blob: d656c172071e6031a65d090c4d43e39a293bb6be [file] [log] [blame]
// SPDX-License-Identifier: <GPL-2.0>
/*
* Copyright (C) 2016 ST Microelectronics S.A.
* Copyright (C) 2010 Stollmann E+V GmbH
* Copyright (C) 2010 Trusted Logic S.A.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/version.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/i2c.h>
#include <linux/irq.h>
#include <linux/jiffies.h>
#include <linux/uaccess.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/poll.h>
#include <linux/miscdevice.h>
#include <linux/spinlock.h>
#include <linux/of_gpio.h>
#include <linux/workqueue.h>
#include <linux/acpi.h>
#include <linux/gpio/consumer.h>
#include <net/nfc/nci.h>
#include <linux/clk.h>
#include <soc/google/exynos-pmu-if.h>
#include "st21nfc.h"
#define MAX_BUFFER_SIZE 260
#define HEADER_LENGTH 3
#define IDLE_CHARACTER 0x7e
#define ST21NFC_POWER_STATE_MAX 3
#define WAKEUP_SRC_TIMEOUT (2000)
#define EXYNOS_CLK_MASK 0x01
#define DRIVER_VERSION "2.0.19"
#define PROP_PWR_MON_RW_ON_NTF nci_opcode_pack(NCI_GID_PROPRIETARY, 5)
#define PROP_PWR_MON_RW_OFF_NTF nci_opcode_pack(NCI_GID_PROPRIETARY, 6)
/*The enum is used to index a pw_states array, the values matter here*/
enum st21nfc_power_state {
ST21NFC_IDLE = 0,
ST21NFC_ACTIVE = 1,
ST21NFC_ACTIVE_RW = 2
};
static const char *const st21nfc_power_state_name[] = {
"IDLE", "ACTIVE", "ACTIVE_RW"
};
enum st21nfc_read_state {
ST21NFC_HEADER,
ST21NFC_PAYLOAD
};
struct nfc_sub_power_stats {
uint64_t count;
uint64_t duration;
uint64_t last_entry;
uint64_t last_exit;
};
struct nfc_sub_power_stats_error {
/* error transition header --> payload state machine */
uint64_t header_payload;
/* error transition from an active state when not in idle state */
uint64_t active_not_idle;
/* error transition from idle state to idle state */
uint64_t idle_to_idle;
/* warning transition from active_rw state to idle state */
uint64_t active_rw_to_idle;
/* error transition from active state to active state */
uint64_t active_to_active;
/* error transition from idle state to active state with notification */
uint64_t idle_to_active_ntf;
/* error transition from active_rw state to active_rw state */
uint64_t act_rw_to_act_rw;
/* error transition from idle state to */
/* active_rw state with notification */
uint64_t idle_to_active_rw_ntf;
};
/*
* The member 'polarity_mode' defines
* how the wakeup pin is configured and handled.
* it can take the following values :
* IRQF_TRIGGER_RISING
* IRQF_TRIGGER_HIGH
*/
struct st21nfc_device {
wait_queue_head_t read_wq;
struct mutex read_mutex;
struct mutex pidle_mutex;
struct i2c_client *client;
struct miscdevice st21nfc_device;
uint8_t buffer[MAX_BUFFER_SIZE];
bool irq_enabled;
bool irq_wake_up;
bool irq_is_attached;
bool device_open; /* Is device open? */
spinlock_t irq_enabled_lock;
enum st21nfc_power_state pw_current;
enum st21nfc_read_state r_state_current;
int irq_pw_stats_idle;
struct nfc_sub_power_stats pw_states[ST21NFC_POWER_STATE_MAX];
struct nfc_sub_power_stats_error pw_states_err;
struct workqueue_struct *st_p_wq;
struct work_struct st_p_work;
/*Power state shadow copies for reading*/
enum st21nfc_power_state c_pw_current;
struct nfc_sub_power_stats c_pw_states[ST21NFC_POWER_STATE_MAX];
struct nfc_sub_power_stats_error c_pw_states_err;
/* CLK control */
bool clk_run;
struct clk *s_clk;
uint8_t pinctrl_en;
bool pidle_active_low;
int irq_clkreq;
unsigned int clk_pad;
/* GPIO for NFCC IRQ pin (input) */
struct gpio_desc *gpiod_irq;
/* GPIO for NFCC Reset pin (output) */
struct gpio_desc *gpiod_reset;
/* GPIO for NFCC CLK_REQ pin (input) */
struct gpio_desc *gpiod_clkreq;
/* GPIO for NFCC CLF_MONITOR_PWR (input) */
struct gpio_desc *gpiod_pidle;
/* irq_gpio polarity to be used */
unsigned int polarity_mode;
};
/*
* Routine to enable clock.
* this routine can be extended to select from multiple
* sources based on clk_src_name.
