blob: d63d41f3eecf788b6107269d36df2097075a637f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/bootmem.h>
21#include <linux/init.h>
22#include <linux/list.h>
23#include <linux/mm.h>
24#include <linux/notifier.h>
25#include <linux/pci.h>
26#include <linux/proc_fs.h>
27#include <linux/rbtree.h>
28#include <linux/seq_file.h>
29#include <linux/spinlock.h>
30#include <asm/eeh.h>
31#include <asm/io.h>
32#include <asm/machdep.h>
33#include <asm/rtas.h>
34#include <asm/atomic.h>
35#include <asm/systemcfg.h>
36#include "pci.h"
37
38#undef DEBUG
39
40/** Overview:
41 * EEH, or "Extended Error Handling" is a PCI bridge technology for
42 * dealing with PCI bus errors that can't be dealt with within the
43 * usual PCI framework, except by check-stopping the CPU. Systems
44 * that are designed for high-availability/reliability cannot afford
45 * to crash due to a "mere" PCI error, thus the need for EEH.
46 * An EEH-capable bridge operates by converting a detected error
47 * into a "slot freeze", taking the PCI adapter off-line, making
48 * the slot behave, from the OS'es point of view, as if the slot
49 * were "empty": all reads return 0xff's and all writes are silently
50 * ignored. EEH slot isolation events can be triggered by parity
51 * errors on the address or data busses (e.g. during posted writes),
52 * which in turn might be caused by dust, vibration, humidity,
53 * radioactivity or plain-old failed hardware.
54 *
55 * Note, however, that one of the leading causes of EEH slot
56 * freeze events are buggy device drivers, buggy device microcode,
57 * or buggy device hardware. This is because any attempt by the
58 * device to bus-master data to a memory address that is not
59 * assigned to the device will trigger a slot freeze. (The idea
60 * is to prevent devices-gone-wild from corrupting system memory).
61 * Buggy hardware/drivers will have a miserable time co-existing
62 * with EEH.
63 *
64 * Ideally, a PCI device driver, when suspecting that an isolation
65 * event has occured (e.g. by reading 0xff's), will then ask EEH
66 * whether this is the case, and then take appropriate steps to
67 * reset the PCI slot, the PCI device, and then resume operations.
68 * However, until that day, the checking is done here, with the
69 * eeh_check_failure() routine embedded in the MMIO macros. If
70 * the slot is found to be isolated, an "EEH Event" is synthesized
71 * and sent out for processing.
72 */
73
74/** Bus Unit ID macros; get low and hi 32-bits of the 64-bit BUID */
75#define BUID_HI(buid) ((buid) >> 32)
76#define BUID_LO(buid) ((buid) & 0xffffffff)
77
78/* EEH event workqueue setup. */
79static DEFINE_SPINLOCK(eeh_eventlist_lock);
80LIST_HEAD(eeh_eventlist);
81static void eeh_event_handler(void *);
82DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL);
83
84static struct notifier_block *eeh_notifier_chain;
85
86/*
87 * If a device driver keeps reading an MMIO register in an interrupt
88 * handler after a slot isolation event has occurred, we assume it
89 * is broken and panic. This sets the threshold for how many read
90 * attempts we allow before panicking.
91 */
92#define EEH_MAX_FAILS 1000
93static atomic_t eeh_fail_count;
94
95/* RTAS tokens */
96static int ibm_set_eeh_option;
97static int ibm_set_slot_reset;
98static int ibm_read_slot_reset_state;
99static int ibm_read_slot_reset_state2;
100static int ibm_slot_error_detail;
101
102static int eeh_subsystem_enabled;
103
104/* Buffer for reporting slot-error-detail rtas calls */
105static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
106static DEFINE_SPINLOCK(slot_errbuf_lock);
107static int eeh_error_buf_size;
108
109/* System monitoring statistics */
110static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
111static DEFINE_PER_CPU(unsigned long, false_positives);
112static DEFINE_PER_CPU(unsigned long, ignored_failures);
113static DEFINE_PER_CPU(unsigned long, slot_resets);
114
115/**
116 * The pci address cache subsystem. This subsystem places
117 * PCI device address resources into a red-black tree, sorted
118 * according to the address range, so that given only an i/o
119 * address, the corresponding PCI device can be **quickly**
120 * found. It is safe to perform an address lookup in an interrupt
121 * context; this ability is an important feature.
