284
1285/*
1286 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1287 * fields from the 'raw' reg into separate data fields.
1288 *
1289 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1290 */
1291static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1292{
1293 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1294
1295 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1296 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1297
1298 /* read the 'raw' DRAM BASE Address register */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001299 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001300
1301 /* Read from the ECS data register */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001302 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001303
1304 /* Extract parts into separate data entries */
1305 pvt->dram_rw_en[dram] = (low_base & 0x3);
1306
1307 if (pvt->dram_rw_en[dram] == 0)
1308 return;
1309
1310 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1311
Borislav Petkov66216a72009-09-22 16:48:37 +02001312 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001313 (((u64)low_base & 0xFFFF0000) << 8);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001314
1315 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1316 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1317
1318 /* read the 'raw' LIMIT registers */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001319 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001320
1321 /* Read from the ECS data register for the HIGH portion */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001322 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001323
Doug Thompson1afd3c92009-04-27 16:16:50 +02001324 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1325 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1326
1327 /*
1328 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1329 * memory location of the region, so low 24 bits need to be all ones.
1330 */
Borislav Petkov66216a72009-09-22 16:48:37 +02001331 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001332 (((u64) low_limit & 0xFFFF0000) << 8) |
Borislav Petkov66216a72009-09-22 16:48:37 +02001333 0x00FFFFFF;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001334}
Doug Thompson6163b5d2009-04-27 16:20:17 +02001335
1336static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1337{
Doug Thompson6163b5d2009-04-27 16:20:17 +02001338
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001339 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1340 &pvt->dram_ctl_select_low)) {
Borislav Petkov72381bd2009-10-09 19:14:43 +02001341 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1342 "High range addresses at: 0x%x\n",
1343 pvt->dram_ctl_select_low,
1344 dct_sel_baseaddr(pvt));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001345
Borislav Petkov72381bd2009-10-09 19:14:43 +02001346 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1347 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1348 (dct_dram_enabled(pvt) ? "yes" : "no"));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001349
Borislav Petkov72381bd2009-10-09 19:14:43 +02001350 if (!dct_ganging_enabled(pvt))
1351 debugf0(" Address range split per DCT: %s\n",
1352 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1353
1354 debugf0(" DCT data interleave for ECC: %s, "
1355 "DRAM cleared since last warm reset: %s\n",
1356 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1357 (dct_memory_cleared(pvt) ? "yes" : "no"));
1358
1359 debugf0(" DCT channel interleave: %s, "
1360 "DCT interleave bits selector: 0x%x\n",
1361 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
Doug Thompson6163b5d2009-04-27 16:20:17 +02001362 dct_sel_interleave_addr(pvt));
1363 }
1364
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001365 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1366 &pvt->dram_ctl_select_high);
Doug Thompson6163b5d2009-04-27 16:20:17 +02001367}
1368
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001369/*
1370 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1371 * Interleaving Modes.
1372 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001373static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1374 int hi_range_sel, u32 intlv_en)
1375{
1376 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1377
1378 if (dct_ganging_enabled(pvt))
1379 cs = 0;
1380 else if (hi_range_sel)
1381 cs = dct_sel_high;
1382 else if (dct_interleave_enabled(pvt)) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001383 /*
1384 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1385 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001386 if (dct_sel_interleave_addr(pvt) == 0)
1387 cs = sys_addr >> 6 & 1;
1388 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1389 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1390
1391 if (dct_sel_interleave_addr(pvt) & 1)
1392 cs = (sys_addr >> 9 & 1) ^ temp;
1393 else
1394 cs = (sys_addr >> 6 & 1) ^ temp;
1395 } else if (intlv_en & 4)
1396 cs = sys_addr >> 15 & 1;
1397 else if (intlv_en & 2)
1398 cs = sys_addr >> 14 & 1;
1399 else if (intlv_en & 1)
1400 cs = sys_addr >> 13 & 1;
1401 else
1402 cs = sys_addr >> 12 & 1;
1403 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1404 cs = ~dct_sel_high & 1;
1405 else
1406 cs = 0;
1407
1408 return cs;
1409}
1410
1411static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1412{
1413 if (intlv_en == 1)
1414 return 1;
1415 else if (intlv_en == 3)
1416 return 2;
1417 else if (intlv_en == 7)
1418 return 3;
1419
1420 return 0;
1421}
1422
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001423/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1424static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001425 u32 dct_sel_base_addr,
1426 u64 dct_sel_base_off,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001427 u32 hole_valid, u32 hole_off,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001428 u64 dram_base)
1429{
1430 u64 chan_off;
1431
1432 if (hi_range_sel) {
1433 if (!(dct_sel_base_addr & 0xFFFFF800) &&
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001434 hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001435 chan_off = hole_off << 16;
1436 else
1437 chan_off = dct_sel_base_off;
1438 } else {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001439 if (hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001440 chan_off = hole_off << 16;
1441 else
1442 chan_off = dram_base & 0xFFFFF8000000ULL;
1443 }
1444
1445 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1446 (chan_off & 0x0000FFFFFF800000ULL);
1447}
1448
1449/* Hack for the time being - Can we get this from BIOS?? */
1450#define CH0SPARE_RANK 0
1451#define CH1SPARE_RANK 1
1452
1453/*
1454 * checks if the csrow passed in is marked as SPARED, if so returns the new
1455 * spare row
1456 */
1457static inline int f10_process_possible_spare(int csrow,
1458 u32 cs, struct amd64_pvt *pvt)
1459{
1460 u32 swap_done;
1461 u32 bad_dram_cs;
1462
1463 /* Depending on channel, isolate respective SPARING info */
1464 if (cs) {
1465 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1466 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1467 if (swap_done && (csrow == bad_dram_cs))
1468 csrow = CH1SPARE_RANK;
1469 } else {
1470 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1471 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1472 if (swap_done && (csrow == bad_dram_cs))
1473 csrow = CH0SPARE_RANK;
1474 }
1475 return csrow;
1476}
1477
1478/*
1479 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1480 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1481 *
1482 * Return:
1483 * -EINVAL: NOT FOUND
1484 * 0..csrow = Chip-Select Row
1485 */
1486static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1487{
1488 struct mem_ctl_info *mci;
1489 struct amd64_pvt *pvt;
1490 u32 cs_base, cs_mask;
1491 int cs_found = -EINVAL;
1492 int csrow;
1493
1494 mci = mci_lookup[nid];
1495 if (!mci)
1496 return cs_found;
1497
1498 pvt = mci->pvt_info;
1499
1500 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1501
Borislav Petkov9d858bb2009-09-21 14:35:51 +02001502 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompson6163b5d2009-04-27 16:20:17 +02001503
1504 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1505 if (!(cs_base & K8_DCSB_CS_ENABLE))
1506 continue;
1507
1508 /*
1509 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1510 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1511 * of the actual address.