*/
static int st21nfc_clock_select(struct st21nfc_device *st21nfc_dev)
{
int ret = 0;
st21nfc_dev->s_clk = clk_get(&st21nfc_dev->client->dev, "nfc_ref_clk");
/* if NULL we assume external crystal and dont fail */
if ((st21nfc_dev->s_clk == NULL) || IS_ERR(st21nfc_dev->s_clk))
return 0;
if (st21nfc_dev->clk_run == false) {
ret = clk_prepare_enable(st21nfc_dev->s_clk);
if (ret)
goto err_clk;
st21nfc_dev->clk_run = true;
}
return ret;
err_clk:
return -EINVAL;
}
/*
* Routine to disable clocks
*/
static int st21nfc_clock_deselect(struct st21nfc_device *st21nfc_dev)
{
/* if NULL we assume external crystal and dont fail */
if ((st21nfc_dev->s_clk == NULL) || IS_ERR(st21nfc_dev->s_clk))
return 0;
if (st21nfc_dev->clk_run == true) {
clk_disable_unprepare(st21nfc_dev->s_clk);
st21nfc_dev->clk_run = false;
}
return 0;
}
static void st21nfc_exynos_clk_control(struct st21nfc_device *st21nfc_dev,
bool enable)
{
if (st21nfc_dev->clk_pad) {
exynos_pmu_update(st21nfc_dev->clk_pad, EXYNOS_CLK_MASK, enable ? 1 : 0);
}
}
static irqreturn_t st21nfc_clkreq_irq_handler(int irq, void *dev_id)
{
struct st21nfc_device *st21nfc_dev = dev_id;
int value = gpiod_get_value(st21nfc_dev->gpiod_clkreq);
if (st21nfc_dev->pinctrl_en) {
st21nfc_exynos_clk_control(st21nfc_dev, value ? true : false);
}
return IRQ_HANDLED;
}
static void st21nfc_disable_irq(struct st21nfc_device *st21nfc_dev)
{
unsigned long flags;
spin_lock_irqsave(&st21nfc_dev->irq_enabled_lock, flags);
if (st21nfc_dev->irq_enabled) {
disable_irq_nosync(st21nfc_dev->client->irq);
st21nfc_dev->irq_enabled = false;
}
spin_unlock_irqrestore(&st21nfc_dev->irq_enabled_lock, flags);
}
static void st21nfc_enable_irq(struct st21nfc_device *st21nfc_dev)
{
unsigned long flags;
spin_lock_irqsave(&st21nfc_dev->irq_enabled_lock, flags);
if (!st21nfc_dev->irq_enabled) {
st21nfc_dev->irq_enabled = true;
enable_irq(st21nfc_dev->client->irq);
}
spin_unlock_irqrestore(&st21nfc_dev->irq_enabled_lock, flags);
}
static irqreturn_t st21nfc_dev_irq_handler(int irq, void *dev_id)
{
struct st21nfc_device *st21nfc_dev = dev_id;
if (device_may_wakeup(&st21nfc_dev->client->dev))
pm_wakeup_event(&st21nfc_dev->client->dev,
WAKEUP_SRC_TIMEOUT);
st21nfc_disable_irq(st21nfc_dev);
/* Wake up waiting readers */
wake_up(&st21nfc_dev->read_wq);
return IRQ_HANDLED;
}
static int st21nfc_loc_set_polaritymode(struct st21nfc_device *st21nfc_dev,
int mode)
{
struct i2c_client *client = st21nfc_dev->client;
struct device *dev = &client->dev;
unsigned int irq_type;
int ret;
st21nfc_dev->polarity_mode = mode;
/* setup irq_flags */
switch (mode) {
case IRQF_TRIGGER_RISING:
irq_type = IRQ_TYPE_EDGE_RISING;
break;
case IRQF_TRIGGER_HIGH:
irq_type = IRQ_TYPE_LEVEL_HIGH;
break;
default:
irq_type = IRQ_TYPE_EDGE_RISING;
break;
}
if (st21nfc_dev->irq_is_attached) {
devm_free_irq(dev, client->irq, st21nfc_dev);
st21nfc_dev->irq_is_attached = false;
}
ret = irq_set_irq_type(client->irq, irq_type);
if (ret) {
dev_err(dev, "%s : set_irq_type failed\n", __func__);
return -ENODEV;
}
/* request irq. the irq is set whenever the chip has data available
* for reading. it is cleared when all data has been read.
*/
dev_dbg(dev, "%s : requesting IRQ %d\n", __func__, client->irq);
st21nfc_dev->irq_enabled = true;
ret = devm_request_irq(dev, client->irq, st21nfc_dev_irq_handler,
st21nfc_dev->polarity_mode,
client->name, st21nfc_dev);
if (ret) {
dev_err(dev, "%s : devm_request_irq failed\n", __func__);
return -ENODEV;
}
st21nfc_dev->irq_is_attached = true;
st21nfc_disable_irq(st21nfc_dev);
return ret;
}
static void st21nfc_power_stats_switch(
struct st21nfc_device *st21nfc_dev, uint64_t current_time_ms,
enum st21nfc_power_state old_state, enum st21nfc_power_state new_state,
bool is_ntf)
{
mutex_lock(&st21nfc_dev->pidle_mutex);
if (new_state == old_state) {
if ((st21nfc_dev->pw_states[ST21NFC_IDLE].last_entry != 0) ||
(old_state != ST21NFC_IDLE)) {
dev_err(&st21nfc_dev->client->dev,
"%s Error: Switched from %s to %s!: %llx, ntf=%d\n",
__func__, st21nfc_power_state_name[old_state],
st21nfc_power_state_name[new_state],
current_time_ms, is_ntf);