122 *
123 * Currently, the only customer of this code is the EEH subsystem;
124 * thus, this code has been somewhat tailored to suit EEH better.
125 * In particular, the cache does *not* hold the addresses of devices
126 * for which EEH is not enabled.
127 *
128 * (Implementation Note: The RB tree seems to be better/faster
129 * than any hash algo I could think of for this problem, even
130 * with the penalty of slow pointer chases for d-cache misses).
131 */
132struct pci_io_addr_range
133{
134 struct rb_node rb_node;
135 unsigned long addr_lo;
136 unsigned long addr_hi;
137 struct pci_dev *pcidev;
138 unsigned int flags;
139};
140
141static struct pci_io_addr_cache
142{
143 struct rb_root rb_root;
144 spinlock_t piar_lock;
145} pci_io_addr_cache_root;
146
147static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
148{
149 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
150
151 while (n) {
152 struct pci_io_addr_range *piar;
153 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
154
155 if (addr < piar->addr_lo) {
156 n = n->rb_left;
157 } else {
158 if (addr > piar->addr_hi) {
159 n = n->rb_right;
160 } else {
161 pci_dev_get(piar->pcidev);
162 return piar->pcidev;
163 }
164 }
165 }
166
167 return NULL;
168}
169
170/**
171 * pci_get_device_by_addr - Get device, given only address
172 * @addr: mmio (PIO) phys address or i/o port number
173 *
174 * Given an mmio phys address, or a port number, find a pci device
175 * that implements this address. Be sure to pci_dev_put the device
176 * when finished. I/O port numbers are assumed to be offset
177 * from zero (that is, they do *not* have pci_io_addr added in).
178 * It is safe to call this function within an interrupt.
179 */
180static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
181{
182 struct pci_dev *dev;
183 unsigned long flags;
184
185 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
186 dev = __pci_get_device_by_addr(addr);
187 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
188 return dev;
189}
190
191#ifdef DEBUG
192/*
193 * Handy-dandy debug print routine, does nothing more
194 * than print out the contents of our addr cache.
195 */
196static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
197{
198 struct rb_node *n;
199 int cnt = 0;
200
201 n = rb_first(&cache->rb_root);
202 while (n) {
203 struct pci_io_addr_range *piar;
204 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
205 printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s %s\n",
206 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
207 piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev),
208 pci_pretty_name(piar->pcidev));
209 cnt++;
210 n = rb_next(n);
211 }
212}
213#endif
214
215/* Insert address range into the rb tree. */
216static struct pci_io_addr_range *
217pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
218 unsigned long ahi, unsigned int flags)
219{
220 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
221 struct rb_node *parent = NULL;
222 struct pci_io_addr_range *piar;
223
224 /* Walk tree, find a place to insert into tree */
225 while (*p) {
226 parent = *p;
227 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
228 if (alo < piar->addr_lo) {
229 p = &parent->rb_left;
230 } else if (ahi > piar->addr_hi) {
231 p = &parent->rb_right;
232 } else {
233 if (dev != piar->pcidev ||
234 alo != piar->addr_lo || ahi != piar->addr_hi) {
235 printk(KERN_WARNING "PIAR: overlapping address range\n");
236 }
237 return piar;
238 }
239 }
240 piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
241 if (!piar)
242 return NULL;
243
244 piar->addr_lo = alo;
245 piar->addr_hi = ahi;
246 piar->pcidev = dev;
247 piar->flags = flags;
248
249 rb_link_node(&piar->rb_node, parent, p);
250 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
251
252 return piar;
253}
254
255static void __pci_addr_cache_insert_device(struct pci_dev *dev)
256{
257 struct device_node *dn;
258 int i;
259 int inserted = 0;
260
261 dn = pci_device_to_OF_node(dev);
262 if (!dn) {
263 printk(KERN_WARNING "PCI: no pci dn found for dev=%s %s\n",
264 pci_name(dev), pci_pretty_name(dev));
265 return;
266 }
267
268 /* Skip any devices for which EEH is not enabled. */
269 if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) ||
270 dn->eeh_mode & EEH_MODE_NOCHECK) {
271#ifdef DEBUG
272 printk(KERN_INFO "PCI: skip building address cache for=%s %s\n",
273 pci_name(dev), pci_pretty_name(dev));
274#endif
275 return;
276 }
277
278 /* The cache holds a reference to the device... */
279 pci_dev_get(dev);
280
281 /* Walk resources on this device, poke them into the tree */
282 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
283 unsigned long start = pci_resource_start(dev,i);
284 unsigned long end = pci_resource_end(dev,i);
285 unsigned int flags = pci_resource_flags(dev,i);
286
287 /* We are interested only bus addresses, not dma or other stuff */
288 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
289 continue;
290 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
291 continue;
292 pci_addr_cache_insert(dev, start, end, flags);
293 inserted = 1;
294 }
295
296 /* If there was nothing to add, the cache has no reference... */
297 if (!inserted)
298 pci_dev_put(dev);
299}
300
301/**
302 * pci_addr_cache_insert_device - Add a device to the address cache
303 * @dev: PCI device whose I/O addresses we are interested in.