1512 */
1513 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1514
1515 /*
1516 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1517 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1518 */
1519 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1520
1521 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1522 csrow, cs_base, cs_mask);
1523
1524 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1525
1526 debugf1(" Final CSMask=0x%x\n", cs_mask);
1527 debugf1(" (InputAddr & ~CSMask)=0x%x "
1528 "(CSBase & ~CSMask)=0x%x\n",
1529 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1530
1531 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1532 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1533
1534 debugf1(" MATCH csrow=%d\n", cs_found);
1535 break;
1536 }
1537 }
1538 return cs_found;
1539}
1540
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001541/* For a given @dram_range, check if @sys_addr falls within it. */
1542static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1543 u64 sys_addr, int *nid, int *chan_sel)
1544{
1545 int node_id, cs_found = -EINVAL, high_range = 0;
1546 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1547 u32 hole_valid, tmp, dct_sel_base, channel;
1548 u64 dram_base, chan_addr, dct_sel_base_off;
1549
1550 dram_base = pvt->dram_base[dram_range];
1551 intlv_en = pvt->dram_IntlvEn[dram_range];
1552
1553 node_id = pvt->dram_DstNode[dram_range];
1554 intlv_sel = pvt->dram_IntlvSel[dram_range];
1555
1556 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1557 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1558
1559 /*
1560 * This assumes that one node's DHAR is the same as all the other
1561 * nodes' DHAR.
1562 */
1563 hole_off = (pvt->dhar & 0x0000FF80);
1564 hole_valid = (pvt->dhar & 0x1);
1565 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1566
1567 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1568 hole_off, hole_valid, intlv_sel);
1569
1570 if (intlv_en ||
1571 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1572 return -EINVAL;
1573
1574 dct_sel_base = dct_sel_baseaddr(pvt);
1575
1576 /*
1577 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1578 * select between DCT0 and DCT1.
1579 */
1580 if (dct_high_range_enabled(pvt) &&
1581 !dct_ganging_enabled(pvt) &&
1582 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1583 high_range = 1;
1584
1585 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1586
1587 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1588 dct_sel_base_off, hole_valid,
1589 hole_off, dram_base);
1590
1591 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1592
1593 /* remove Node ID (in case of memory interleaving) */
1594 tmp = chan_addr & 0xFC0;
1595
1596 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1597
1598 /* remove channel interleave and hash */
1599 if (dct_interleave_enabled(pvt) &&
1600 !dct_high_range_enabled(pvt) &&
1601 !dct_ganging_enabled(pvt)) {
1602 if (dct_sel_interleave_addr(pvt) != 1)
1603 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1604 else {
1605 tmp = chan_addr & 0xFC0;
1606 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1607 | tmp;
1608 }
1609 }
1610
1611 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1612 chan_addr, (u32)(chan_addr >> 8));
1613
1614 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1615
1616 if (cs_found >= 0) {
1617 *nid = node_id;
1618 *chan_sel = channel;
1619 }
1620 return cs_found;
1621}
1622
1623static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1624 int *node, int *chan_sel)
1625{
1626 int dram_range, cs_found = -EINVAL;
1627 u64 dram_base, dram_limit;
1628
1629 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1630
1631 if (!pvt->dram_rw_en[dram_range])
1632 continue;
1633
1634 dram_base = pvt->dram_base[dram_range];
1635 dram_limit = pvt->dram_limit[dram_range];
1636
1637 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1638
1639 cs_found = f10_match_to_this_node(pvt, dram_range,
1640 sys_addr, node,
1641 chan_sel);
1642 if (cs_found >= 0)
1643 break;
1644 }
1645 }
1646 return cs_found;
1647}
1648
1649/*
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001650 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1651 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001652 *
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001653 * The @sys_addr is usually an error address received from the hardware
1654 * (MCX_ADDR).
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001655 */
1656static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001657 struct err_regs *info,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001658 u64 sys_addr)
1659{
1660 struct amd64_pvt *pvt = mci->pvt_info;
1661 u32 page, offset;
1662 unsigned short syndrome;
1663 int nid, csrow, chan = 0;
1664
1665 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1666
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001667 if (csrow < 0) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001668 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001669 return;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001670 }
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001671
1672 error_address_to_page_and_offset(sys_addr, &page, &offset);
1673
1674 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1675 syndrome |= LOW_SYNDROME(info->nbsh);
1676
1677 /*
1678 * We need the syndromes for channel detection only when we're
1679 * ganged. Otherwise @chan should already contain the channel at
1680 * this point.
1681 */
1682 if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
1683 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1684
1685 if (chan >= 0)
1686 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1687 EDAC_MOD_STR);
1688 else
1689 /*
1690 * Channel unknown, report all channels on this CSROW as failed.
1691 */
1692 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1693 edac_mc_handle_ce(mci, page, offset, syndrome,
1694 csrow, chan, EDAC_MOD_STR);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001695}
1696
1697/*
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001698 * debug routine to display the memory sizes of all logical DIMMs and its
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001699 * CSROWs as well
1700 */
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001701static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001702{
1703 int dimm, size0, size1;
1704 u32 dbam;
1705 u32 *dcsb;
1706
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001707 if (boot_cpu_data.x86 == 0xf) {
1708 /* K8 families < revF not supported yet */
Borislav Petkov1433eb92009-10-21 13:44:36 +02001709 if (pvt->ext_model < K8_REV_F)
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001710 return;
1711 else
1712 WARN_ON(ctrl != 0);
1713 }
1714
1715 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1716 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001717
1718 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1719 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1720
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001721 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1722
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001723 /* Dump memory sizes for DIMM and its CSROWs */
1724 for (dimm = 0; dimm < 4; dimm++) {
1725
1726 size0 = 0;
1727 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
Borislav Petkov1433eb92009-10-21 13:44:36 +02001728 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001729
1730 size1 = 0;
1731 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
Borislav Petkov1433eb92009-10-21 13:44:36 +02001732 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001733
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001734 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
1735 dimm * 2, size0, dimm * 2 + 1, size1);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001736 }
1737}
1738
1739/*
Doug Thompson4d376072009-04-27 16:25:05 +02001740 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1741 * (as per PCI DEVICE_IDs):
1742 *
1743 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1744 * DEVICE ID, even though there is differences between the different Revisions
1745 * (CG,D,E,F).
1746 *
1747 * Family F10h and F11h.
1748 *
1749 */
1750static struct amd64_family_type amd64_family_types[] = {
1751 [K8_CPUS] = {
1752 .ctl_name = "RevF",
1753 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1754 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1755 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001756 .early_channel_count = k8_early_channel_count,
1757 .get_error_address = k8_get_error_address,
1758 .read_dram_base_limit = k8_read_dram_base_limit,
1759 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1760 .dbam_to_cs = k8_dbam_to_chip_select,
Doug Thompson4d376072009-04-27 16:25:05 +02001761 }
1762 },
1763 [F10_CPUS] = {
1764 .ctl_name = "Family 10h",
1765 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1766 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1767 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001768 .early_channel_count = f10_early_channel_count,
1769 .get_error_address = f10_get_error_address,
1770 .read_dram_base_limit = f10_read_dram_base_limit,
1771 .read_dram_ctl_register = f10_read_dram_ctl_register,
1772 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1773 .dbam_to_cs = f10_dbam_to_chip_select,
Doug Thompson4d376072009-04-27 16:25:05 +02001774 }
1775 },
1776 [F11_CPUS] = {
1777 .ctl_name = "Family 11h",
1778 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1779 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1780 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001781 .early_channel_count = f10_early_channel_count,
1782 .get_error_address = f10_get_error_address,
1783 .read_dram_base_limit = f10_read_dram_base_limit,
1784 .read_dram_ctl_register = f10_read_dram_ctl_register,
1785 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1786 .dbam_to_cs = f10_dbam_to_chip_select,
Doug Thompson4d376072009-04-27 16:25:05 +02001787 }
1788 },
1789};
1790
1791static struct pci_dev *pci_get_related_function(unsigned int vendor,
1792 unsigned int device,
1793 struct pci_dev *related)
1794{
1795 struct pci_dev *dev = NULL;
1796
1797 dev = pci_get_device(vendor, device, dev);
1798 while (dev) {
1799 if ((dev->bus->number == related->bus->number) &&
1800 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1801 break;
1802 dev = pci_get_device(vendor, device, dev);
1803 }
1804
1805 return dev;
1806}
1807
Doug Thompsonb1289d62009-04-27 16:37:05 +02001808/*
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001809 * These are tables of eigenvectors (one per line) which can be used for the
1810 * construction of the syndrome tables. The modified syndrome search algorithm
1811 * uses those to find the symbol in error and thus the DIMM.