if (new_state == ST21NFC_IDLE)
st21nfc_dev->pw_states_err.idle_to_idle++;
else if (new_state == ST21NFC_ACTIVE)
st21nfc_dev->pw_states_err.active_to_active++;
else if (new_state == ST21NFC_ACTIVE_RW)
st21nfc_dev->pw_states_err.act_rw_to_act_rw++;
mutex_unlock(&st21nfc_dev->pidle_mutex);
return;
}
} else if (!is_ntf &&
new_state == ST21NFC_ACTIVE &&
old_state != ST21NFC_IDLE) {
st21nfc_dev->pw_states_err.active_not_idle++;
} else if (!is_ntf &&
new_state == ST21NFC_IDLE &&
old_state == ST21NFC_ACTIVE_RW) {
st21nfc_dev->pw_states_err.active_rw_to_idle++;
} else if (is_ntf &&
new_state == ST21NFC_ACTIVE &&
old_state == ST21NFC_IDLE) {
st21nfc_dev->pw_states_err.idle_to_active_ntf++;
} else if (is_ntf &&
new_state == ST21NFC_ACTIVE_RW &&
old_state == ST21NFC_IDLE) {
st21nfc_dev->pw_states_err.idle_to_active_rw_ntf++;
}
dev_dbg(&st21nfc_dev->client->dev,
"%s Switching from %s to %s: %llx, ntf=%d\n", __func__,
st21nfc_power_state_name[old_state],
st21nfc_power_state_name[new_state], current_time_ms, is_ntf);
st21nfc_dev->pw_states[old_state].last_exit = current_time_ms;
st21nfc_dev->pw_states[old_state].duration +=
st21nfc_dev->pw_states[old_state].last_exit -
st21nfc_dev->pw_states[old_state].last_entry;
st21nfc_dev->pw_states[new_state].count++;
st21nfc_dev->pw_current = new_state;
st21nfc_dev->pw_states[new_state].last_entry = current_time_ms;
mutex_unlock(&st21nfc_dev->pidle_mutex);
}
static void st21nfc_power_stats_idle_signal(struct st21nfc_device *st21nfc_dev)
{
uint64_t current_time_ms = ktime_to_ms(ktime_get_boottime());
bool is_active = (bool) gpiod_get_value(st21nfc_dev->gpiod_pidle);
is_active = st21nfc_dev->pidle_active_low ? !is_active : is_active;
st21nfc_power_stats_switch(st21nfc_dev, current_time_ms,
st21nfc_dev->pw_current, is_active ? ST21NFC_ACTIVE : ST21NFC_IDLE,
false);
}
static void st21nfc_pstate_wq(struct work_struct *work)
{
struct st21nfc_device *st21nfc_dev = container_of(work,
struct st21nfc_device,
st_p_work);
st21nfc_power_stats_idle_signal(st21nfc_dev);
}
static irqreturn_t st21nfc_dev_power_stats_handler(int irq, void *dev_id)
{
struct st21nfc_device *st21nfc_dev = dev_id;
queue_work(st21nfc_dev->st_p_wq, &(st21nfc_dev->st_p_work));
return IRQ_HANDLED;
}
static void st21nfc_power_stats_filter(
struct st21nfc_device *st21nfc_dev, char *buf, size_t count)
{
uint64_t current_time_ms = ktime_to_ms(ktime_get_boottime());
__u16 ntf_opcode = nci_opcode(buf);
if (IS_ERR(st21nfc_dev->gpiod_pidle))
return;
/* In order to avoid counting active state on PAYLOAD where it would
* match a possible header, power states are filtered only on NCI
* headers.
*/
if (st21nfc_dev->r_state_current != ST21NFC_HEADER)
return;
if (count != HEADER_LENGTH) {
dev_err(&st21nfc_dev->client->dev,
"Warning: expect previous one was idle data\n");
st21nfc_dev->pw_states_err.header_payload++;
return;
}
if (nci_mt(buf) != NCI_MT_NTF_PKT
&& nci_opcode_gid(ntf_opcode) != NCI_GID_PROPRIETARY)
return;
switch (ntf_opcode) {
case PROP_PWR_MON_RW_OFF_NTF:
st21nfc_power_stats_switch(st21nfc_dev, current_time_ms,
st21nfc_dev->pw_current, ST21NFC_ACTIVE, true);
break;
case PROP_PWR_MON_RW_ON_NTF:
st21nfc_power_stats_switch(st21nfc_dev, current_time_ms,
st21nfc_dev->pw_current, ST21NFC_ACTIVE_RW, true);
break;
default:
return;
}
return;
}
static ssize_t st21nfc_dev_read(struct file *filp, char __user *buf,
size_t count, loff_t *offset)
{
struct st21nfc_device *st21nfc_dev = container_of(filp->private_data,
struct st21nfc_device,
st21nfc_device);
int ret, idle = 0;
if (count == 0)
return 0;
if (count > MAX_BUFFER_SIZE)
count = MAX_BUFFER_SIZE;
dev_dbg(&st21nfc_dev->client->dev, "%s : reading %zu bytes.\n",
__func__, count);
mutex_lock(&st21nfc_dev->read_mutex);
/* Read data */
ret = i2c_master_recv(st21nfc_dev->client, st21nfc_dev->buffer, count);
if (ret < 0) {
dev_err(&st21nfc_dev->client->dev,
"%s: i2c_master_recv returned %d\n", __func__, ret);
mutex_unlock(&st21nfc_dev->read_mutex);
return ret;
}
if (st21nfc_dev->r_state_current == ST21NFC_HEADER) {
/* Counting idle index */
for (idle = 0;