304 *
305 * In order to support the fast lookup of devices based on addresses,
306 * we maintain a cache of devices that can be quickly searched.
307 * This routine adds a device to that cache.
308 */
309void pci_addr_cache_insert_device(struct pci_dev *dev)
310{
311 unsigned long flags;
312
313 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
314 __pci_addr_cache_insert_device(dev);
315 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
316}
317
318static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
319{
320 struct rb_node *n;
321 int removed = 0;
322
323restart:
324 n = rb_first(&pci_io_addr_cache_root.rb_root);
325 while (n) {
326 struct pci_io_addr_range *piar;
327 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
328
329 if (piar->pcidev == dev) {
330 rb_erase(n, &pci_io_addr_cache_root.rb_root);
331 removed = 1;
332 kfree(piar);
333 goto restart;
334 }
335 n = rb_next(n);
336 }
337
338 /* The cache no longer holds its reference to this device... */
339 if (removed)
340 pci_dev_put(dev);
341}
342
343/**
344 * pci_addr_cache_remove_device - remove pci device from addr cache
345 * @dev: device to remove
346 *
347 * Remove a device from the addr-cache tree.
348 * This is potentially expensive, since it will walk
349 * the tree multiple times (once per resource).
350 * But so what; device removal doesn't need to be that fast.
351 */
352void pci_addr_cache_remove_device(struct pci_dev *dev)
353{
354 unsigned long flags;
355
356 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
357 __pci_addr_cache_remove_device(dev);
358 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
359}
360
361/**
362 * pci_addr_cache_build - Build a cache of I/O addresses
363 *
364 * Build a cache of pci i/o addresses. This cache will be used to
365 * find the pci device that corresponds to a given address.
366 * This routine scans all pci busses to build the cache.
367 * Must be run late in boot process, after the pci controllers
368 * have been scaned for devices (after all device resources are known).
369 */
370void __init pci_addr_cache_build(void)
371{
372 struct pci_dev *dev = NULL;
373
374 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
375
376 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
377 /* Ignore PCI bridges ( XXX why ??) */
378 if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
379 continue;
380 }
381 pci_addr_cache_insert_device(dev);
382 }
383
384#ifdef DEBUG
385 /* Verify tree built up above, echo back the list of addrs. */
386 pci_addr_cache_print(&pci_io_addr_cache_root);
387#endif
388}
389
390/* --------------------------------------------------------------- */
391/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
392
393/**
394 * eeh_register_notifier - Register to find out about EEH events.
395 * @nb: notifier block to callback on events
396 */
397int eeh_register_notifier(struct notifier_block *nb)
398{
399 return notifier_chain_register(&eeh_notifier_chain, nb);
400}
401
402/**
403 * eeh_unregister_notifier - Unregister to an EEH event notifier.
404 * @nb: notifier block to callback on events
405 */
406int eeh_unregister_notifier(struct notifier_block *nb)
407{
408 return notifier_chain_unregister(&eeh_notifier_chain, nb);
409}
410
411/**
412 * read_slot_reset_state - Read the reset state of a device node's slot
413 * @dn: device node to read
414 * @rets: array to return results in
415 */
416static int read_slot_reset_state(struct device_node *dn, int rets[])
417{
418 int token, outputs;
419
420 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
421 token = ibm_read_slot_reset_state2;
422 outputs = 4;
423 } else {
424 token = ibm_read_slot_reset_state;
425 outputs = 3;
426 }
427
428 return rtas_call(token, 3, outputs, rets, dn->eeh_config_addr,
429 BUID_HI(dn->phb->buid), BUID_LO(dn->phb->buid));
430}
431
432/**
433 * eeh_panic - call panic() for an eeh event that cannot be handled.