Doug Thompsonb1289d62009-04-27 16:37:05 +02001812 *
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001813 * Algorithm courtesy of Ross LaFetra from AMD.
Doug Thompsonb1289d62009-04-27 16:37:05 +02001814 */
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001815static u16 x4_vectors[] = {
1816 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1817 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1818 0x0001, 0x0002, 0x0004, 0x0008,
1819 0x1013, 0x3032, 0x4044, 0x8088,
1820 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1821 0x4857, 0xc4fe, 0x13cc, 0x3288,
1822 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1823 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1824 0x15c1, 0x2a42, 0x89ac, 0x4758,
1825 0x2b03, 0x1602, 0x4f0c, 0xca08,
1826 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1827 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1828 0x2b87, 0x164e, 0x642c, 0xdc18,
1829 0x40b9, 0x80de, 0x1094, 0x20e8,
1830 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1831 0x11c1, 0x2242, 0x84ac, 0x4c58,
1832 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1833 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1834 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1835 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1836 0x16b3, 0x3d62, 0x4f34, 0x8518,
1837 0x1e2f, 0x391a, 0x5cac, 0xf858,
1838 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1839 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1840 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1841 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1842 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1843 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1844 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1845 0x185d, 0x2ca6, 0x7914, 0x9e28,
1846 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1847 0x4199, 0x82ee, 0x19f4, 0x2e58,
1848 0x4807, 0xc40e, 0x130c, 0x3208,
1849 0x1905, 0x2e0a, 0x5804, 0xac08,
1850 0x213f, 0x132a, 0xadfc, 0x5ba8,
1851 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
Doug Thompsonb1289d62009-04-27 16:37:05 +02001852};
1853
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001854static u16 x8_vectors[] = {
1855 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1856 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1857 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1858 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1859 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1860 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1861 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1862 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1863 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1864 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1865 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1866 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1867 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1868 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1869 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1870 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1871 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1872 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1873 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1874};
1875
1876static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1877 int v_dim)
Doug Thompsonb1289d62009-04-27 16:37:05 +02001878{
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001879 unsigned int i, err_sym;
Doug Thompsonb1289d62009-04-27 16:37:05 +02001880
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001881 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1882 u16 s = syndrome;
1883 int v_idx = err_sym * v_dim;
1884 int v_end = (err_sym + 1) * v_dim;
Doug Thompsonb1289d62009-04-27 16:37:05 +02001885
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001886 /* walk over all 16 bits of the syndrome */
1887 for (i = 1; i < (1U << 16); i <<= 1) {
1888
1889 /* if bit is set in that eigenvector... */
1890 if (v_idx < v_end && vectors[v_idx] & i) {
1891 u16 ev_comp = vectors[v_idx++];
1892
1893 /* ... and bit set in the modified syndrome, */
1894 if (s & i) {
1895 /* remove it. */
1896 s ^= ev_comp;
1897
1898 if (!s)
1899 return err_sym;
1900 }
1901
1902 } else if (s & i)
1903 /* can't get to zero, move to next symbol */
1904 break;
1905 }
Doug Thompsonb1289d62009-04-27 16:37:05 +02001906 }
1907
1908 debugf0("syndrome(%x) not found\n", syndrome);
1909 return -1;
1910}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001911
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001912static int map_err_sym_to_channel(int err_sym, int sym_size)
1913{
1914 if (sym_size == 4)
1915 switch (err_sym) {
1916 case 0x20:
1917 case 0x21:
1918 return 0;
1919 break;
1920 case 0x22:
1921 case 0x23:
1922 return 1;
1923 break;
1924 default:
1925 return err_sym >> 4;
1926 break;
1927 }
1928 /* x8 symbols */
1929 else
1930 switch (err_sym) {
1931 /* imaginary bits not in a DIMM */
1932 case 0x10:
1933 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1934 err_sym);
1935 return -1;
1936 break;
1937
1938 case 0x11:
1939 return 0;
1940 break;
1941 case 0x12:
1942 return 1;
1943 break;
1944 default:
1945 return err_sym >> 3;
1946 break;
1947 }
1948 return -1;
1949}
1950
1951static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1952{
1953 struct amd64_pvt *pvt = mci->pvt_info;
1954 u32 value = 0;
1955 int err_sym = 0;
1956
1957 amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
1958
1959 /* F3x180[EccSymbolSize]=1, x8 symbols */
1960 if (boot_cpu_data.x86 == 0x10 &&
1961 boot_cpu_data.x86_model > 7 &&
1962 value & BIT(25)) {
1963 err_sym = decode_syndrome(syndrome, x8_vectors,
1964 ARRAY_SIZE(x8_vectors), 8);
1965 return map_err_sym_to_channel(err_sym, 8);
1966 } else {
1967 err_sym = decode_syndrome(syndrome, x4_vectors,
1968 ARRAY_SIZE(x4_vectors), 4);
1969 return map_err_sym_to_channel(err_sym, 4);
1970 }
1971}
1972
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001973/*
1974 * Check for valid error in the NB Status High register. If so, proceed to read
1975 * NB Status Low, NB Address Low and NB Address High registers and store data
1976 * into error structure.
1977 *
1978 * Returns:
1979 * - 1: if hardware regs contains valid error info
1980 * - 0: if no valid error is indicated
1981 */
1982static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001983 struct err_regs *regs)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001984{
1985 struct amd64_pvt *pvt;
1986 struct pci_dev *misc_f3_ctl;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001987
1988 pvt = mci->pvt_info;
1989 misc_f3_ctl = pvt->misc_f3_ctl;
1990
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001991 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
1992 return 0;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001993
1994 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
1995 return 0;
1996
1997 /* valid error, read remaining error information registers */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001998 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
1999 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
2000 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
2001 amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
2002 return 0;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002003
2004 return 1;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002005}
2006
2007/*
2008 * This function is called to retrieve the error data from hardware and store it
2009 * in the info structure.