idle < ret && st21nfc_dev->buffer[idle] == IDLE_CHARACTER;
idle++)
;
if (idle > 0 && idle < HEADER_LENGTH) {
memmove(st21nfc_dev->buffer,
st21nfc_dev->buffer + idle, ret - idle);
ret = i2c_master_recv(st21nfc_dev->client,
st21nfc_dev->buffer + ret - idle,
idle);
if (ret < 0) {
dev_err(&st21nfc_dev->client->dev,
"%s: i2c_master_recv returned %d\n",
__func__, ret);
mutex_unlock(&st21nfc_dev->read_mutex);
return ret;
}
ret = count;
}
}
mutex_unlock(&st21nfc_dev->read_mutex);
if (ret < 0) {
dev_err(&st21nfc_dev->client->dev,
"%s: i2c_master_recv returned %d\n", __func__, ret);
return ret;
}
if (ret > count) {
dev_err(&st21nfc_dev->client->dev,
"%s: received too many bytes from i2c (%d)\n", __func__,
ret);
return -EIO;
}
if (idle < HEADER_LENGTH) {
st21nfc_power_stats_filter(st21nfc_dev, st21nfc_dev->buffer,
ret);
/* change state only if a payload is detected, i.e. size > 0*/
if ((st21nfc_dev->r_state_current == ST21NFC_HEADER) &&
(st21nfc_dev->buffer[2] > 0)) {
st21nfc_dev->r_state_current = ST21NFC_PAYLOAD;
dev_dbg(&st21nfc_dev->client->dev,
"%s : new state = ST21NFC_PAYLOAD\n", __func__);
} else {
st21nfc_dev->r_state_current = ST21NFC_HEADER;
dev_dbg(&st21nfc_dev->client->dev,
"%s : new state = ST21NFC_HEADER\n", __func__);
}
}
if (copy_to_user(buf, st21nfc_dev->buffer, ret)) {
dev_warn(&st21nfc_dev->client->dev,
"%s : failed to copy to user space\n", __func__);
return -EFAULT;
}
return ret;
}
static ssize_t st21nfc_dev_write(struct file *filp, const char __user *buf,
size_t count, loff_t *offset)
{
struct st21nfc_device *st21nfc_dev = container_of(filp->private_data,
struct st21nfc_device, st21nfc_device);
char *tmp = NULL;
int ret = count;
dev_dbg(&st21nfc_dev->client->dev, "%s: st21nfc_dev ptr %p\n", __func__,
st21nfc_dev);
if (count > MAX_BUFFER_SIZE)
count = MAX_BUFFER_SIZE;
tmp = memdup_user(buf, count);
if (IS_ERR(tmp)) {
dev_err(&st21nfc_dev->client->dev, "%s : memdup_user failed\n",
__func__);
return -EFAULT;
}
dev_dbg(&st21nfc_dev->client->dev, "%s : writing %zu bytes.\n",
__func__, count);
/* Write data */
ret = i2c_master_send(st21nfc_dev->client, tmp, count);
if (ret != count) {
dev_err(&st21nfc_dev->client->dev,
"%s : i2c_master_send returned %d\n", __func__, ret);
ret = -EIO;
}
kfree(tmp);
return ret;
}
static int st21nfc_dev_open(struct inode *inode, struct file *filp)
{
int ret = 0;
struct st21nfc_device *st21nfc_dev = container_of(filp->private_data,
struct st21nfc_device,
st21nfc_device);
if (st21nfc_dev->device_open) {
ret = -EBUSY;
} else {
st21nfc_dev->device_open = true;
if (st21nfc_dev->clk_pad)
st21nfc_exynos_clk_control(st21nfc_dev, true);
}
return ret;
}
static int st21nfc_release(struct inode *inode, struct file *file)
{
struct st21nfc_device *st21nfc_dev = container_of(file->private_data,
struct st21nfc_device,
st21nfc_device);
st21nfc_dev->device_open = false;
if (st21nfc_dev->clk_pad) {
st21nfc_exynos_clk_control(st21nfc_dev, false);
}
return 0;
}
static long st21nfc_dev_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct st21nfc_device *st21nfc_dev = container_of(filp->private_data,
struct st21nfc_device,
st21nfc_device);
struct i2c_client *client = st21nfc_dev->client;
struct device *dev = &client->dev;
int ret = 0;
switch (cmd) {
case ST21NFC_SET_POLARITY_RISING:
dev_info(dev, " ### ST21NFC_SET_POLARITY_RISING ###");
st21nfc_loc_set_polaritymode(st21nfc_dev, IRQF_TRIGGER_RISING);
break;
case ST21NFC_SET_POLARITY_HIGH:
dev_info(dev, " ### ST21NFC_SET_POLARITY_HIGH ###");
st21nfc_loc_set_polaritymode(st21nfc_dev, IRQF_TRIGGER_HIGH);
break;
case ST21NFC_PULSE_RESET:
/* Double pulse is done to exit Quick boot mode.*/
if (!IS_ERR(st21nfc_dev->gpiod_reset)) {
/* pulse low for 20 millisecs */
gpiod_set_value(st21nfc_dev->gpiod_reset, 0);
msleep(20);
gpiod_set_value(st21nfc_dev->gpiod_reset, 1);
usleep_range(10000, 11000);
/* pulse low for 20 millisecs */
gpiod_set_value(st21nfc_dev->gpiod_reset, 0);
msleep(20);
gpiod_set_value(st21nfc_dev->gpiod_reset, 1);
}
st21nfc_dev->r_state_current = ST21NFC_HEADER;
break;
case ST21NFC_GET_WAKEUP:
/* deliver state of Wake_up_pin as return value of ioctl */