434 * The philosophy of this routine is that it is better to panic and
435 * halt the OS than it is to risk possible data corruption by
436 * oblivious device drivers that don't know better.
437 *
438 * @dev pci device that had an eeh event
439 * @reset_state current reset state of the device slot
440 */
441static void eeh_panic(struct pci_dev *dev, int reset_state)
442{
443 /*
444 * XXX We should create a separate sysctl for this.
445 *
446 * Since the panic_on_oops sysctl is used to halt the system
447 * in light of potential corruption, we can use it here.
448 */
449 if (panic_on_oops)
450 panic("EEH: MMIO failure (%d) on device:%s %s\n", reset_state,
451 pci_name(dev), pci_pretty_name(dev));
452 else {
453 __get_cpu_var(ignored_failures)++;
454 printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s %s\n",
455 reset_state, pci_name(dev), pci_pretty_name(dev));
456 }
457}
458
459/**
460 * eeh_event_handler - dispatch EEH events. The detection of a frozen
461 * slot can occur inside an interrupt, where it can be hard to do
462 * anything about it. The goal of this routine is to pull these
463 * detection events out of the context of the interrupt handler, and
464 * re-dispatch them for processing at a later time in a normal context.
465 *
466 * @dummy - unused
467 */
468static void eeh_event_handler(void *dummy)
469{
470 unsigned long flags;
471 struct eeh_event *event;
472
473 while (1) {
474 spin_lock_irqsave(&eeh_eventlist_lock, flags);
475 event = NULL;
476 if (!list_empty(&eeh_eventlist)) {
477 event = list_entry(eeh_eventlist.next, struct eeh_event, list);
478 list_del(&event->list);
479 }
480 spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
481 if (event == NULL)
482 break;
483
484 printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device "
485 "%s %s\n", event->reset_state,
486 pci_name(event->dev), pci_pretty_name(event->dev));
487
488 atomic_set(&eeh_fail_count, 0);
489 notifier_call_chain (&eeh_notifier_chain,
490 EEH_NOTIFY_FREEZE, event);
491
492 __get_cpu_var(slot_resets)++;
493
494 pci_dev_put(event->dev);
495 kfree(event);
496 }
497}
498
499/**
500 * eeh_token_to_phys - convert EEH address token to phys address
501 * @token i/o token, should be address in the form 0xE....
502 */
503static inline unsigned long eeh_token_to_phys(unsigned long token)
504{
505 pte_t *ptep;
506 unsigned long pa;
507
508 ptep = find_linux_pte(ioremap_mm.pgd, token);
509 if (!ptep)
510 return token;
511 pa = pte_pfn(*ptep) << PAGE_SHIFT;
512
513 return pa | (token & (PAGE_SIZE-1));
514}
515
516/**
517 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
518 * @dn device node
519 * @dev pci device, if known
520 *
521 * Check for an EEH failure for the given device node. Call this
522 * routine if the result of a read was all 0xff's and you want to
523 * find out if this is due to an EEH slot freeze. This routine
524 * will query firmware for the EEH status.
525 *
526 * Returns 0 if there has not been an EEH error; otherwise returns
527 * a non-zero value and queues up a solt isolation event notification.
528 *
529 * It is safe to call this routine in an interrupt context.
530 */
531int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
532{
533 int ret;
534 int rets[3];
535 unsigned long flags;
536 int rc, reset_state;
537 struct eeh_event *event;
538
539 __get_cpu_var(total_mmio_ffs)++;
540
541 if (!eeh_subsystem_enabled)
542 return 0;
543
544 if (!dn)
545 return 0;
546
547 /* Access to IO BARs might get this far and still not want checking. */
548 if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) ||
549 dn->eeh_mode & EEH_MODE_NOCHECK) {
550 return 0;
551 }
552
553 if (!dn->eeh_config_addr) {
554 return 0;
555 }
556
557 /*
558 * If we already have a pending isolation event for this
559 * slot, we know it's bad already, we don't need to check...