2010 *
2011 * Returns:
2012 * - 1: if a valid error is found
2013 * - 0: if no error is found
2014 */
2015static int amd64_get_error_info(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02002016 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002017{
2018 struct amd64_pvt *pvt;
Borislav Petkovef44cc42009-07-23 14:45:48 +02002019 struct err_regs regs;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002020
2021 pvt = mci->pvt_info;
2022
2023 if (!amd64_get_error_info_regs(mci, info))
2024 return 0;
2025
2026 /*
2027 * Here's the problem with the K8's EDAC reporting: There are four
2028 * registers which report pieces of error information. They are shared
2029 * between CEs and UEs. Furthermore, contrary to what is stated in the
2030 * BKDG, the overflow bit is never used! Every error always updates the
2031 * reporting registers.
2032 *
2033 * Can you see the race condition? All four error reporting registers
2034 * must be read before a new error updates them! There is no way to read
2035 * all four registers atomically. The best than can be done is to detect
2036 * that a race has occured and then report the error without any kind of
2037 * precision.
2038 *
2039 * What is still positive is that errors are still reported and thus
2040 * problems can still be detected - just not localized because the
2041 * syndrome and address are spread out across registers.
2042 *
2043 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2044 * UEs and CEs should have separate register sets with proper overflow
2045 * bits that are used! At very least the problem can be fixed by
2046 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2047 * set the overflow bit - unless the current error is CE and the new
2048 * error is UE which would be the only situation for overwriting the
2049 * current values.
2050 */
2051
2052 regs = *info;
2053
2054 /* Use info from the second read - most current */
2055 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2056 return 0;
2057
2058 /* clear the error bits in hardware */
2059 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2060
2061 /* Check for the possible race condition */
2062 if ((regs.nbsh != info->nbsh) ||
2063 (regs.nbsl != info->nbsl) ||
2064 (regs.nbeah != info->nbeah) ||
2065 (regs.nbeal != info->nbeal)) {
2066 amd64_mc_printk(mci, KERN_WARNING,
2067 "hardware STATUS read access race condition "
2068 "detected!\n");
2069 return 0;
2070 }
2071 return 1;
2072}
2073
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002074/*
2075 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2076 * ADDRESS and process.
2077 */
2078static void amd64_handle_ce(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02002079 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002080{
2081 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002082 u64 sys_addr;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002083
2084 /* Ensure that the Error Address is VALID */
2085 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2086 amd64_mc_printk(mci, KERN_ERR,
2087 "HW has no ERROR_ADDRESS available\n");
2088 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2089 return;
2090 }
2091
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01002092 sys_addr = pvt->ops->get_error_address(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002093
2094 amd64_mc_printk(mci, KERN_ERR,
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002095 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002096
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002097 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002098}
2099
2100/* Handle any Un-correctable Errors (UEs) */
2101static void amd64_handle_ue(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02002102 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002103{
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01002104 struct amd64_pvt *pvt = mci->pvt_info;
2105 struct mem_ctl_info *log_mci, *src_mci = NULL;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002106 int csrow;
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002107 u64 sys_addr;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002108 u32 page, offset;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002109
2110 log_mci = mci;
2111
2112 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2113 amd64_mc_printk(mci, KERN_CRIT,
2114 "HW has no ERROR_ADDRESS available\n");
2115 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2116 return;
2117 }
2118
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01002119 sys_addr = pvt->ops->get_error_address(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002120
2121 /*
2122 * Find out which node the error address belongs to. This may be
2123 * different from the node that detected the error.
2124 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002125 src_mci = find_mc_by_sys_addr(mci, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002126 if (!src_mci) {
2127 amd64_mc_printk(mci, KERN_CRIT,
2128 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002129 (unsigned long)sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002130 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2131 return;
2132 }
2133
2134 log_mci = src_mci;
2135
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002136 csrow = sys_addr_to_csrow(log_mci, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002137 if (csrow < 0) {
2138 amd64_mc_printk(mci, KERN_CRIT,
2139 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002140 (unsigned long)sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002141 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2142 } else {
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01002143 error_address_to_page_and_offset(sys_addr, &page, &offset);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002144 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2145 }
2146}
2147
Borislav Petkov549d0422009-07-24 13:51:42 +02002148static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
Borislav Petkovb69b29d2009-07-27 16:21:14 +02002149 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002150{
Borislav Petkovb70ef012009-06-25 19:32:38 +02002151 u32 ec = ERROR_CODE(info->nbsl);
2152 u32 xec = EXT_ERROR_CODE(info->nbsl);
Borislav Petkov17adea02009-11-04 14:04:06 +01002153 int ecc_type = (info->nbsh >> 13) & 0x3;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002154
Borislav Petkovb70ef012009-06-25 19:32:38 +02002155 /* Bail early out if this was an 'observed' error */
2156 if (PP(ec) == K8_NBSL_PP_OBS)
2157 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002158
Borislav Petkovecaf5602009-07-23 16:32:01 +02002159 /* Do only ECC errors */
2160 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002161 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002162
Borislav Petkovecaf5602009-07-23 16:32:01 +02002163 if (ecc_type == 2)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002164 amd64_handle_ce(mci, info);
Borislav Petkovecaf5602009-07-23 16:32:01 +02002165 else if (ecc_type == 1)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002166 amd64_handle_ue(mci, info);
2167
2168 /*
2169 * If main error is CE then overflow must be CE. If main error is UE
2170 * then overflow is unknown. We'll call the overflow a CE - if
2171 * panic_on_ue is set then we're already panic'ed and won't arrive
2172 * here. Else, then apparently someone doesn't think that UE's are
2173 * catastrophic.
2174 */
2175 if (info->nbsh & K8_NBSH_OVERFLOW)
Borislav Petkovecaf5602009-07-23 16:32:01 +02002176 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002177}
2178
Borislav Petkovb69b29d2009-07-27 16:21:14 +02002179void amd64_decode_bus_error(int node_id, struct err_regs *regs)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002180{
Borislav Petkov549d0422009-07-24 13:51:42 +02002181 struct mem_ctl_info *mci = mci_lookup[node_id];
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002182
Borislav Petkovb69b29d2009-07-27 16:21:14 +02002183 __amd64_decode_bus_error(mci, regs);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002184
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002185 /*
2186 * Check the UE bit of the NB status high register, if set generate some
2187 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2188 * If it was a GART error, skip that process.
Borislav Petkov549d0422009-07-24 13:51:42 +02002189 *
2190 * FIXME: this should go somewhere else, if at all.
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002191 */
Borislav Petkov5110dbd2009-06-25 19:51:04 +02002192 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2193 edac_mc_handle_ue_no_info(mci, "UE bit is set");
Borislav Petkov549d0422009-07-24 13:51:42 +02002194
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002195}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002196
Doug Thompson0ec449e2009-04-27 19:41:25 +02002197/*
2198 * The main polling 'check' function, called FROM the edac core to perform the
2199 * error checking and if an error is encountered, error processing.