ret = gpiod_get_value(st21nfc_dev->gpiod_irq);
/*
* Warning: depending on gpiod_get_value implementation,
* it can returns a value different than 1 in case of high level
*/
if (ret != 0)
ret = 1;
dev_dbg(&st21nfc_dev->client->dev, "%s get gpio result %d\n",
__func__, ret);
break;
case ST21NFC_GET_POLARITY:
ret = st21nfc_dev->polarity_mode;
dev_dbg(&st21nfc_dev->client->dev, "%s get polarity %d\n",
__func__, ret);
break;
case ST21NFC_RECOVERY:
/* For ST21NFCD usage only */
dev_info(dev, "%s Recovery Request\n", __func__);
if (!IS_ERR(st21nfc_dev->gpiod_reset)) {
/* pulse low for 20 millisecs */
gpiod_set_value(st21nfc_dev->gpiod_reset, 0);
usleep_range(10000, 11000);
if (st21nfc_dev->irq_is_attached) {
devm_free_irq(dev, client->irq, st21nfc_dev);
st21nfc_dev->irq_is_attached = false;
}
/* During the reset, force IRQ OUT as */
/* DH output instead of input in normal usage */
ret = gpiod_direction_output(st21nfc_dev->gpiod_irq, 1);
if (ret) {
dev_err(&st21nfc_dev->client->dev,
"%s : gpiod_direction_output failed\n",
__func__);
ret = -ENODEV;
break;
}
gpiod_set_value(st21nfc_dev->gpiod_irq, 1);
usleep_range(10000, 11000);
gpiod_set_value(st21nfc_dev->gpiod_reset, 1);
dev_info(dev, "%s done Pulse Request\n", __func__);
}
msleep(20);
gpiod_set_value(st21nfc_dev->gpiod_irq, 0);
msleep(20);
gpiod_set_value(st21nfc_dev->gpiod_irq, 1);
msleep(20);
gpiod_set_value(st21nfc_dev->gpiod_irq, 0);
msleep(20);
dev_info(dev, "%s Recovery procedure finished\n", __func__);
ret = gpiod_direction_input(st21nfc_dev->gpiod_irq);
if (ret) {
dev_err(&st21nfc_dev->client->dev,
"%s : gpiod_direction_input failed\n",
__func__);
ret = -ENODEV;
}
break;
case ST21NFC_CLK_ENABLE:
st21nfc_exynos_clk_control(st21nfc_dev, true);
break;
case ST21NFC_CLK_DISABLE:
st21nfc_exynos_clk_control(st21nfc_dev, false);
break;
case ST21NFC_CLK_STATE:
if (st21nfc_dev->clk_pad == 0 ||
exynos_pmu_read(st21nfc_dev->clk_pad, &ret) < 0) {
ret = -ENODEV;
} else {
ret &= EXYNOS_CLK_MASK;
}
break;
default:
dev_err(&st21nfc_dev->client->dev, "%s bad ioctl %u\n",
__func__, cmd);
ret = -EINVAL;
break;
}
return ret;
}
static unsigned int st21nfc_poll(struct file *file, poll_table *wait)
{
struct st21nfc_device *st21nfc_dev = container_of(file->private_data,
struct st21nfc_device,
st21nfc_device);
unsigned int mask = 0;
int pinlev = 0;
/* wait for Wake_up_pin == high */
poll_wait(file, &st21nfc_dev->read_wq, wait);
pinlev = gpiod_get_value(st21nfc_dev->gpiod_irq);
if (pinlev != 0) {
dev_dbg(&st21nfc_dev->client->dev, "%s return ready\n",
__func__);
mask = POLLIN | POLLRDNORM; /* signal data avail */
st21nfc_disable_irq(st21nfc_dev);
} else {
/* Wake_up_pin is low. Activate ISR */
if (!st21nfc_dev->irq_enabled) {
dev_dbg(&st21nfc_dev->client->dev, "%s enable irq\n",
__func__);
st21nfc_enable_irq(st21nfc_dev);
} else {
dev_dbg(&st21nfc_dev->client->dev,
"%s irq already enabled\n", __func__);
}
}
return mask;
}
static const struct file_operations st21nfc_dev_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = st21nfc_dev_read,
.write = st21nfc_dev_write,
.open = st21nfc_dev_open,
.poll = st21nfc_poll,
.release = st21nfc_release,
.unlocked_ioctl = st21nfc_dev_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = st21nfc_dev_ioctl
#endif
};
static ssize_t i2c_addr_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
if (client != NULL)
return scnprintf(buf, PAGE_SIZE, "0x%.2x\n", client->addr);
return -ENODEV;
}
static ssize_t i2c_addr_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct st21nfc_device *data = dev_get_drvdata(dev);
long new_addr = 0;
if (data != NULL && data->client != NULL) {
if (!kstrtol(buf, 10, &new_addr)) {
mutex_lock(&data->read_mutex);
data->client->addr = new_addr;
mutex_unlock(&data->read_mutex);
return count;
}
return -EINVAL;
}
return 0;
}
static ssize_t version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%s\n", DRIVER_VERSION);
}
static uint64_t st21nfc_power_duration(struct st21nfc_device *data,
enum st21nfc_power_state pstate,
uint64_t current_time_ms)
{
return data->c_pw_current != pstate ?