560 */
561 if (dn->eeh_mode & EEH_MODE_ISOLATED) {
562 atomic_inc(&eeh_fail_count);
563 if (atomic_read(&eeh_fail_count) >= EEH_MAX_FAILS) {
564 /* re-read the slot reset state */
565 if (read_slot_reset_state(dn, rets) != 0)
566 rets[0] = -1; /* reset state unknown */
567 eeh_panic(dev, rets[0]);
568 }
569 return 0;
570 }
571
572 /*
573 * Now test for an EEH failure. This is VERY expensive.
574 * Note that the eeh_config_addr may be a parent device
575 * in the case of a device behind a bridge, or it may be
576 * function zero of a multi-function device.
577 * In any case they must share a common PHB.
578 */
579 ret = read_slot_reset_state(dn, rets);
580 if (!(ret == 0 && rets[1] == 1 && (rets[0] == 2 || rets[0] == 4))) {
581 __get_cpu_var(false_positives)++;
582 return 0;
583 }
584
585 /* prevent repeated reports of this failure */
586 dn->eeh_mode |= EEH_MODE_ISOLATED;
587
588 reset_state = rets[0];
589
590 spin_lock_irqsave(&slot_errbuf_lock, flags);
591 memset(slot_errbuf, 0, eeh_error_buf_size);
592
593 rc = rtas_call(ibm_slot_error_detail,
594 8, 1, NULL, dn->eeh_config_addr,
595 BUID_HI(dn->phb->buid),
596 BUID_LO(dn->phb->buid), NULL, 0,
597 virt_to_phys(slot_errbuf),
598 eeh_error_buf_size,
599 1 /* Temporary Error */);
600
601 if (rc == 0)
602 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
603 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
604
605 printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n",
606 rets[0], dn->name, dn->full_name);
607 event = kmalloc(sizeof(*event), GFP_ATOMIC);
608 if (event == NULL) {
609 eeh_panic(dev, reset_state);
610 return 1;
611 }
612
613 event->dev = dev;
614 event->dn = dn;
615 event->reset_state = reset_state;
616
617 /* We may or may not be called in an interrupt context */
618 spin_lock_irqsave(&eeh_eventlist_lock, flags);
619 list_add(&event->list, &eeh_eventlist);
620 spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
621
622 /* Most EEH events are due to device driver bugs. Having
623 * a stack trace will help the device-driver authors figure
624 * out what happened. So print that out. */
625 dump_stack();
626 schedule_work(&eeh_event_wq);
627
628 return 0;
629}
630
631EXPORT_SYMBOL(eeh_dn_check_failure);
632
633/**
634 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
635 * @token i/o token, should be address in the form 0xA....
636 * @val value, should be all 1's (XXX why do we need this arg??)
637 *
638 * Check for an eeh failure at the given token address.
639 * Check for an EEH failure at the given token address. Call this
640 * routine if the result of a read was all 0xff's and you want to
641 * find out if this is due to an EEH slot freeze event. This routine
642 * will query firmware for the EEH status.
643 *
644 * Note this routine is safe to call in an interrupt context.
645 */
646unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
647{
648 unsigned long addr;
649 struct pci_dev *dev;
650 struct device_node *dn;
651
652 /* Finding the phys addr + pci device; this is pretty quick. */
653 addr = eeh_token_to_phys((unsigned long __force) token);
654 dev = pci_get_device_by_addr(addr);
655 if (!dev)
656 return val;
657
658 dn = pci_device_to_OF_node(dev);
659 eeh_dn_check_failure (dn, dev);
660
661 pci_dev_put(dev);
662 return val;
663}
664
665EXPORT_SYMBOL(eeh_check_failure);
666
667struct eeh_early_enable_info {
668 unsigned int buid_hi;
669 unsigned int buid_lo;
670};
671
672/* Enable eeh for the given device node. */
673static void *early_enable_eeh(struct device_node *dn, void *data)
674{
675 struct eeh_early_enable_info *info = data;
676 int ret;
677 char *status = get_property(dn, "status", NULL);
678 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
679 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
680 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
681 u32 *regs;
682 int enable;
683
684 dn->eeh_mode = 0;
685
686 if (status && strcmp(status, "ok") != 0)
687 return NULL; /* ignore devices with bad status */
688
689 /* Ignore bad nodes. */
690 if (!class_code || !vendor_id || !device_id)
691 return NULL;
692
693 /* There is nothing to check on PCI to ISA bridges */
694 if (dn->type && !strcmp(dn->type, "isa")) {
695 dn->eeh_mode |= EEH_MODE_NOCHECK;
696 return NULL;
697 }
698
699 /*
700 * Now decide if we are going to "Disable" EEH checking
701 * for this device. We still run with the EEH hardware active,
702 * but we won't be checking for ff's. This means a driver
703 * could return bad data (very bad!), an interrupt handler could
704 * hang waiting on status bits that won't change, etc.