2200 */
2201static void amd64_check(struct mem_ctl_info *mci)
2202{
Borislav Petkovef44cc42009-07-23 14:45:48 +02002203 struct err_regs regs;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002204
Borislav Petkov549d0422009-07-24 13:51:42 +02002205 if (amd64_get_error_info(mci, &regs)) {
2206 struct amd64_pvt *pvt = mci->pvt_info;
2207 amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2208 }
Doug Thompson0ec449e2009-04-27 19:41:25 +02002209}
2210
2211/*
2212 * Input:
2213 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2214 * 2) AMD Family index value
2215 *
2216 * Ouput:
2217 * Upon return of 0, the following filled in:
2218 *
2219 * struct pvt->addr_f1_ctl
2220 * struct pvt->misc_f3_ctl
2221 *
2222 * Filled in with related device funcitions of 'dram_f2_ctl'
2223 * These devices are "reserved" via the pci_get_device()
2224 *
2225 * Upon return of 1 (error status):
2226 *
2227 * Nothing reserved
2228 */
2229static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2230{
2231 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2232
2233 /* Reserve the ADDRESS MAP Device */
2234 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2235 amd64_dev->addr_f1_ctl,
2236 pvt->dram_f2_ctl);
2237
2238 if (!pvt->addr_f1_ctl) {
2239 amd64_printk(KERN_ERR, "error address map device not found: "
2240 "vendor %x device 0x%x (broken BIOS?)\n",
2241 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2242 return 1;
2243 }
2244
2245 /* Reserve the MISC Device */
2246 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2247 amd64_dev->misc_f3_ctl,
2248 pvt->dram_f2_ctl);
2249
2250 if (!pvt->misc_f3_ctl) {
2251 pci_dev_put(pvt->addr_f1_ctl);
2252 pvt->addr_f1_ctl = NULL;
2253
2254 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2255 "vendor %x device 0x%x (broken BIOS?)\n",
2256 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2257 return 1;
2258 }
2259
2260 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2261 pci_name(pvt->addr_f1_ctl));
2262 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2263 pci_name(pvt->dram_f2_ctl));
2264 debugf1(" Misc device PCI Bus ID:\t%s\n",
2265 pci_name(pvt->misc_f3_ctl));
2266
2267 return 0;
2268}
2269
2270static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2271{
2272 pci_dev_put(pvt->addr_f1_ctl);
2273 pci_dev_put(pvt->misc_f3_ctl);
2274}
2275
2276/*
2277 * Retrieve the hardware registers of the memory controller (this includes the
2278 * 'Address Map' and 'Misc' device regs)
2279 */
2280static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2281{
2282 u64 msr_val;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002283 int dram;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002284
2285 /*
2286 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2287 * those are Read-As-Zero
2288 */
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002289 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2290 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002291
2292 /* check first whether TOP_MEM2 is enabled */
2293 rdmsrl(MSR_K8_SYSCFG, msr_val);
2294 if (msr_val & (1U << 21)) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002295 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2296 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002297 } else
2298 debugf0(" TOP_MEM2 disabled.\n");
2299
2300 amd64_cpu_display_info(pvt);
2301
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002302 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002303
2304 if (pvt->ops->read_dram_ctl_register)
2305 pvt->ops->read_dram_ctl_register(pvt);
2306
2307 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2308 /*
2309 * Call CPU specific READ function to get the DRAM Base and
2310 * Limit values from the DCT.
2311 */
2312 pvt->ops->read_dram_base_limit(pvt, dram);
2313
2314 /*
2315 * Only print out debug info on rows with both R and W Enabled.
2316 * Normal processing, compiler should optimize this whole 'if'
2317 * debug output block away.
2318 */
2319 if (pvt->dram_rw_en[dram] != 0) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002320 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2321 "DRAM-LIMIT: 0x%016llx\n",
Doug Thompson0ec449e2009-04-27 19:41:25 +02002322 dram,
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002323 pvt->dram_base[dram],
2324 pvt->dram_limit[dram]);
2325
Doug Thompson0ec449e2009-04-27 19:41:25 +02002326 debugf1(" IntlvEn=%s %s %s "
2327 "IntlvSel=%d DstNode=%d\n",
2328 pvt->dram_IntlvEn[dram] ?
2329 "Enabled" : "Disabled",
2330 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2331 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2332 pvt->dram_IntlvSel[dram],
2333 pvt->dram_DstNode[dram]);
2334 }
2335 }
2336
2337 amd64_read_dct_base_mask(pvt);
2338
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002339 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002340 amd64_read_dbam_reg(pvt);
2341
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002342 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2343 F10_ONLINE_SPARE, &pvt->online_spare);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002344
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002345 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2346 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002347
2348 if (!dct_ganging_enabled(pvt)) {
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002349 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2350 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002351 }
Doug Thompson0ec449e2009-04-27 19:41:25 +02002352 amd64_dump_misc_regs(pvt);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002353}
2354
2355/*
2356 * NOTE: CPU Revision Dependent code
2357 *
2358 * Input:
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002359 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002360 * k8 private pointer to -->
2361 * DRAM Bank Address mapping register
2362 * node_id
2363 * DCL register where dual_channel_active is
2364 *
2365 * The DBAM register consists of 4 sets of 4 bits each definitions:
2366 *
2367 * Bits: CSROWs
2368 * 0-3 CSROWs 0 and 1
2369 * 4-7 CSROWs 2 and 3
2370 * 8-11 CSROWs 4 and 5
2371 * 12-15 CSROWs 6 and 7
2372 *
2373 * Values range from: 0 to 15
2374 * The meaning of the values depends on CPU revision and dual-channel state,
2375 * see relevant BKDG more info.
2376 *
2377 * The memory controller provides for total of only 8 CSROWs in its current
2378 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2379 * single channel or two (2) DIMMs in dual channel mode.
2380 *
2381 * The following code logic collapses the various tables for CSROW based on CPU
2382 * revision.
2383 *
2384 * Returns:
2385 * The number of PAGE_SIZE pages on the specified CSROW number it
2386 * encompasses
2387 *
2388 */
2389static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2390{
Borislav Petkov1433eb92009-10-21 13:44:36 +02002391 u32 cs_mode, nr_pages;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002392
2393 /*
2394 * The math on this doesn't look right on the surface because x/2*4 can
2395 * be simplified to x*2 but this expression makes use of the fact that
2396 * it is integral math where 1/2=0. This intermediate value becomes the
2397 * number of bits to shift the DBAM register to extract the proper CSROW
2398 * field.
2399 */
Borislav Petkov1433eb92009-10-21 13:44:36 +02002400 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002401
Borislav Petkov1433eb92009-10-21 13:44:36 +02002402 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002403
2404 /*
2405 * If dual channel then double the memory size of single channel.
2406 * Channel count is 1 or 2
2407 */
2408 nr_pages <<= (pvt->channel_count - 1);
2409
Borislav Petkov1433eb92009-10-21 13:44:36 +02002410 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002411 debugf0(" nr_pages= %u channel-count = %d\n",
2412 nr_pages, pvt->channel_count);
2413
2414 return nr_pages;
2415}
2416
2417/*
2418 * Initialize the array of csrow attribute instances, based on the values
2419 * from pci config hardware registers.