data->c_pw_states[pstate].duration :
data->c_pw_states[pstate].duration +
(current_time_ms - data->c_pw_states[pstate].last_entry);
}
static ssize_t power_stats_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct st21nfc_device *data = dev_get_drvdata(dev);
uint64_t current_time_ms;
uint64_t idle_duration;
uint64_t active_ce_duration;
uint64_t active_rw_duration;
mutex_lock(&data->pidle_mutex);
data->c_pw_current = data->pw_current;
data->c_pw_states_err = data->pw_states_err;
memcpy(data->c_pw_states, data->pw_states,
ST21NFC_POWER_STATE_MAX * sizeof(struct nfc_sub_power_stats));
mutex_unlock(&data->pidle_mutex);
current_time_ms = ktime_to_ms(ktime_get_boottime());
idle_duration = st21nfc_power_duration(data, ST21NFC_IDLE,
current_time_ms);
active_ce_duration = st21nfc_power_duration(data, ST21NFC_ACTIVE,
current_time_ms);
active_rw_duration = st21nfc_power_duration(data, ST21NFC_ACTIVE_RW,
current_time_ms);
return scnprintf(buf, PAGE_SIZE,
"NFC subsystem\n"
"Idle mode:\n"
"\tCumulative count: 0x%llx\n"
"\tCumulative duration msec: 0x%llx\n"
"\tLast entry timestamp msec: 0x%llx\n"
"\tLast exit timestamp msec: 0x%llx\n"
"Active mode:\n"
"\tCumulative count: 0x%llx\n"
"\tCumulative duration msec: 0x%llx\n"
"\tLast entry timestamp msec: 0x%llx\n"
"\tLast exit timestamp msec: 0x%llx\n"
"Active Reader/Writer mode:\n"
"\tCumulative count: 0x%llx\n"
"\tCumulative duration msec: 0x%llx\n"
"\tLast entry timestamp msec: 0x%llx\n"
"\tLast exit timestamp msec: 0x%llx\n"
"\nError transition header --> payload state machine: 0x%llx\n"
"Error transition from an Active state when not in Idle state: 0x%llx\n"
"Error transition from Idle state to Idle state: 0x%llx\n"
"Warning transition from Active Reader/Writer state to Idle state: 0x%llx\n"
"Error transition from Active state to Active state: 0x%llx\n"
"Error transition from Idle state to Active state with notification: 0x%llx\n"
"Error transition from Active Reader/Writer state to Active Reader/Writer state: 0x%llx\n"
"Error transition from Idle state to Active Reader/Writer state with notification: 0x%llx\n"
"\nTotal uptime: 0x%llx Cumulative modes time: 0x%llx\n",
data->c_pw_states[ST21NFC_IDLE].count,
idle_duration,
data->c_pw_states[ST21NFC_IDLE].last_entry,
data->c_pw_states[ST21NFC_IDLE].last_exit,
data->c_pw_states[ST21NFC_ACTIVE].count,
active_ce_duration,
data->c_pw_states[ST21NFC_ACTIVE].last_entry,
data->c_pw_states[ST21NFC_ACTIVE].last_exit,
data->c_pw_states[ST21NFC_ACTIVE_RW].count,
active_rw_duration,
data->c_pw_states[ST21NFC_ACTIVE_RW].last_entry,
data->c_pw_states[ST21NFC_ACTIVE_RW].last_exit,
data->c_pw_states_err.header_payload,
data->c_pw_states_err.active_not_idle,
data->c_pw_states_err.idle_to_idle,
data->c_pw_states_err.active_rw_to_idle,
data->c_pw_states_err.active_to_active,
data->c_pw_states_err.idle_to_active_ntf,
data->c_pw_states_err.act_rw_to_act_rw,
data->c_pw_states_err.idle_to_active_rw_ntf,
current_time_ms,
idle_duration + active_ce_duration + active_rw_duration);
}
static DEVICE_ATTR_RW(i2c_addr);
static DEVICE_ATTR_RO(version);
static DEVICE_ATTR_RO(power_stats);
static struct attribute *st21nfc_attrs[] = {
&dev_attr_i2c_addr.attr,
&dev_attr_version.attr,
NULL,
};
static struct attribute_group st21nfc_attr_grp = {
.attrs = st21nfc_attrs,
};
static const struct acpi_gpio_params irq_gpios = {0, 0, false };
static const struct acpi_gpio_params reset_gpios = {1, 0, false };
static const struct acpi_gpio_params pidle_gpios = {2, 0, false};
static const struct acpi_gpio_params clkreq_gpios = {3, 0, false};
static const struct acpi_gpio_mapping acpi_st21nfc_gpios[] = {
{ "irq-gpios", &irq_gpios, 1},
{ "reset-gpios", &reset_gpios, 1},
{ "pidle-gpios", &pidle_gpios, 1},
{ "clkreq-gpios", &clkreq_gpios, 1},
};
static int st21nfc_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int ret;
struct st21nfc_device *st21nfc_dev;
struct device *dev = &client->dev;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(dev, "%s : need I2C_FUNC_I2C\n", __func__);
return -ENODEV;
}
st21nfc_dev = devm_kzalloc(dev, sizeof(*st21nfc_dev), GFP_KERNEL);