705 * But there are a few cases like display devices that make sense.
706 */
707 enable = 1; /* i.e. we will do checking */
708 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
709 enable = 0;
710
711 if (!enable)
712 dn->eeh_mode |= EEH_MODE_NOCHECK;
713
714 /* Ok... see if this device supports EEH. Some do, some don't,
715 * and the only way to find out is to check each and every one. */
716 regs = (u32 *)get_property(dn, "reg", NULL);
717 if (regs) {
718 /* First register entry is addr (00BBSS00) */
719 /* Try to enable eeh */
720 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
721 regs[0], info->buid_hi, info->buid_lo,
722 EEH_ENABLE);
723 if (ret == 0) {
724 eeh_subsystem_enabled = 1;
725 dn->eeh_mode |= EEH_MODE_SUPPORTED;
726 dn->eeh_config_addr = regs[0];
727#ifdef DEBUG
728 printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
729#endif
730 } else {
731
732 /* This device doesn't support EEH, but it may have an
733 * EEH parent, in which case we mark it as supported. */
734 if (dn->parent && (dn->parent->eeh_mode & EEH_MODE_SUPPORTED)) {
735 /* Parent supports EEH. */
736 dn->eeh_mode |= EEH_MODE_SUPPORTED;
737 dn->eeh_config_addr = dn->parent->eeh_config_addr;
738 return NULL;
739 }
740 }
741 } else {
742 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
743 dn->full_name);
744 }
745
746 return NULL;
747}
748
749/*
750 * Initialize EEH by trying to enable it for all of the adapters in the system.
751 * As a side effect we can determine here if eeh is supported at all.
752 * Note that we leave EEH on so failed config cycles won't cause a machine
753 * check. If a user turns off EEH for a particular adapter they are really
754 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
755 * grant access to a slot if EEH isn't enabled, and so we always enable
756 * EEH for all slots/all devices.
757 *
758 * The eeh-force-off option disables EEH checking globally, for all slots.
759 * Even if force-off is set, the EEH hardware is still enabled, so that
760 * newer systems can boot.
761 */
762void __init eeh_init(void)
763{
764 struct device_node *phb, *np;
765 struct eeh_early_enable_info info;
766
767 np = of_find_node_by_path("/rtas");
768 if (np == NULL)
769 return;
770
771 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
772 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
773 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
774 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
775 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
776
777 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
778 return;
779
780 eeh_error_buf_size = rtas_token("rtas-error-log-max");
781 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
782 eeh_error_buf_size = 1024;
783 }
784 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
785 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
786 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
787 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
788 }
789
790 /* Enable EEH for all adapters. Note that eeh requires buid's */
791 for (phb = of_find_node_by_name(NULL, "pci"); phb;
792 phb = of_find_node_by_name(phb, "pci")) {
793 unsigned long buid;
794
795 buid = get_phb_buid(phb);
796 if (buid == 0)
797 continue;
798
799 info.buid_lo = BUID_LO(buid);
800 info.buid_hi = BUID_HI(buid);
801 traverse_pci_devices(phb, early_enable_eeh, &info);
802 }
803
804 if (eeh_subsystem_enabled)
805 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
806 else
807 printk(KERN_WARNING "EEH: No capable adapters found\n");
808}
809
810/**
811 * eeh_add_device_early - enable EEH for the indicated device_node
812 * @dn: device node for which to set up EEH
813 *
814 * This routine must be used to perform EEH initialization for PCI
815 * devices that were added after system boot (e.g. hotplug, dlpar).