2420 */
2421static int amd64_init_csrows(struct mem_ctl_info *mci)
2422{
2423 struct csrow_info *csrow;
2424 struct amd64_pvt *pvt;
2425 u64 input_addr_min, input_addr_max, sys_addr;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002426 int i, empty = 1;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002427
2428 pvt = mci->pvt_info;
2429
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002430 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002431
2432 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2433 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2434 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2435 );
2436
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002437 for (i = 0; i < pvt->cs_count; i++) {
Doug Thompson0ec449e2009-04-27 19:41:25 +02002438 csrow = &mci->csrows[i];
2439
2440 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2441 debugf1("----CSROW %d EMPTY for node %d\n", i,
2442 pvt->mc_node_id);
2443 continue;
2444 }
2445
2446 debugf1("----CSROW %d VALID for MC node %d\n",
2447 i, pvt->mc_node_id);
2448
2449 empty = 0;
2450 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2451 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2452 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2453 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2454 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2455 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2456 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2457 /* 8 bytes of resolution */
2458
2459 csrow->mtype = amd64_determine_memory_type(pvt);
2460
2461 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2462 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2463 (unsigned long)input_addr_min,
2464 (unsigned long)input_addr_max);
2465 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2466 (unsigned long)sys_addr, csrow->page_mask);
2467 debugf1(" nr_pages: %u first_page: 0x%lx "
2468 "last_page: 0x%lx\n",
2469 (unsigned)csrow->nr_pages,
2470 csrow->first_page, csrow->last_page);
2471
2472 /*
2473 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2474 */
2475 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2476 csrow->edac_mode =
2477 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2478 EDAC_S4ECD4ED : EDAC_SECDED;
2479 else
2480 csrow->edac_mode = EDAC_NONE;
2481 }
2482
2483 return empty;
2484}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002485
Borislav Petkov06724532009-09-16 13:05:46 +02002486/* get all cores on this DCT */
Rusty Russellba578cb2009-11-03 14:56:35 +10302487static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002488{
Borislav Petkov06724532009-09-16 13:05:46 +02002489 int cpu;
Doug Thompsonf9431992009-04-27 19:46:08 +02002490
Borislav Petkov06724532009-09-16 13:05:46 +02002491 for_each_online_cpu(cpu)
2492 if (amd_get_nb_id(cpu) == nid)
2493 cpumask_set_cpu(cpu, mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002494}
2495
2496/* check MCG_CTL on all the cpus on this node */
Borislav Petkov06724532009-09-16 13:05:46 +02002497static bool amd64_nb_mce_bank_enabled_on_node(int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002498{
Rusty Russellba578cb2009-11-03 14:56:35 +10302499 cpumask_var_t mask;
Borislav Petkov50542252009-12-11 18:14:40 +01002500 int cpu, nbe;
Borislav Petkov06724532009-09-16 13:05:46 +02002501 bool ret = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002502
Rusty Russellba578cb2009-11-03 14:56:35 +10302503 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2504 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2505 __func__);
2506 return false;
2507 }
Borislav Petkov06724532009-09-16 13:05:46 +02002508
Rusty Russellba578cb2009-11-03 14:56:35 +10302509 get_cpus_on_this_dct_cpumask(mask, nid);
Borislav Petkov06724532009-09-16 13:05:46 +02002510
Rusty Russellba578cb2009-11-03 14:56:35 +10302511 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
Borislav Petkov06724532009-09-16 13:05:46 +02002512
Rusty Russellba578cb2009-11-03 14:56:35 +10302513 for_each_cpu(cpu, mask) {
Borislav Petkov50542252009-12-11 18:14:40 +01002514 struct msr *reg = per_cpu_ptr(msrs, cpu);
2515 nbe = reg->l & K8_MSR_MCGCTL_NBE;
Borislav Petkov06724532009-09-16 13:05:46 +02002516
2517 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
Borislav Petkov50542252009-12-11 18:14:40 +01002518 cpu, reg->q,
Borislav Petkov06724532009-09-16 13:05:46 +02002519 (nbe ? "enabled" : "disabled"));
2520
2521 if (!nbe)
2522 goto out;
Borislav Petkov06724532009-09-16 13:05:46 +02002523 }
2524 ret = true;
2525
2526out:
Rusty Russellba578cb2009-11-03 14:56:35 +10302527 free_cpumask_var(mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002528 return ret;
2529}
2530
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002531static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2532{
2533 cpumask_var_t cmask;
Borislav Petkov50542252009-12-11 18:14:40 +01002534 int cpu;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002535
2536 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2537 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2538 __func__);
2539 return false;
2540 }
2541
2542 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2543
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002544 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2545
2546 for_each_cpu(cpu, cmask) {
2547
Borislav Petkov50542252009-12-11 18:14:40 +01002548 struct msr *reg = per_cpu_ptr(msrs, cpu);
2549
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002550 if (on) {
Borislav Petkov50542252009-12-11 18:14:40 +01002551 if (reg->l & K8_MSR_MCGCTL_NBE)
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002552 pvt->flags.ecc_report = 1;
2553
Borislav Petkov50542252009-12-11 18:14:40 +01002554 reg->l |= K8_MSR_MCGCTL_NBE;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002555 } else {
2556 /*
2557 * Turn off ECC reporting only when it was off before
2558 */
2559 if (!pvt->flags.ecc_report)
Borislav Petkov50542252009-12-11 18:14:40 +01002560 reg->l &= ~K8_MSR_MCGCTL_NBE;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002561 }
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002562 }
2563 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2564
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002565 free_cpumask_var(cmask);
2566
2567 return 0;
2568}
2569
2570/*
2571 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2572 * enable it.
2573 */
2574static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2575{
2576 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002577 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2578
2579 if (!ecc_enable_override)
2580 return;
2581
2582 amd64_printk(KERN_WARNING,
2583 "'ecc_enable_override' parameter is active, "
2584 "Enabling AMD ECC hardware now: CAUTION\n");
2585
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002586 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002587
2588 /* turn on UECCn and CECCEn bits */
2589 pvt->old_nbctl = value & mask;
2590 pvt->nbctl_mcgctl_saved = 1;
2591
2592 value |= mask;
2593 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2594
2595 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2596 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2597 "MCGCTL!\n");
2598
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002599 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002600
2601 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2602 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2603 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2604
2605 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2606 amd64_printk(KERN_WARNING,
2607 "This node reports that DRAM ECC is "
2608 "currently Disabled; ENABLING now\n");
2609
2610 /* Attempt to turn on DRAM ECC Enable */
2611 value |= K8_NBCFG_ECC_ENABLE;
2612 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2613
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002614 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002615
2616 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2617 amd64_printk(KERN_WARNING,
2618 "Hardware rejects Enabling DRAM ECC checking\n"
2619 "Check memory DIMM configuration\n");
2620 } else {
2621 amd64_printk(KERN_DEBUG,
2622 "Hardware accepted DRAM ECC Enable\n");
2623 }
2624 }
2625 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2626 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2627 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2628
2629 pvt->ctl_error_info.nbcfg = value;
2630}
2631
2632static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2633{
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002634 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2635
2636 if (!pvt->nbctl_mcgctl_saved)
2637 return;
2638
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002639 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002640 value &= ~mask;
2641 value |= pvt->old_nbctl;
2642
2643 /* restore the NB Enable MCGCTL bit */
2644 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2645
2646 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2647 amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
2648 "MCGCTL!\n");
2649}
2650
Doug Thompsonf9431992009-04-27 19:46:08 +02002651/*
2652 * EDAC requires that the BIOS have ECC enabled before taking over the
2653 * processing of ECC errors. This is because the BIOS can properly initialize
2654 * the memory system completely. A command line option allows to force-enable
2655 * hardware ECC later in amd64_enable_ecc_error_reporting().