if (st21nfc_dev == NULL)
return -ENOMEM;
/* store for later use */
st21nfc_dev->client = client;
st21nfc_dev->r_state_current = ST21NFC_HEADER;
client->adapter->retries = 1;
ret = acpi_dev_add_driver_gpios(ACPI_COMPANION(dev),
acpi_st21nfc_gpios);
if (ret)
dev_dbg(dev, "Unable to add GPIO mapping table\n");
st21nfc_dev->gpiod_irq = devm_gpiod_get(dev, "irq", GPIOD_IN);
if (IS_ERR(st21nfc_dev->gpiod_irq)) {
dev_err(dev, "%s : Unable to request irq-gpios\n", __func__);
return -ENODEV;
}
st21nfc_dev->gpiod_reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(st21nfc_dev->gpiod_reset)) {
dev_warn(dev, "%s : Unable to request reset-gpios\n", __func__);
return -ENODEV;
}
st21nfc_dev->gpiod_pidle = devm_gpiod_get(dev, "pidle", GPIOD_IN);
if (IS_ERR(st21nfc_dev->gpiod_pidle)) {
ret = 0;
} else {
if (!device_property_read_bool(dev, "st,pidle_active_low")) {
dev_dbg(dev, "[dsc]%s:[OPTIONAL] pidle_active_low not set\n", __func__);
st21nfc_dev->pidle_active_low = false;
} else {
dev_dbg(dev, "[dsc]%s:[OPTIONAL] pidle_active_low set\n", __func__);
st21nfc_dev->pidle_active_low = true;
}
/* Prepare a workqueue for st21nfc_dev_power_stats_handler */
st21nfc_dev->st_p_wq = create_workqueue("st_pstate_work");
if(!st21nfc_dev->st_p_wq)
return -ENODEV;
mutex_init(&st21nfc_dev->pidle_mutex);
INIT_WORK(&(st21nfc_dev->st_p_work), st21nfc_pstate_wq);
/* Start the power stat in power mode idle */
st21nfc_dev->irq_pw_stats_idle =
gpiod_to_irq(st21nfc_dev->gpiod_pidle);
ret = irq_set_irq_type(st21nfc_dev->irq_pw_stats_idle,
IRQ_TYPE_EDGE_BOTH);
if (ret) {
dev_err(dev, "%s : set_irq_type failed\n", __func__);
goto err_pidle_workqueue;
}
/* This next call requests an interrupt line */
ret = devm_request_irq(dev, st21nfc_dev->irq_pw_stats_idle,
(irq_handler_t)st21nfc_dev_power_stats_handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
/* Interrupt on both edges */
"st21nfc_pw_stats_idle_handle",
st21nfc_dev);
if (ret) {
dev_err(dev,
"%s : devm_request_irq for power stats idle failed\n",
__func__);
goto err_pidle_workqueue;
}
ret = sysfs_create_file(&dev->kobj,
&dev_attr_power_stats.attr);
if (ret) {
dev_err(dev,
"%s : sysfs_create_file for power stats failed\n",
__func__);
goto err_pidle_workqueue;
}
}
st21nfc_dev->gpiod_clkreq = devm_gpiod_get(dev, "clkreq", GPIOD_IN);
if (IS_ERR(st21nfc_dev->gpiod_clkreq)) {
ret = 0;
} else {
if (!device_property_read_bool(dev, "st,clk_pinctrl")) {
dev_dbg(dev, "[dsc]%s:[OPTIONAL] clk_pinctrl not set\n",
__func__);
st21nfc_dev->pinctrl_en = 0;
} else {
dev_dbg(dev, "[dsc]%s:[OPTIONAL] clk_pinctrl set\n",
__func__);
st21nfc_dev->pinctrl_en = 1;
/* handle clk_req irq */
st21nfc_dev->irq_clkreq =
gpiod_to_irq(st21nfc_dev->gpiod_clkreq);
ret = irq_set_irq_type(st21nfc_dev->irq_clkreq,
IRQ_TYPE_EDGE_BOTH);
if (ret) {
dev_err(dev, "%s : set_irq_type failed\n",
__func__);
st21nfc_dev->pinctrl_en = 0;
} else {
ret = devm_request_irq(dev,
st21nfc_dev->irq_clkreq,
st21nfc_clkreq_irq_handler,
IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING,
"st21nfc_clkreq_handle",
st21nfc_dev);
if (ret) {
dev_err(dev,
"%s : devm_request_irq for clkreq irq failed\n",
__func__);
st21nfc_dev->pinctrl_en = 0;
}
}
}
/* Get clk_pad value*/
if (device_property_read_u32(dev, "pmu_clk_pad", &st21nfc_dev->clk_pad)) {
dev_err(dev, "%s : PMU_CLKOUT_PAD offset is unset\n", __func__);
st21nfc_dev->clk_pad = 0;
st21nfc_dev->pinctrl_en = 0;
}
ret = st21nfc_clock_select(st21nfc_dev);
if (ret < 0) {
dev_err(dev, "%s : st21nfc_clock_select failed\n", __func__);
goto err_sysfs_power_stats;
}
}
client->irq = gpiod_to_irq(st21nfc_dev->gpiod_irq);
/* init mutex and queues */
init_waitqueue_head(&st21nfc_dev->read_wq);
mutex_init(&st21nfc_dev->read_mutex);
spin_lock_init(&st21nfc_dev->irq_enabled_lock);
dev_dbg(dev, "%s : debug irq_gpio = %d, client-irq = %d\n", __func__,
desc_to_gpio(st21nfc_dev->gpiod_irq), client->irq);
if (!IS_ERR(st21nfc_dev->gpiod_pidle)) {
dev_dbg(dev, "%s : pidle_gpio = %d\n", __func__,
desc_to_gpio(st21nfc_dev->gpiod_pidle));
}
if (!IS_ERR(st21nfc_dev->gpiod_clkreq)) {
dev_dbg(dev, "%s : clkreq_gpio = %d\n", __func__,