816 * This routine must be called before any i/o is performed to the
817 * adapter (inluding any config-space i/o).
818 * Whether this actually enables EEH or not for this device depends
819 * on the CEC architecture, type of the device, on earlier boot
820 * command-line arguments & etc.
821 */
822void eeh_add_device_early(struct device_node *dn)
823{
824 struct pci_controller *phb;
825 struct eeh_early_enable_info info;
826
827 if (!dn)
828 return;
829 phb = dn->phb;
830 if (NULL == phb || 0 == phb->buid) {
831 printk(KERN_WARNING "EEH: Expected buid but found none\n");
832 return;
833 }
834
835 info.buid_hi = BUID_HI(phb->buid);
836 info.buid_lo = BUID_LO(phb->buid);
837 early_enable_eeh(dn, &info);
838}
839EXPORT_SYMBOL(eeh_add_device_early);
840
841/**
842 * eeh_add_device_late - perform EEH initialization for the indicated pci device
843 * @dev: pci device for which to set up EEH
844 *
845 * This routine must be used to complete EEH initialization for PCI
846 * devices that were added after system boot (e.g. hotplug, dlpar).
847 */
848void eeh_add_device_late(struct pci_dev *dev)
849{
850 if (!dev || !eeh_subsystem_enabled)
851 return;
852
853#ifdef DEBUG
854 printk(KERN_DEBUG "EEH: adding device %s %s\n", pci_name(dev),
855 pci_pretty_name(dev));
856#endif
857
858 pci_addr_cache_insert_device (dev);
859}
860EXPORT_SYMBOL(eeh_add_device_late);
861
862/**
863 * eeh_remove_device - undo EEH setup for the indicated pci device
864 * @dev: pci device to be removed
865 *
866 * This routine should be when a device is removed from a running
867 * system (e.g. by hotplug or dlpar).
868 */
869void eeh_remove_device(struct pci_dev *dev)
870{
871 if (!dev || !eeh_subsystem_enabled)
872 return;
873
874 /* Unregister the device with the EEH/PCI address search system */
875#ifdef DEBUG
876 printk(KERN_DEBUG "EEH: remove device %s %s\n", pci_name(dev),
877 pci_pretty_name(dev));
878#endif
879 pci_addr_cache_remove_device(dev);
880}
881EXPORT_SYMBOL(eeh_remove_device);
882
883static int proc_eeh_show(struct seq_file *m, void *v)
884{
885 unsigned int cpu;
886 unsigned long ffs = 0, positives = 0, failures = 0;
887 unsigned long resets = 0;
888
889 for_each_cpu(cpu) {
890 ffs += per_cpu(total_mmio_ffs, cpu);
891 positives += per_cpu(false_positives, cpu);
892 failures += per_cpu(ignored_failures, cpu);
893 resets += per_cpu(slot_resets, cpu);
894 }
895
896 if (0 == eeh_subsystem_enabled) {
897 seq_printf(m, "EEH Subsystem is globally disabled\n");
898 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
899 } else {
900 seq_printf(m, "EEH Subsystem is enabled\n");
901 seq_printf(m, "eeh_total_mmio_ffs=%ld\n"
902 "eeh_false_positives=%ld\n"
903 "eeh_ignored_failures=%ld\n"
904 "eeh_slot_resets=%ld\n"
905 "eeh_fail_count=%d\n",
906 ffs, positives, failures, resets,
907 eeh_fail_count.counter);
908 }
909
910 return 0;
911}
912
913static int proc_eeh_open(struct inode *inode, struct file *file)
914{
915 return single_open(file, proc_eeh_show, NULL);
916}
917
918static struct file_operations proc_eeh_operations = {
919 .open = proc_eeh_open,
920 .read = seq_read,
921 .llseek = seq_lseek,
922 .release = single_release,
923};
924
925static int __init eeh_init_proc(void)
926{
927 struct proc_dir_entry *e;
928
929 if (systemcfg->platform & PLATFORM_PSERIES) {
930 e = create_proc_entry("ppc64/eeh", 0, NULL);
931 if (e)
932 e->proc_fops = &proc_eeh_operations;
933 }
934
935 return 0;
936}
937__initcall(eeh_init_proc);