2656 */
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002657static const char *ecc_warning =
2658 "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
2659 " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
2660 " Also, use of the override can cause unknown side effects.\n";
2661
Doug Thompsonf9431992009-04-27 19:46:08 +02002662static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2663{
2664 u32 value;
Borislav Petkov06724532009-09-16 13:05:46 +02002665 u8 ecc_enabled = 0;
2666 bool nb_mce_en = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002667
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002668 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
Doug Thompsonf9431992009-04-27 19:46:08 +02002669
2670 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002671 if (!ecc_enabled)
2672 amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
2673 "is currently disabled, set F3x%x[22] (%s).\n",
2674 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2675 else
2676 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
Doug Thompsonf9431992009-04-27 19:46:08 +02002677
Borislav Petkov06724532009-09-16 13:05:46 +02002678 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2679 if (!nb_mce_en)
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002680 amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
2681 "0x%08x[4] on node %d to enable.\n",
2682 MSR_IA32_MCG_CTL, pvt->mc_node_id);
Doug Thompsonf9431992009-04-27 19:46:08 +02002683
Borislav Petkov06724532009-09-16 13:05:46 +02002684 if (!ecc_enabled || !nb_mce_en) {
Doug Thompsonf9431992009-04-27 19:46:08 +02002685 if (!ecc_enable_override) {
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002686 amd64_printk(KERN_WARNING, "%s", ecc_warning);
2687 return -ENODEV;
2688 }
2689 } else
Doug Thompsonf9431992009-04-27 19:46:08 +02002690 /* CLEAR the override, since BIOS controlled it */
2691 ecc_enable_override = 0;
Doug Thompsonf9431992009-04-27 19:46:08 +02002692
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002693 return 0;
Doug Thompsonf9431992009-04-27 19:46:08 +02002694}
2695
Doug Thompson7d6034d2009-04-27 20:01:01 +02002696struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2697 ARRAY_SIZE(amd64_inj_attrs) +
2698 1];
2699
2700struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2701
2702static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2703{
2704 unsigned int i = 0, j = 0;
2705
2706 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2707 sysfs_attrs[i] = amd64_dbg_attrs[i];
2708
2709 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2710 sysfs_attrs[i] = amd64_inj_attrs[j];
2711
2712 sysfs_attrs[i] = terminator;
2713
2714 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2715}
2716
2717static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2718{
2719 struct amd64_pvt *pvt = mci->pvt_info;
2720
2721 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2722 mci->edac_ctl_cap = EDAC_FLAG_NONE;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002723
2724 if (pvt->nbcap & K8_NBCAP_SECDED)
2725 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2726
2727 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2728 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2729
2730 mci->edac_cap = amd64_determine_edac_cap(pvt);
2731 mci->mod_name = EDAC_MOD_STR;
2732 mci->mod_ver = EDAC_AMD64_VERSION;
2733 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2734 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2735 mci->ctl_page_to_phys = NULL;
2736
2737 /* IMPORTANT: Set the polling 'check' function in this module */
2738 mci->edac_check = amd64_check;
2739
2740 /* memory scrubber interface */
2741 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2742 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2743}
2744
2745/*
2746 * Init stuff for this DRAM Controller device.
2747 *
2748 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2749 * Space feature MUST be enabled on ALL Processors prior to actually reading
2750 * from the ECS registers. Since the loading of the module can occur on any
2751 * 'core', and cores don't 'see' all the other processors ECS data when the
2752 * others are NOT enabled. Our solution is to first enable ECS access in this
2753 * routine on all processors, gather some data in a amd64_pvt structure and
2754 * later come back in a finish-setup function to perform that final
2755 * initialization. See also amd64_init_2nd_stage() for that.
2756 */
2757static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2758 int mc_type_index)
2759{
2760 struct amd64_pvt *pvt = NULL;
2761 int err = 0, ret;
2762
2763 ret = -ENOMEM;
2764 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2765 if (!pvt)
2766 goto err_exit;
2767
Borislav Petkov37da0452009-06-10 17:36:57 +02002768 pvt->mc_node_id = get_node_id(dram_f2_ctl);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002769
2770 pvt->dram_f2_ctl = dram_f2_ctl;
2771 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2772 pvt->mc_type_index = mc_type_index;
2773 pvt->ops = family_ops(mc_type_index);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002774
2775 /*
2776 * We have the dram_f2_ctl device as an argument, now go reserve its
2777 * sibling devices from the PCI system.
2778 */
2779 ret = -ENODEV;
2780 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2781 if (err)
2782 goto err_free;
2783
2784 ret = -EINVAL;
2785 err = amd64_check_ecc_enabled(pvt);
2786 if (err)
2787 goto err_put;
2788
2789 /*
2790 * Key operation here: setup of HW prior to performing ops on it. Some
2791 * setup is required to access ECS data. After this is performed, the
2792 * 'teardown' function must be called upon error and normal exit paths.
2793 */
2794 if (boot_cpu_data.x86 >= 0x10)
2795 amd64_setup(pvt);
2796
2797 /*
2798 * Save the pointer to the private data for use in 2nd initialization
2799 * stage
2800 */
2801 pvt_lookup[pvt->mc_node_id] = pvt;
2802
2803 return 0;
2804
2805err_put:
2806 amd64_free_mc_sibling_devices(pvt);
2807
2808err_free:
2809 kfree(pvt);
2810
2811err_exit:
2812 return ret;
2813}
2814
2815/*
2816 * This is the finishing stage of the init code. Needs to be performed after all
2817 * MCs' hardware have been prepped for accessing extended config space.
2818 */
2819static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2820{
2821 int node_id = pvt->mc_node_id;
2822 struct mem_ctl_info *mci;
Andrew Morton18ba54a2009-12-07 19:04:23 +01002823 int ret = -ENODEV;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002824
2825 amd64_read_mc_registers(pvt);
2826
Doug Thompson7d6034d2009-04-27 20:01:01 +02002827 /*
2828 * We need to determine how many memory channels there are. Then use
2829 * that information for calculating the size of the dynamic instance
2830 * tables in the 'mci' structure
2831 */
2832 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2833 if (pvt->channel_count < 0)
2834 goto err_exit;
2835
2836 ret = -ENOMEM;
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002837 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002838 if (!mci)
2839 goto err_exit;
2840
2841 mci->pvt_info = pvt;
2842
2843 mci->dev = &pvt->dram_f2_ctl->dev;
2844 amd64_setup_mci_misc_attributes(mci);
2845
2846 if (amd64_init_csrows(mci))
2847 mci->edac_cap = EDAC_FLAG_NONE;
2848
2849 amd64_enable_ecc_error_reporting(mci);
2850 amd64_set_mc_sysfs_attributes(mci);
2851
2852 ret = -ENODEV;
2853 if (edac_mc_add_mc(mci)) {
2854 debugf1("failed edac_mc_add_mc()\n");
2855 goto err_add_mc;
2856 }
2857
2858 mci_lookup[node_id] = mci;
2859 pvt_lookup[node_id] = NULL;
Borislav Petkov549d0422009-07-24 13:51:42 +02002860
2861 /* register stuff with EDAC MCE */
2862 if (report_gart_errors)
2863 amd_report_gart_errors(true);
2864
2865 amd_register_ecc_decoder(amd64_decode_bus_error);
2866
Doug Thompson7d6034d2009-04-27 20:01:01 +02002867 return 0;
2868
2869err_add_mc:
2870 edac_mc_free(mci);
2871
2872err_exit:
2873 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2874
2875 amd64_restore_ecc_error_reporting(pvt);
2876
2877 if (boot_cpu_data.x86 > 0xf)
2878 amd64_teardown(pvt);
2879
2880 amd64_free_mc_sibling_devices(pvt);
2881
2882 kfree(pvt_lookup[pvt->mc_node_id]);
2883 pvt_lookup[node_id] = NULL;
2884
2885 return ret;
2886}
2887
2888
2889static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2890 const struct pci_device_id *mc_type)
2891{
2892 int ret = 0;
2893
Borislav Petkov37da0452009-06-10 17:36:57 +02002894 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
Doug Thompson7d6034d2009-04-27 20:01:01 +02002895 get_amd_family_name(mc_type->driver_data));
2896
2897 ret = pci_enable_device(pdev);
2898 if (ret < 0)
2899 ret = -EIO;
2900 else
2901 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2902
2903 if (ret < 0)
2904 debugf0("ret=%d\n", ret);
2905
2906 return ret;
2907}
2908
2909static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2910{
2911 struct mem_ctl_info *mci;
2912 struct amd64_pvt *pvt;
2913
2914 /* Remove from EDAC CORE tracking list */
2915 mci = edac_mc_del_mc(&pdev->dev);
2916 if (!mci)
2917 return;
2918
2919 pvt = mci->pvt_info;
2920
2921 amd64_restore_ecc_error_reporting(pvt);
2922
2923 if (boot_cpu_data.x86 > 0xf)
2924 amd64_teardown(pvt);
2925
2926 amd64_free_mc_sibling_devices(pvt);
2927
2928 kfree(pvt);
2929 mci->pvt_info = NULL;
2930
2931 mci_lookup[pvt->mc_node_id] = NULL;
2932
Borislav Petkov549d0422009-07-24 13:51:42 +02002933 /* unregister from EDAC MCE */
2934 amd_report_gart_errors(false);
2935 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2936
Doug Thompson7d6034d2009-04-27 20:01:01 +02002937 /* Free the EDAC CORE resources */
2938 edac_mc_free(mci);
2939}
2940
2941/*
2942 * This table is part of the interface for loading drivers for PCI devices. The
2943 * PCI core identifies what devices are on a system during boot, and then
2944 * inquiry this table to see if this driver is for a given device found.
2945 */
2946static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2947 {
2948 .vendor = PCI_VENDOR_ID_AMD,
2949 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2950 .subvendor = PCI_ANY_ID,
2951 .subdevice = PCI_ANY_ID,
2952 .class = 0,
2953 .class_mask = 0,
2954 .driver_data = K8_CPUS
2955 },
2956 {
2957 .vendor = PCI_VENDOR_ID_AMD,
2958 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2959 .subvendor = PCI_ANY_ID,
2960 .subdevice = PCI_ANY_ID,
2961 .class = 0,
2962 .class_mask = 0,
2963 .driver_data = F10_CPUS
2964 },
2965 {
2966 .vendor = PCI_VENDOR_ID_AMD,
2967 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
2968 .subvendor = PCI_ANY_ID,
2969 .subdevice = PCI_ANY_ID,
2970 .class = 0,
2971 .class_mask = 0,
2972 .driver_data = F11_CPUS
2973 },
2974 {0, }
2975};
2976MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2977
2978static struct pci_driver amd64_pci_driver = {
2979 .name = EDAC_MOD_STR,
2980 .probe = amd64_init_one_instance,
2981 .remove = __devexit_p(amd64_remove_one_instance),
2982 .id_table = amd64_pci_table,
2983};
2984
2985static void amd64_setup_pci_device(void)
2986{
2987 struct mem_ctl_info *mci;
2988 struct amd64_pvt *pvt;
2989
2990 if (amd64_ctl_pci)
2991 return;
2992
2993 mci = mci_lookup[0];
2994 if (mci) {
2995
2996 pvt = mci->pvt_info;
2997 amd64_ctl_pci =
2998 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
2999 EDAC_MOD_STR);
3000
3001 if (!amd64_ctl_pci) {
3002 pr_warning("%s(): Unable to create PCI control\n",
3003 __func__);
3004
3005 pr_warning("%s(): PCI error report via EDAC not set\n",
3006 __func__);
3007 }
3008 }
3009}
3010
3011static int __init amd64_edac_init(void)
3012{
3013 int nb, err = -ENODEV;
3014
3015 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3016
3017 opstate_init();
3018
3019 if (cache_k8_northbridges() < 0)
Li Honga3c4c582009-10-19 16:33:29 +08003020 return err;
Doug Thompson7d6034d2009-04-27 20:01:01 +02003021
Borislav Petkov50542252009-12-11 18:14:40 +01003022 msrs = msrs_alloc();
3023
Doug Thompson7d6034d2009-04-27 20:01:01 +02003024 err = pci_register_driver(&amd64_pci_driver);
3025 if (err)
3026 return err;
3027
3028 /*
3029 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3030 * amd64_pvt structs. These will be used in the 2nd stage init function
3031 * to finish initialization of the MC instances.
3032 */
3033 for (nb = 0; nb < num_k8_northbridges; nb++) {
3034 if (!pvt_lookup[nb])
3035 continue;
3036
3037 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3038 if (err)
Borislav Petkov37da0452009-06-10 17:36:57 +02003039 goto err_2nd_stage;
Doug Thompson7d6034d2009-04-27 20:01:01 +02003040 }
3041
3042 amd64_setup_pci_device();
3043
3044 return 0;
3045
Borislav Petkov37da0452009-06-10 17:36:57 +02003046err_2nd_stage:
3047 debugf0("2nd stage failed\n");
Doug Thompson7d6034d2009-04-27 20:01:01 +02003048 pci_unregister_driver(&amd64_pci_driver);
3049
3050 return err;
3051}
3052
3053static void __exit amd64_edac_exit(void)
3054{
3055 if (amd64_ctl_pci)
3056 edac_pci_release_generic_ctl(amd64_ctl_pci);
3057
3058 pci_unregister_driver(&amd64_pci_driver);
Borislav Petkov50542252009-12-11 18:14:40 +01003059
3060 msrs_free(msrs);
3061 msrs = NULL;
Doug Thompson7d6034d2009-04-27 20:01:01 +02003062}
3063
3064module_init(amd64_edac_init);
3065module_exit(amd64_edac_exit);
3066
3067MODULE_LICENSE("GPL");
3068MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3069 "Dave Peterson, Thayne Harbaugh");
3070MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3071 EDAC_AMD64_VERSION);
3072
3073module_param(edac_op_state, int, 0444);
3074MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");