desc_to_gpio(st21nfc_dev->gpiod_clkreq));
}
st21nfc_dev->st21nfc_device.minor = MISC_DYNAMIC_MINOR;
st21nfc_dev->st21nfc_device.name = "st21nfc";
st21nfc_dev->st21nfc_device.fops = &st21nfc_dev_fops;
st21nfc_dev->st21nfc_device.parent = dev;
i2c_set_clientdata(client, st21nfc_dev);
ret = misc_register(&st21nfc_dev->st21nfc_device);
if (ret) {
dev_err(dev, "%s : misc_register failed\n", __func__);
goto err_misc_register;
}
ret = sysfs_create_group(&dev->kobj, &st21nfc_attr_grp);
if (ret) {
dev_err(dev, "%s : sysfs_create_group failed\n", __func__);
goto err_sysfs_create_group_failed;
}
device_init_wakeup(&client->dev, true);
device_set_wakeup_capable(&client->dev, true);
st21nfc_dev->irq_wake_up = false;
return 0;
err_sysfs_create_group_failed:
misc_deregister(&st21nfc_dev->st21nfc_device);
err_misc_register:
mutex_destroy(&st21nfc_dev->read_mutex);
err_sysfs_power_stats:
if (!IS_ERR(st21nfc_dev->gpiod_pidle)) {
sysfs_remove_file(&client->dev.kobj,
&dev_attr_power_stats.attr);
}
err_pidle_workqueue:
if (!IS_ERR(st21nfc_dev->gpiod_pidle)) {
mutex_destroy(&st21nfc_dev->pidle_mutex);
destroy_workqueue(st21nfc_dev->st_p_wq);
}
return ret;
}
static int st21nfc_remove(struct i2c_client *client)
{
struct st21nfc_device *st21nfc_dev = i2c_get_clientdata(client);
st21nfc_clock_deselect(st21nfc_dev);
misc_deregister(&st21nfc_dev->st21nfc_device);
if (!IS_ERR(st21nfc_dev->gpiod_pidle)) {
sysfs_remove_file(&client->dev.kobj,
&dev_attr_power_stats.attr);
mutex_destroy(&st21nfc_dev->pidle_mutex);
}
sysfs_remove_group(&client->dev.kobj, &st21nfc_attr_grp);
mutex_destroy(&st21nfc_dev->read_mutex);
acpi_dev_remove_driver_gpios(ACPI_COMPANION(&client->dev));
return 0;
}
static int st21nfc_suspend(struct device *device)
{
struct i2c_client *client = to_i2c_client(device);
struct st21nfc_device *st21nfc_dev = i2c_get_clientdata(client);
if (device_may_wakeup(&client->dev) && st21nfc_dev->irq_enabled) {
if (!enable_irq_wake(client->irq))
st21nfc_dev->irq_wake_up = true;
}
return 0;
}
static int st21nfc_resume(struct device *device)
{
struct i2c_client *client = to_i2c_client(device);
struct st21nfc_device *st21nfc_dev = i2c_get_clientdata(client);
if (device_may_wakeup(&client->dev) && st21nfc_dev->irq_wake_up) {
if (!disable_irq_wake(client->irq))
st21nfc_dev->irq_wake_up = false;
}
if (!IS_ERR(st21nfc_dev->gpiod_pidle)) {
bool is_active = (bool) gpiod_get_value(st21nfc_dev->gpiod_pidle);
is_active = st21nfc_dev->pidle_active_low ? !is_active : is_active;
if((st21nfc_dev->pw_current == ST21NFC_IDLE && is_active) ||
(st21nfc_dev->pw_current == ST21NFC_ACTIVE && !is_active)) {
queue_work(st21nfc_dev->st_p_wq,
&(st21nfc_dev->st_p_work));
}
}
return 0;
}
static const struct i2c_device_id st21nfc_id[] = {
{"st21nfc", 0},
{}
};
static const struct of_device_id st21nfc_of_match[] = {
{ .compatible = "st,st21nfc", },
{}
};
MODULE_DEVICE_TABLE(of, st21nfc_of_match);
static const struct dev_pm_ops st21nfc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(st21nfc_suspend, st21nfc_resume)
};
#ifdef CONFIG_ACPI
static const struct acpi_device_id st21nfc_acpi_match[] = {
{"SMO2104"},
{}
};
MODULE_DEVICE_TABLE(acpi, st21nfc_acpi_match);
#endif
static struct i2c_driver st21nfc_driver = {
.id_table = st21nfc_id,
.driver = {
.name = "st21nfc",
.owner = THIS_MODULE,
.of_match_table = st21nfc_of_match,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = &st21nfc_pm_ops,
.acpi_match_table = ACPI_PTR(st21nfc_acpi_match),
},
.probe = st21nfc_probe,
.remove = st21nfc_remove,
};
#ifdef GKI_MODULE
module_i2c_driver(st21nfc_driver);
#else
/*
* module load/unload record keeping
*/
static int __init st21nfc_dev_init(void)
{
pr_info("%s: Loading st21nfc driver (version %s)\n",
__func__, DRIVER_VERSION);
return i2c_add_driver(&st21nfc_driver);
}
module_init(st21nfc_dev_init);
static void __exit st21nfc_dev_exit(void)
{
pr_debug("Unloading st21nfc driver\n");
i2c_del_driver(&st21nfc_driver);
}
module_exit(st21nfc_dev_exit);
#endif
MODULE_AUTHOR("STMicroelectronics");
MODULE_DESCRIPTION("NFC ST21NFC driver");
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL");